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Summary

The causative agent of Whipple’s disease, Tropheryma whipplei, is a slow-growing bacterium that re-
mains poorly-understood. Genetic characterization of this organism has relied heavily upon rRNA se-
quence analysis. Pending completion of a complete genome sequencing effort, we have characterized sev-
eral conserved non-rRNA genes from T. whipplei directly from infected tissue using broad-range PCR
and a genome-walking strategy. Our goals were to evaluate its phylogenetic relationships, and to find
ways to expand the strain typing scheme, based on rDNA sequence comparisons. The genes coding for
the ATP synthase beta subunit (atpD), elongation factor Tu (tuf), heat shock protein GroEL (groEL),
beta subunit of DNA-dependent RNA polymerase (rpoB), and RNase P RNA (rnpB) were analyzed, as
well as the regions upstream and downstream of the rRNA operon. Phylogenetic analyses with all non-
rRNA marker molecules consistently placed T. whipplei within the class, Actinobacteria. The arrange-
ment of genes in the atpD and rpoB chromosomal regions was also consistent with other actinomycete
genomes. Tandem sequence repeats were found upstream and downstream of the rRNA operon, and
downstream of the groEL gene. These chromosomal sites and the 16S-23S rRNA intergenic spacer re-
gions were examined in the specimens of 11 patients, and a unique combination of tandem repeat num-
bers and spacer polymorphisms was found in each patient. These data provide the basis for a more dis-
criminatory typing method for T. whipplei. 
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Introduction

Whipple’s disease is a systemic illness characterized by
the presence of monomorphic bacteria and a macrophage
infiltrate in affected organs and tissues. Since the first de-
scription of this disease in 1907, many attempts have
been undertaken to cultivate this bacterium, and many
have failed. In 1991–92, the Whipple’s disease bacterium
was characterized based on its 16S rRNA sequence, using
a broad range polymerase chain reaction (PCR) approach
and was shown to be a member of the Actinobacteria
[32, 48]. Co-cultivation of the bacterium in the presence
of a human fibroblast cell line was reported in 2000 [30]. 

Due to the long-standing absence of purified and cul-
turable bacterial cells, little information has been avail-
able regarding the phenotypic and genotypic characteris-
tics of the Whipple bacillus, Tropheryma whipplei. Many
aspects of its natural ecology, routes of transmission, and
pathogenicity are unclear. A detailed assessment of its

phylogeny based on 16S rDNA sequence analysis re-
vealed an intermediate position between a group of acti-
nomycetes with group B peptidoglycan and the family
Cellulomonadaceae [26]. The 16S-23S ribosomal inter-
genic spacer exhibits limited sequence variability, with
seven types so far described, and is now the basis for a
strain typing scheme [8, 15, 26, 28]. The overall organi-
zation of the T. whipplei rRNA operon is in general ac-
cordance with that of the other actinomycetes, but some
features, such as a 23S rRNA insertion sequence and pre-
dicted rRNA secondary structures are quite dissimilar to
the corresponding features of other actinomycetes [28]. 

Beyond the rRNA operon, only scant information has
been available regarding genes, genetic organization, and
predicted gene products. A 620 bp fragment of the groEL
heat shock protein gene has been determined and em-
ployed in a diagnostic PCR test [29]. In addition, a com-
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plete rpoB sequence (beta subunit of DNA-dependent
RNA polymerase) was obtained from a laboratory-prop-
agated isolate of T. whipplei [6], and used for the same
purpose. A phylogenetic analysis of the RpoB protein se-
quence provided further evidence for a relationship of T.
whipplei with the actinobacteria. 

In order to verify this phylogenetic assignment of T.
whipplei and enhance strain discrimination capabilities,
we targeted conserved genes using degenerate broad-
range PCR and combined this with a “genome walking”
strategy. Our targets included the genes coding for ATP
synthase beta subunit (atpD), elongation factor Tu (tuf),
heat shock protein GroEL (groEL), and the beta subunit
of DNA-dependent RNA polymerase (rpoB), and the
RNase P RNA (rnpB) gene. The genome walking strategy
was also applied to the regions upstream and down-
stream of the rRNA operon [28]. Despite their conserva-
tion, these genes offer reliable phylogenetic information,
and the possibility of useful sequence polymorphisms.
Examination of these chromosomal regions also provides
an early, but limited glimpse at the genome organization
of this enigmatic bacterium. 

