5-2016

STABILIZATION OF GP120 OUTER DOMAIN FOR HIV-1-1 VACCINE IMMUNOGEN DESIGN

Duoyi Hu
University of Nebraska-Lincoln, duoyi.hu@huskers.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/vetscidiss
Part of the Other Immunology and Infectious Disease Commons

http://digitalcommons.unl.edu/vetscidiss/20

This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Veterinary and Biomedical Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
STABILIZATION OF GP120 OUTER DOMAIN FOR HIV-1-1 VACCINE

IMMUNOGEN DESIGN

by

Duoyi Hu

A THESIS

Presented to the Faculty of
The Graduate College at the University of Nebraska
In Partial Fulfillment of Requirements
For the Degree of Master of Science

Major: Veterinary Science

Under the Supervision of Professor Shi-hua Xiang

Lincoln, Nebraska

May, 2016
STABILIZATION OF GP120 OUTER DOMAIN FOR HIV-1-1 VACCINE

IMMUNOGEN DESIGN

Duoyi Hu, M.S.

University of Nebraska, 2016

Advisor: Shi-hua Xiang

The sole envelope glycoprotein spike on the surface of Human Immunodeficiency Virus (HIV-1) is composed of two subunits: gp120 and gp41. The gp120 consists of three domains: the inner domain, outer domain and bridging sheet, to which the viral primary receptor CD4 binds and induces a conformational change in gp120 to expose the co-receptor binding site. Previous studies have found that the outer domain of gp120 is relatively more stable than the inner domain and bridging sheet. When superimposed, the co-crystal structures of CD4-gp120 complex and VRC01-gp120 complex revealed that the CD4-binding site (CD4-BS) antibody VRC01 actually mainly bound to the outer domain of the gp120. The outer domain (designed OD1) of gp120 has been considered as an immunogen candidate but to be ineffective, suggesting that structural-based modifications to the outer domain are required for designing an effective vaccine immunogen. Previous studies in our laboratory have introduced two disulfide bonds to stabilize the outer domain structure and named it OD2, which significantly improved the immunogenicity when compared to the wild-type outer domain (OD1). In this project, based on the OD2 set of experiment, an additional important mutation from serine to tryptophan at position 375 (S375W) in
the CD4-binding cavity was introduced to further stabilize the outer domain, which was named OD3. The OD3 immunogen was expressed and purified in *E. coli*. Subsequently, the purified OD3 immunogen was characterized *in vitro* and its immunogenicity was tested in guinea pigs. In comparison to OD1 and OD2, the results demonstrate the antibody titers and neutralizing activity were clearly higher in OD3. It is suggested that the S/375W mutation stabilized the outer domain and further improved the outer domain (OD) immunogenicity. In conclusion, this research has used a structure-based approach to design HIV-1-1 vaccine immunogens based on the gp120 outer domain (OD).
Keywords: Human Immunodeficiency Virus (HIV-1); Acquired Immunodeficiency Syndrome (AIDS); Structural-based Vaccine Design; HIV-1 envelope; Outer Domain of gp120; Stabilization; S375W mutation.
ACKNOWLEDGEMENT

I give my sincere thanks to my advisor, Dr. Shi-hua Xiang for the academic training under his guidance, and I also thank him for giving me the opportunity to be involved in projects of different specializations.

I thank my four Committee members during my three academic years. I would like to thank Dr. Mark Wilson for the suggestions he made during protein purification and crystallization. I would like to thank Dr. Peter C. Angeletti for his viral evolution course, and for his kindness allowing me to have access to his lab at any time during my work with protein purification. I also thank Dr. Fernando Osorio and Dr. Jay Reddy for the suggestions they made in committee meetings to improve my research project.

I give special thanks to my lab colleagues Wenzhong Wei and Dane Bowder. We experienced pleasant times together, and I benefited a lot in this working environment. Wenzhong taught me many lab techniques during my first year working in the lab and both Wenzhong and Dane did me many favors during my experiments.