Materials and Methods

Patient specimens 
A paraffin-embedded intestinal biopsy specimen from a pa-

tient with “classical” intestinal Whipple’s disease was used to
amplify and assemble all of the chromosomal regions in this
study. This specimen had been obtained from a 72-year-old fe-
male with a diagnosis established in 1999 based on standard
histopathology criteria, and prior to antibiotic treatment. A
group of specimens was used to confirm the T. whipplei se-
quence data obtained in this study: 3 intestinal endoscopic biop-
sy and 3 cerebrospinal fluid (CSF) specimens from patients with
Whipple’s disease confirmed by both histology and PCR. In ad-
dition, a group of 3 intestinal biopsy and 3 CSF specimens from
patients who had no evidence of Whipple’s disease by histology
or PCR was used to establish the specificity of these findings.
Ten additional specimens (5 intestinal biopsies and 5 CSF sam-
ples) from patients with confirmed Whipple’s disease provided
bacterial genomic template for analysis of variable sequence
sites identified in this study. DNA from the specimens was ex-
tracted as described previously [45, 46]. 

PCR
Several genes that are conserved across a wide range of or-

ganisms were selected as targets for consensus PCR: ATP syn-
thase beta subunit (atpD), elongation factor Tu (tuf), heat shock
protein GroEL (groEL), beta subunit of RNA polymerase
(rpoB), and RNase P RNA (rnpB). Sequences for each of these
genes from a representative set of bacteria were aligned. Degen-
erate broad-range primers (Table 1) were designed and used in
an initial series of PCR experiments. PCR products were cloned
into the TA vector system (Invitrogen, Palo Alto, CA, USA), se-
quenced using standard reagents and equipment (ABI, Foster
City, CA, USA), and analyzed using the BLAST software pack-
age (http://www.ncbi.nlm.nih.gov/BLAST/). Sequences with sim-
ilarity to those of other actinomycetes were incorporated into
the alignments, and specific internal primers (Table 1) were con-
structed. The primers were then tested in PCRs with the 6 Whip-
ple’s disease and 6 negative control specimens, in order to con-
firm that the novel sequences were associated with T. whipplei. 

Genome “walking”
To examine sequence adjacent to regions bounded by the

conserved priming sites, specific primers were designed such that
their orientation was facing outwards. These primers were ini-
tially used in combination with primers designed from more dis-
tant conserved sequence regions. This process was repeated until
no more adjacent sequence with sufficient conservation could be
identified within the aligned data set. As a final step, the newly
acquired chromosomal sequence regions were then further ex-
tended using restriction site PCR [36]. A second confirmation
procedure was then performed to assess the specificity of the se-
quences at the ends of the chromosomal regions: specific
primers facing inwards from the ends of the newly acquired se-
quence were combined with the previous set of specific out-
ward-facing primers, and tested in PCRs with the 6 Whipple’s
disease and 6 negative control specimens. The overall PCR strat-
egy is shown in Figure 1. Examination of polymorphic sites in
other Whipple’s disease specimens was accomplished using addi-
tional sets of primers (Table 1). 

Sequence analysis 
Alignments and phylogenetic analyses were performed using

the ARB program package [39]. Clustal W (Genetics Computing
Group, Wisconsin) and Iteralign ([1]; http://giotto.stanford.edu/
~luciano/iteralign.html) were used for auxiliary protein se-
quence alignments. A prealigned set of type A RNase P RNA se-
quences was downloaded from the RNase P RNA database [3];
http://www.mbio.ncsu.edu/RNaseP/home.html) and imported
into ARB. Phylogenetic trees were based on the predicted pro-
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Fig. 1. General scheme of the PCR strategy used to acquire sequences of conserved genes and adjacent regions. The number of steps
required to acquire each individual chromosomal region varied, depending on length and the availability of sites for outer degenerate
broad-range primers. 
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Table 1. Key primers used for the acquisition of novel sequences from T. whipplei and primers for sequence-based typing of different
strains.