Lastly, I give my most sincere and heartfelt thanks to my parents for the financial support during my three years study. Without them I would not have the chance to begin my graduate study in this university.
Table of Contents:

Title

Abstract

Keywords...i

Acknowledgement..ii

Table of contents..iii

List of Tables..iv

List of Figures..iv

Abbreviations...v

Chapter 1: Literature review ..1

Acquired Immune Deficiency Syndrome (AIDS) ..2

Human Immunodeficiency Virus (HIV-1) ..2

Facts and Statistics..2

HIV-1 Evolution and Genetic diversity ...3

HIV-1 Transmission...4

HIV-1-1 structure and genome ...5

HIV-1-1 Viral Life Cycle..7

Immune Response...9

Signs and Symptoms..9

Innate Immunity...11

Acquired Immunity..15

HIV-1-1 Viral Latency...21
Anti-HIV-1-1 Therapy Development against AIDS ... 22

Antiretroviral Therapy .. 22

Immunotherapy ... 24

Vaccine Development against AIDS ... 25

Chapter 2: Introduction and Objectives ... 29

Chapter 3: Materials and Methods .. 33

General Experimental Design ... 33

Virus Strains ... 33

Molecular Modeling and Designing of OD3 ... 34

Cloning and Expression of OD3 ... 35

Immunogen Purification .. 37

Immunoblotting ... 38

Secondary Structure Characterization ... 39

Guinea Pig Immunization .. 40

ELISA ... 40

Generation and Titration of Viral Stocks .. 41

Virus Neutralization Assay ... 42

Chapter 4: Results and Discussions ... 43

Structural Based Immunogen Design ... 43

Generation and Validation of Immunogens .. 44

Secondary Structure Verification .. 45

Immunogenicity of Designed Immunogens in Guinea Pigs 47
List of Tables:

Table 1: Compositions of the secondary structures in OD1, OD2 and OD3. (Page 55)

List of Figures:

Figure 1: Diagram of an HIV-1 virion structure. (Adapted from the website of Wikipedia, the free encyclopedia) (Page 57)

Figure 2: Schematic presentation of HIV-1-1 genomic organization. (Adapted from HIV-1 Sequence Compendium 2015) (Page 57)

Figure 3: The gp120 core structure: Inner Domain (ID), Outer Domain (OD) and Bridging Sheet (BS). (Page 58)

Figure 4: Superimposed CD4 receptor and VRC01 antibody binding to the gp120 of HIV-1-1. (Page 59)

Figure 5: Schematic presentation of the general experimental design. (Page 60)

Figure 6: Superimposed OD3 (color cyan) and the wild-type outer domain (OD1, color purple) structures. (Page 61)

Figure 7: 3D modelling of the three designed immunogens and their amino acid changes. (Page 62)

Figure 8: Antigen purification represented by SDS-PAGE. (Page 63)

Figure 9: Characterization of the three immunogens by Western blot. (Page 63)

Figure 10: Circular dichroism spectra of three immunogens with representative secondary structures. (Page 64)

Figure 11: Guinea pig immunization protocol. (Page 64)
Figure 12: Western blot analysis of antisera from immunized guinea pigs. (Page 65)

Figure 13: ELISA analysis of antisera from immunized guinea pigs and their individual antigenic differences. (Page 65)

Figure 14: ELISA analysis of antisera from immunized guinea pigs comparing antigenic differences among three immunogens. (Page 67)

Figure 15: Virus neutralization assay of antisera from immunized guinea pigs comparing serum neutralizing activities at different time points. (Page 68)

Figure 16: Virus neutralization assay of antisera from immunized guinea pigs comparing serum neutralizing activities of three immunogens. (Page 70)

Figure 17: Virus neutralization assay of antisera from OD3-immunized guinea pigs comparing serum neutralizing activities against diverse HIV-1-1 isolates and non-HIV-1-1 isolate. (Page 71)
Abbreviations:

HIV-1: Human Immunodeficiency Virus

AIDS: Acquired Immunodeficiency Syndrome

OD: Outer Domain of gp120

bNAbs: Broadly Neutralizing Antibodies

Nabs: Neutralizing Antibodies

Mabs: Monoclonal Antibodies

CTL: Cytotoxic T Lymphocyte

MHC: Major Histocompatibility Complex

DCs: Dendritic Cells

IFN-α/β/γ: Interferon-alpha/beta/gamma

ART: Anti-Retroviral Therapy

ELISA: Enzyme-Linked Immunosorbent Assay

CD: Circular Dichroism
Chapter 1: Literature review

Acquired immune deficiency syndrome, known as AIDS, is an immunodeficiency disease caused by human immunodeficiency virus type 1, known as HIV-1-1. Since the virus was discovered in 1981(1-4), more than 65 million people have been infected with this virus, and more than 39 million people have died of AIDS-related diseases (5). An astonishing fact is that the number of deaths caused by AIDS exceeds the total number of death resulted from all the wars in the 20th century. Although scientists try to elongate HIV-1 patients’ life to a higher extent, we currently still have no cure, and have no effective vaccine to prevent the virus infection. While researchers all over the world have united together to tackle this problem, there are still a lot of obstacles on the way to the success. The year 2014 was sad for us: MH17, an aircraft taking more than 100 HIV-1 field experts crashed by a missile attack, and no one survived this disaster (6). While people in the whole world were criticizing the missile attack, scientists in HIV-1 related field were grieving over the deaths of their colleagues. Yet we are, and will still be working on this issue: public awareness has been raised dramatically in developing countries; vaccine development is becoming promising; antiviral therapeutic treatments are also becoming more effective. In the foreseeable future, human beings will finally overcome this disease.
Acquired Immune Deficiency Syndrome (AIDS)

AIDS is caused by HIV-1-1 infection. HIV-1-1 specifically attacks human immune cells such as CD4+ T cells, dendritic cells and macrophages (7). The infected lymphocytes are recognized as toxic pathogens by human cytotoxic CD8+ lymphocytes, and are killed by them. When CD4+ T cells and other vital human lymphocytes decline to a certain critical level, cell-mediated immunity is gradually destroyed, and people infected with HIV-1 eventually die from the breakdown of their immune system. Without any treatment, this whole process may take 9-12 years (8).

Human Immunodeficiency Virus （HIV-1）

Facts and Statistics

AIDS-related diseases have led to a total number of 39 million death since 1981, the first reported case. In 2015, there were 37 million people living with HIV-1-1, and Sub-Saharan Africa accounts for 70% of HIV-1-1-infected population. Although we have witnessed an increase of incidence in two years, the death rate and HIV-1-1-infected growth rate has dropped down significantly. New HIV-1-1 infections have fallen by 35% since 2000, and new HIV-1-1 infections among children have declined by 58% since 2000. By the end of 2015, AIDS-related deaths have fallen by 42% since the peak in 2004. By the year 2015, 5.8 million people were accessing antiretroviral therapy and 16 million of people had received antiretroviral therapy (ART) (5). With ART, people
living with HIV-1-1 are able to have their lives extended to 30 or more years, making their future promising (9).

HIV-1 Evolution and Genetic diversity

HIV-1 belongs to the genus lentivirus, which is a part of the family Retroviridae (10)(11). HIV-1 is an enveloped, positive, single-stranded RNA virus. It was first reported as syndrome caused by a new virus in 1981. It was then named HIV-1 in 1982, and was finally isolated and characterized in 1983 (4). There are two types of HIV-1, classified as HIV-1-1 and HIV-1-2. HIV-1-2 originates from a simian immunodeficiency virus (SIV) that infects the Sooty Mangabey. Compared to HIV-1-1, HIV-1-2 is less infectious, less virulent, and thus is confined primarily to West Africa (12). HIV-1-1 originates from an SIV which infects common chimpanzees and gorillas.

HIV-1-1 is divided into 4 groups, one major group named M group, and three minor groups named group N, O and P. Each group is believed to represent an independent transmission of SIV into humans (13). The M group accounts for 90% of HIV-1-1 infections all over the world and is further divided into 11 clades, or subtypes. They are named alphabetically from A to K. Among the subtypes, subtype A is most commonly seen in West Africa; subtype B is widely spread in Europe, United States, Australia, Thailand and Japan; and subtype C is the dominant from southern and eastern Africa, India, and parts of China. Other subtypes are less transmissible and confined to smaller areas (14).
HIV-1 Transmission

The three major transmission pathways of HIV-1 are sexual contact, direct exposure to infected blood or body fluids, and mother to child transmission during pregnancy or breastfeeding (15). It is confirmed that other routes of transmission such as exposures to feces, sweat, tears, or saliva (16). Among these three transmission pathways, sexual contact (both heterosexual and homosexual contact) is responsible for the most frequent transmission. Generally, HIV-1 transmission via heterosexual contact dominates among all the transmission pathways worldwide, however, the incidence of homosexual transmission is arising in developed countries (17). In Africa, the majority of transmissions are through mother to child, and male to female sexual contact. However, homosexual contact results in higher percentage of HIV-1 infection in some European countries and the United States, which accounts for 64% of new cases of infection (18). Oral sexual contact also transmit HIV-1-1 through blood from minor wounds, although the risk of this is relatively low (19). The risk of transmission may increase when there are other sexually transmitted infections (20) or ulcers (18). When genital ulcers are exposed to infected blood or body fluids, the result is a five-fold increase of HIV-1-1 infection (18). The most effective protection in sexual pathway is the use of condoms during any sexual intercourse, which can reduce the risk of transmission by 73%. (21).