Gene, Primera Sequence Commentsb

atpD
atp508f 5′-ttyggyggygciggigtiggyaarac Initial broad-range  
atp701r 5′-ggctcrtycatytgiccraaiacca Initial broad-range  
atp544f 5′-caggaaatgatacaaagagtg Specific, initial confirmation  
atp653r 5′-gcatcctgcatcycgcgaatc Specific, initial confirmation  
atp79f 5′-ayyggiscigtcgtygacgtigaitt Secondary broad-range  
atp1205r 5′-atrcciargatigcratratrtc Secondary broad-range  

tuf
eftu46f 5′-ggsaccatyggicayrtygacca Initial broad-range  
eftu671r 5′-ccggtratigwgaagacgtcctc Initial broad-range  
eftu114f 5′-gaggcttccttcgaatacg Specific, initial confirmation  
eftu571r 5′-taaccgcatcgccccacttttg Specific, initial confirmation  
eftu1077r 5′-ggygttgtcrcciggcatsaccat Secondary broad-range  

groEL
whipp-frw1 5′-tgacgggaccacaacatctg Initial specific [29]  
whipp-rev 5′-acatcttcagcaatgataagaagtt Initial specific [29]  
gro64f 5′-ctsgcsgayrcsgtiaaggtsac Secondary broad-range  
gro1492r 5′-gggtsaccttsaccgggtc Secondary broad-range  
gro1390f 5′-ggtaaggtatcttctttacctc Sequence-based typing  
gro+416r 5′-aataccgaaaatatggagggtag Sequence-based typing 

rpoB
rpob1303f 5′-cagctgwsicarttcatggaccaramcaaycc Initial broad-range  
rpob1844r 5′-gcytgicgytgcatgttigmicccat Initial broad-range  
rpob1497f 5′-tttagcgtgctattccagggtg Specific, initial confirmation  
rpob1679r 5′-agaacacgctcatcaacaaacg Specific, initial confirmation  
rpob470f 5′-cggaattcctyccnhtnatgacnga Secondary broad-range  
rpob2674r 5′-cggaattccccyttrttnccrtgncgnccngc Secondary broad-range  
rpob3221r 5′-cgggatcccgcccanmmytccat Tertiary broad-range  

rnpB
rnsp59f 5′-giigaggaaagtcciigc Initial broad-range [9]  
rnsp347r 5′-rtaagccggrttctgt Initial broad-range [9]  
rnsp114f 5′-cacccgggataacccgagagctg Specific, initial confirmation  
rnsp308r 5′-taaacgagcagcctaagttccctg Specific, initial confirmation

rRNA operon upstream region    
tw70r 5′-caaggaccgacaggacgaacc Sequence-based typing  
op-432f 5′-atggaccaataccaaaggaac Sequence-based typing  

rRNA operon downstream region
tw5670f 5′-cctcaaacccaagcttattcgcc Sequence-based typing  
op+276r 5′-caaaagaatatctataagcac Sequence-based typing  

Restriction-site PCR    
NheI-RSO 5′-aatacgactcactataggnnnnnnnnnngctagc Restriction-site oligonucleotide  
PstI-RSO 5′-aatacgactcactataggnnnnnnnnnnctgcag Restriction-site oligonucleotide  
MscI-RSO 5′-aatacgactcactataggnnnnnnnnnntggcca Restriction-site oligonucleotide  

a Numbering of the primers for atpD, tuf, groEL, rpoB, and rnpB is based on the numbering in the corresponding genes of Mycobac-
terium tuberculosis, as a reference. 

b Primers were designed in this study, except the 5′ portions of restriction-site oligonucleotides [36] and where other references are
given. 



tein sequences, and for RNase P RNA, on DNA sequences, and
were calculated using the Neighbor-Joining, Maximum Parsimo-
ny, and Maximum Likelihood algorithms [7]. Tree topologies
were evaluated by bootstrap analysis with 100 re-samplings. 

Sequences at the NCBI microbial genomes website
(http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/micr.html) and
a set of Streptomyces coelicolor cosmids [31] were used for com-
parisons of T. whipplei gene arrangements with those of other
microbial genomes. Sequences were tested for open reading
frames (ORFs) using the ORF finder at the NCBI website, the
Glimmer program (TIGR, The Institute for Genomic Research,
Rockville, MD), and the Artemis annotation tool (Sanger Insti-
tute, Cambridge, UK). 

The following additional sequence analysis resources were
used: for codon usage and nucleotide composition, Codon-
frequency and Composition (GCG package); for protein family
assignment, Pfam (http://pfam.wustl.edu); for transmembrane
protein prediction, TMpred (http://www.ch.embnet.org/soft-
ware/TMPRED_form.html); for signal peptide prediction, Sig-
nalP (http://www.cbs.dtu.dk/services/SignalP); to search for
blocks of conserved sequences, Block Searcher ([12];
http://blocks.fhcrc.org/blocks/blocks_search.html), to search for
tRNAs, tRNAscan SE (http://www.genetics.wustl.edu/eddy/
tRNAscan-SE); and to search for repeat regions, Tandem Repeats
Finder (http://c3.biomath.mssm.edu/trf.html). 

Nucleotide sequence data deposition 
The sequences of the chromosomal regions determined in this

work have been deposited in the GenBank/EMBL databases under
accession nos. AF483648-AF483654. The secondary structure of
RNase P RNA was determined by James W. Brown (North Caro-
lina State University) and was deposited at the RNase P RNA
website (http://www.mbio.ncsu.edu/RNaseP/home.html). 

Results and Discussion

Assembled sequences

Multiple locus genome sequence analysis has signifi-
cantly enhanced our understanding of the evolution and
functional capabilities of fastidious microorganisms. T.
whipplei is a pre-eminent example of a microorganism
that has resisted characterization because of its recalci-
trance to cultivation. Consensus PCR and genome-walk-
ing techniques provide an opportunity for genetic charac-
terization of T. whipplei directly from a relevant infected
site, i.e. the diseased human intestinal lamina propria.
The recent published reports of T. whipplei laboratory
cultivation describe bacterial generation times as long as
18 days. Our approach for genetic characterization
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avoids mutations that might arise during prolonged labo-
ratory propagation and become fixed as a result of labo-
ratory adaptation. 

DNA sequences from each of 7 unlinked chromosomal
loci were assembled based on PCR products amplified
from an intestinal biopsy specimen of a patient with
Whipple’s disease. These chromosomal regions encom-
pass the ATP synthase (atpD) gene (assembly size 2392
bp), elongation factor Tu (tuf) gene (assembly size 1865
bp), heat shock protein GroEL (groEL) gene (assembly
size 2551 bp), DNA dependent RNA polymerase (rpoB)
gene (assembly size 3815 bp), RNase P RNA (rnpB) gene
(assembly size 568 bp), and the regions upstream (802
bp) and downstream (1200 bp) of the rRNA operon. The
newly-determined sequences comprise 13,193 bp with a
G+C content of 49% (individual regions: 46.1%, 50.0%,
49.2%, 50.2%, 51.8%, 47.1%, 49.7%, respectively),
which is lower than the estimated G+C content of a culti-
vated isolate (59%) using HPLC [22], and in keeping
with a figure of 46.3% from a T. whipplei full genome
sequencing project (J. Parkhill, unpublished data;
http://www.sanger.ac.uk/Projects/T_whippelii/). tRNA
genes were not identified. The 16S-23S rRNA intergenic
spacer sequence from our index patient was type 2 [15,
28]. 

To assess whether the amplified and assembled se-
quences were specific to Whipple’s disease tissues and
hence, to T. whipplei, PCRs were performed with primers
designed from specific sequences at the center of the assem-
bled regions and primers from the ends (Table 1, Fig. 1).
All PCRs with these specific primer pairs yielded products
of the expected size from all 6 Whipple’s disease tissues and
from none of the six non-Whipple’s disease tissues. 

T. whipplei codon usage and chromosomal G+C con-
tent was compared to a group of well-studied actinobac-
teria and other bacteria using a sequence data set from
Mycobacterium tuberculosis, Mycobacterium leprae, S.
coelicolor, Staphylococcus aureus, Bacillus subtilis, and
Escherichia coli. The data set consisted of concatenated
sequences for atpD, tuf, groEL, and rpoB (7716–8244 bp
in the different species). The results are shown in Table 2.
While the third-position G+C content generally reflected
overall G+C content, the small number (i.e., one) of un-
used codons in the T. whipplei sequence set is unusual.
The evenness of codon usage (or degree of bias) in an or-
ganism may be correlated with its growth rate [19]. The
relative level of expression of a gene is also thought to be

Table 2. Overview of the codon usage and total G+C content of the concatenated genes atpD, tuf, groEL, and rpoB.

Organism Total G+C content Third position G+C content No. of unused codons (of 64)

T. whipplei 50% 48% 1 (stop TGA)  
M. tuberculosis 64% 86% 3  
M. leprae 60% 77% 1 (Arg)  
Strep. coelicolor 66% 94% 13 (2 stop)  
Staph. aureus 38% 21% 7  
B. subtilis 46% 38% 4  
E. coli 53% 57% 7  



Conserved Non-rRNA Genes of T. whipplei 7

conserved P-loop motif: IGHVDHGKTT [35]. Within the
151 bp upstream and 520 bp downstream of tuf, no ORF
was found that yielded a hit with an E-value better than
10–1 in Blast searches. 

Bacterial tuf genes are commonly located within an
rpsL operon, containing the genes for the ribosomal pro-
teins S12 (rpsL) and S7 (rpsG), elongation factor G (fus),
and elongation factor Tu (tuf), in that order. Many pro-
teobacteria (e.g., E. coli) have two almost identical tuf al-
leles, both expressed at high levels, of which only tufA is
located in the rpsL operon [16, 38]. Most low G+C
Gram-positive bacteria and actinobacteria have one tuf
allele, which is located downstream of fus in the rpsL
operon. For comparison, fus-tuf intergenic regions range
from 109–362 bp in M. tuberculosis, M. leprae, S. coeli-
color, and C. glutamicum. Two streptomycetes are excep-
tions to the single tuf allele pattern within the actinobac-
teria; Streptomyces ramocissimus has three tuf alleles
(tuf1, tuf2, tuf3), and S. coelicolor has two (tuf1, tuf3).
The tuf2 and tuf3 alleles are not expressed at detectable
levels, nor located in the rpsL operon, and tuf3 is quite
dissimilar (63–65% aa identities) to the other alleles [42,
44]. However, apart from the streptomycetes, no other
organism within the Actinobacteria has been found so far
with more than one tuf allele. A preliminary analysis of
the T. whipplei genome reveals only one tuf gene; the rest
of the rpsL operon is found at an unlinked locus
(http://www.sanger.ac.uk/Projects/T_whippelii/).

GroEL gene region 

The GroEL chromosomal region (2551 bp) contains
an ORF predicted to encode a typical GroEL heat shock
protein (540 aa, 57 kDa). Within the 512 bp upstream
and 416 bp downstream of groEL, no ORF was found
that yielded a Blast search hit with an E-value better than
10–2; nevertheless, one potential ORF (336 bp) was
strongly predicted by the Glimmer program downstream
of groEL (score 99 of 99). There were two copies of a 21
bp sequence repeat (TTTATGTCATTCTCTTGCAGA)
within this potential downstream ORF. CIRCE regulato-
ry elements are commonly found upstream of groES or
groEL genes in many bacteria [10], but none was not
found in the T. whipplei chromosomal region. 

Bacterial groEL genes are often located in groESL
operons, where they are located downstream of groES.
Those actinobacteria for which information is available,
have two groEL genes, one of which (groEL1) is located
downstream of groES (C. diphtheriae, M. tuberculosis,
M. leprae, S. coelicolor: 12–139 bp downstream), while
the other (groEL2) is located elsewhere on the genome [4,
5, 31, 34]. No groES gene was identified within 512 bp
upstream of the T. whipplei groEL. Furthermore, the T.
whipplei predicted GroEL protein sequence contains a C-
terminal MDF amino acid sequence. Similar glycine-me-
thionine-rich motifs are found in actinobacteria GroEL2
proteins, whereas actinobacteria GroEL1 proteins con-
tain histidine-rich C-terminal sequences [2, 34]. These
data suggest that this T. whipplei groEL gene is a groEL2
allele. Preliminary analysis of the complete T. whipplei

a determinant of the degree of codon bias displayed by
that gene. All four genes in our analysis are among the
top 20 predicted most highly expressed genes based on
codon usage, as determined in an analysis of the genomes
of four fast-growing bacteria [19]. Thus, the relatively
unbiased use of codons in these T. whipplei genes sup-
ports the observation from in vitro cultivation experi-
ments that this is a very slowly growing organism [30]. 

ATPase gene region 

The ATPase chromosomal region (2392 bp) contains
an ORF that is predicted to encode an F1F0 type ATP syn-
thase beta subunit (atpD gene) with 474 predicted amino
acids (aa) and a calculated molecular mass of 52 kDa.
The AtpD putative protein sequence displays typical con-
served amino acid signatures for this family of proteins:
Walker A (P-loop), GGAGVGKTV; Walker B, LLFID;
and the DELSEED sequence ([35, 47]; Karlheinz Al-
tendorf, University of Osnabrück, Germany, personal
communication). Upstream of atpD, there is a 485 bp
(160 aa) ORF that is predicted to encode the C-terminal
portion of the ATP synthase gamma subunit (atpG), and
downstream of atpD, there is a complete ORF (285 bp,
94 aa) encoding an ATP synthase epsilon subunit (atpC). 

In bacteria which have F1F0 type ATP synthases, the
genes for the subunits of this complex are usually ar-
ranged in an operon and in the order atpIBEFHAGDC
[13]. In accordance with this pattern, the characterized
genes from the atp operon of T. whipplei are organized in
the order atpGDC. The putative epsilon subunit (AtpC)
of T. whipplei (94aa) is significantly shorter than the ep-
silon subunits of related actinobacteria, M. tuberculosis
(121 aa), M. leprae (121 aa), S. coelicolor (124 aa), as
well as many other bacteria for which this subunit has
been characterized. A Block search [12] identified only 1
of 2 conserved AtpD sequence motif blocks. An epsilon
subunit (86 aa) of similarly unusual size is found in
Caulobacter crescentus, and in like fashion contains only
1 of 2 sequence blocks. The biological significance of the
apparently truncated T. whipplei and C. crescentus AtpC
proteins remains unclear. 

A putative ORF downstream of atpC in the T. whip-
plei genome displayed little similarity with ORFs at the
same location in the genomes of other actinobacteria, al-
though all showed evidence for a signal sequence and a
transmembrane region. The Iteralign program [1] recog-
nized a highly similar region in the sequences of T. whip-
plei (ALYIIGLFAF), S. coelicolor and S. lividans (both
AVVVIGLFVF), starting at residue 15 of all three pro-
teins. This suggests that these predicted products encoded
by these ORFs may be analogs, but it remains unclear if
their gene products are functionally related to the ATP
synthases. 

Elongation factor-Tu gene region 

The elongation factor Tu chromosomal region (1865
bp) contains an ORF predicted to encode a typical Tuf
protein (397 aa, 43.5 kDa). This Tuf sequence contains a



number tandem repeat loci provide the basis for a new
potentially useful T. whipplei strain typing scheme (see
below). 

T. whipplei phylogeny 

All of the molecules characterized in this study (AtpD,
Tuf, GroEL, RpoB, and rnpB) have previously been used
as phylogenetic markers [9, 21, 23, 33, 43, 49]. The use
of non-rRNA markers has been proposed for indepen-
dent assessment of 16S rRNA-based relationships [24,
25], and may provide differing levels of taxonomic reso-
lution and differing perspectives on organismal history
[25, 33, 49]. The results of separate analyses using each
of the 5 genetic loci are shown in Fig. 2. A tree based on a
comparative analysis of 16S rRNA sequences from a sim-
ilar set of organisms is provided for comparison. The AT-
Pase sequences of the Chlamydia and Thermus/Deinococ-
cus phyla, and the RNase P RNA sequences of low G+C
Gram-positives could not be included because they repre-
sent different (non-homologous) molecule types (V-type
ATPases, type B RNAase P RNAs). 

In all of these analyses the class Actinobacteria was
monophyletic. T. whipplei was placed within this class in
all cases, and by each of the phylogenetic algorithms.
These findings confirm previous assignments based on
16S rRNA [26, 32, 48], 5S and 23S rRNA [28], and
RpoB [6] analyses. Closest relatives of T. whipplei in the
different trees were Nocardioides jenseni (rnpB), Propi-
onibacterium acnes (GroEL), Micrococcus luteus (Tuf),
and S. coelicolor (AtpD and RpoB); however, in contrast
with 16S rDNA-based analysis [26], a fine resolution pic-
ture of relationships within the Actinobacteria is not pos-
sible with these alternative genetic loci, due to the much
smaller number of available sequences. The branching or-
ders at the level of different bacterial phyla varied be-
tween analyses and treeing algorithms. This is in accor-
dance with the conclusions of previous assessments of
bacterial phylogeny [17, 23, 37]. RNase P RNA is a
smaller and much more variable molecule than the other
markers, but it has been used to resolve differences within
narrow taxonomic ranges, such as within LL-2,6-di-
aminopimelic acid-containing actinomycetes [49] and
Chlamydia spp. [14]. As expected from its large size, the
most stable tree topology was achieved with RpoB. 

The GroEL tree (Fig. 2C) revealed different groupings
for the known GroEL1 and GroEL2 proteins of myco-
bacteria, corynebacteria, and streptomycetes; the T. whipp-
lei sequence was clearly more similar to the GroEL2, than
the GroEL1, proteins of other actinobacteria. To check
for a possible sequence chimera, the two halves of
T. whipplei GroEL sequence were analyzed separately;
both were more similar to GroEL2 sequences. Different
phylogenetic groupings of GroEL1 and GroEL2 se-
quences for the actinobacteria have been noted previously
[18, 43]. GroEL1 proteins appear to be subject to fewer
selective or functional constraints and evolve faster than
GroEL2 proteins. This is reflected by the larger evolu-
tionary distances within the GroEL1 group in Figure 2C.
Assuming a groEL gene duplication event during the evo-

genome sequence indicates that this is the only T. whip-
plei groEL allele and confirms that it is not physically
linked to the groES locus (unpublished data;
http://www.sanger.ac.uk/Projects/T_whippelii/).

RpoB gene region 

The RpoB chromosomal region (3815 bp) contains an
ORF predicted to encode a typical beta subunit of a
DNA-dependent RNA polymerase (1157 aa, 128 kDa).
The sequence of this contig is almost identical to a previ-
ously-determined rpoB sequence from a cultivated T.
whipplei isolate (Drancourt et al., 2001). However, in the
currently reported analysis a GTG start codon was cho-
sen (178 bp downstream of the previously proposed
start), based on an inspection of actinobacteria RpoB
alignments. Within 27 bp of the end of the rpoB ORF
there is the beginning of a predicted gene encoding the
beta’ subunit of RNA polymerase (rpoC). The RNA poly-
merase genes rpoB and rpoC occur in a tandem arrange-
ment in the majority of bacterial genomes, as is the case
with the T. whipplei genome. 

RNaseP RNA gene region 

A complete gene (rnpB, 351 bp) for the T. whipplei
RNase P RNA was recovered and analyzed. The predict-
ed secondary structure of the RNA molecule was that of
a typical type A RNase P RNA, but without an additional
bulge in helix L15 that is present in most other actino-
bacteria [9]. The predicted T. whipplei RNase P RNA
structure is available at the RNase P RNA website
(http://www.mbio.ncsu.edu/RNaseP/home.html).

rRNA operon region 

Using restriction site PCR (Sarkar et al., 1993), 455 bp
of additional sequence was characterized upstream of the
previously-sequenced rRNA operon [28]. Two copies of a
14-bp imperfect tandem repeat (AACTGWTACTGAGT)
were identified in this region, but no predicted gene. As a
point of comparison, the genomes of M. tuberculosis and
M. leprae contain a murA gene (UDP-N-acetylglu-
cosamine enolpyruvyl transferase) within 296 and 308 bp
upstream of their single-copy 16S rRNA gene, while
S. coelicolor, with 6 rRNA operons, has a different com-
plement of genes upstream of its rRNA operons. Down-
stream of the T. whipplei rRNA operon, 539 bp of new
sequence was acquired, thereby extending chromosomal
characterization 1033 bp beyond the end of the T. whip-
plei 5S rDNA. The absence of sequence variability or am-
biguity in these amplified products and extended chromo-
somal regions flanking the T. whipplei rRNA operon is in
keeping with preliminary findings from the T. whipplei
genome project that there is only one copy of an
rRNA operon in this genome (http://www.sanger.ac.uk/ 
Projects/T_whippelii/). Two different repeat regions were
identified within the downstream region, one consisting
of 11 repeated Gs, and the other consisting of 6 tandem
copies of a 9 bp repeat (GTTCTAGTA). These variable
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Fig. 2. Phylogenetic analyses. (A) ATP synthase beta subunit protein; (B) Elongation factor Tu protein; (C) GroEL protein; (D) RpoB
protein; (E) RNase P RNA; (F) 16S rRNA. The trees in this figure were calculated using Maximum Likelihood algorithms and evalu-
ated by bootstrap analysis with 100 re-samplings. The scale bar indicates 0.1 amino acid or nucleotide substitutions per position,
and bootstrap values ≥50% are indicated. The phylum Actinobacteria is monophyletic in each tree and is marked by a vertical bar. 



proven useful in the analysis of Bacillus anthracis popula-
tion structure [20]. Multiple-locus VNTR analysis has
high discriminatory power and has revealed distinct geo-
graphic clustering of B. anthracis strains, despite the rela-
tively invariant nature of the B. anthracis genome. Our
results indicate high discriminatory power of VNTR
analysis for T. whipplei. Further studies will be needed to
determine the usefulness of a VNTR typing system for T.
whipplei; questions arise as to which of the VNTR loci
are stable in distinct strains of T. whipplei, and which are
subject to variation during the course of the disease or
during propagation of the organism in vitro. 

Conclusions 

The sequences determined in this study, comprising a
total of 13,193 bp, were extracted directly from a relevant
naturally-infected site, using a single paraffin-embedded
intestinal biopsy specimen in which T. whipplei was par-
ticularly abundant. This genomic information will soon
be greatly extended with the completion and analysis of a
full genome sequence (http://www.sanger.ac.uk/Projects/
T_whippelii/) from a different strain. Among the findings
from our data, all phylogenetic analyses using five non-
rRNA data sets confirmed the position of T. whipplei
within the phylum, Actinobacteria. The organization of
the T. whipplei atpD, groEL, and rpoB chromosomal re-
gions was consistent with other actinobacteria genomes.
The discovery of VNTR loci may provide the basis for a
new T. whipplei strain typing scheme with high discrimi-
natory power. This method awaits further evaluation as a
source of new insight into the pathogenesis, epidemiology
and transmission of Whipple’s disease. 
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lution of the Actinobacteria, the absence of the groES-
linked groEL1 allele in the T. whipplei genome suggests
subsequent gene loss during the evolutionary history of
this organism.

Variable numbers of tandem repeats (VNTRs) 

A total of 4 repeat-sequence motifs were found in the 7
T. whipplei chromosomal regions, including one ho-
mopolymeric G-tract and three tandem repeat sequences.
The tandem repeats were located in the GroEL chromo-
somal region (21-mer: TTTATGTCATTCTCTTGCA-
GA), and upstream and downstream of the rRNA operon
(upstream, 14-mer: AACTGWTACTGAGT; down-
stream, 9-mer: GTTCTAGTA). In order to explore their
suitability for strain typing, these regions were amplified
and sequenced from tissue samples of 10 additional
Whipple’s disease patients. The results are provided in
Table 3, together with the results of 16S-23S rRNA inter-
genic spacer typing. Within this specimen/strain collec-
tion, there were 1 or 2 copies at the GroEL VNTR locus,
1–3 in the rRNA operon upstream VNTR locus, and 3–8
at the rRNA operon downstream VNTR locus. Each T.
whipplei strain had a unique combination of rRNA spac-
er type and VNTR locus repeat numbers. Although not
examined in detail, variation in the poly-G-tract was also
observed; the biopsy of the index patient in this study had
11 Gs, and previously examined biopsies had 8 and 10
Gs, respectively [28]. 

Sequence repeats are prone to slipped-strand mispair-
ing during DNA replication, which leads to frequent in-
sertion and deletion of repeat units. This phenomenon
leads to the emergence of strain-specific differences, and
also provides a mechanism for genetic adaptation to dif-
ferent environments [11, 40, 41], such as might be re-
quired if T. whipplei transits from an external environ-
mental niche to the human intestinal tract [27]. Repeat-
sequence switching is a common mechanism of bacterial
phase variation, and can affect genes relevant to anti-
genicity or pathogenicity [11]. VNTR-based typing has

Table 3. Results of rRNA intergenic spacer typing and VNTRs in the GroEL and rRNA operon upstream and downstream chromo-
somal regions for different T. whipplei strains.

Patient Sample rRNA spacer type GroEL contigc rRNA operon upstreamc rRNA operon downstreamc

1a IBb 2 2× 2× 6×
2 IB 1 1× 1× 4×
3 IB 1 1× 2× 4×
4 CSF 1 1× 3× 5×
5 IB 1 1× 3× 7×
6 IB 2 1× 2× 6×
7 CSF 2 1× 2× 7×
8 CSF 2 1× 2× 8×
9 CSF 2 1× 3× 5×

10 CSF 2 2× 2× 3×
11 IB 2 2× 2× 8×

a This is the index patient whose sample was used to assemble the chromosomal region sequences in this study. 
b IB, intestinal biopsy. 
c The number of repeats is given. 
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