Blood and body fluid transmissions account for the second most frequent mode of HIV-1-1 transmission. This is particularly true in less-developed counties. By sharing
needles and needle stick injuries, blood and blood product transfusions, or medical injections with contaminated and unsterilized instruments, HIV-1-1 finds its way to lead to a positive infection. In developed countries, examination of blood products before a blood transfusion is conducted is usually very seriously considered, and thus the risk of HIV-1-1 infection is negligible (about 1 in 1.5 million in the United States in 2008) (22). While in less developed countries, HIV-1-1 screening and blood donor selection are not conducted perfectly, so up to 15% of HIV-1-1 infections in those countries actually comes from contaminated blood and blood product transfusions (23)(24)

Mother-to-child is the third most frequent mode of HIV-1-1 transmission. This transmission pathway causes 90% of cases in children infected with HIV-1-1 (25). However, with appropriate treatment during pregnancy, the risk of mother-to-child infection can be reduced to about 1% (25). A piece of good news is that during the year 2014, there were 220,000 cases of children who became newly infected with HIV-1-1, decreasing from 520,000 in 2000 (5).

HIV-1-1 structure and genome

As shown in Figure 1, HIV-1-1 is positive, single-stranded RNA retrovirus. Two copies of RNA strands are packaged in the viral capsid and enveloped by matrix protein and lipid membrane. HIV-1-1 is roughly spherical (26). Its diameter is about 120 nm, which is 60 times smaller than a human red blood cell (27). Viral RNAs carry all the genetic
information and are the nucleotides materials responsible for encoding nine structural and non-structural proteins. As shown in Figure 2, the whole genome contains 9749 base pairs, and nine open reading frames which are protected by two long terminal regions on both the 3’ and 5’ sites. Among the nine open reading frames, there are three large precursor proteins, named Gag, Pol and Env (28). These proteins are then post transcriptionally cleaved into smaller structural and non-structural proteins. The viral RNAs are tightly bound and protected by the nucleocapsid protein p7, and the late assembly protein p6. Viral RNA-P7-P6 complex is carried by the capsid made up of 2000 copies of p24 (29) (30), and further covered by the matrix protein composed of p17. All of these proteins are post transcriptionally cleaved from the Gag precursor protein. The three most important non-structural proteins: integrase, reverse transcriptase, and viral protease, are encoded in the Pol open reading frame. Regulatory proteins such as Rev and Tat, and other auxiliary accessory proteins, such as Vpr, Vif, Vpu, and Nef are encoded in smaller open reading frames (31). Outside the matrix is the lipid membrane layer. It is formed from human lymphocytes by taking the advantage of their lipid bilayer. HIV-1-1 envelope glycoproteins gp120 and gp41 are cleaved from their gp160 precursor encoded from Env open reading frame. These two envelope protein subunits play a vital role in viral entry, and thus are the key to inhibitor design and vaccine development (32, 33).
HIV-1-1 Viral Life Cycle

HIV-1-1 lives in human lymphocytes. HIV-1-1 becomes very fragile when it is exposed in the environment outside of the body (34, 35), which reduces the amount of infectious virus by 90%-99% in just several hours. However, when HIV-1-1 is exposed to a human lymphocyte, this virus finds its way into it and makes the human lymphocyte a reproductive reservoir. The CD4 molecule binds to gp120, followed by a significant conformational change, which leads to the exposure of chemokine receptor on gp120. On the surface of the cell, the chemokine receptor, either CCR5 or CXCR4, then binds to gp120, which allows gp41 to penetrate the cell membrane, and thus fuels virus-cell membrane fusion (34, 35).

Successful viral fusion results in delivery of viral RNA and non-structural proteins into the cell. These important enzymes, including reverse transcriptase (RT), integrase, protease, etc., serve in reverse-transcription, cDNA replication, and host genome integration. Reverse transcriptase transcribes the single strand viral RNA into a complementary DNA carrying viral genetic information. The cDNA and its complement form a double-stranded viral DNA and the viral protease and integrase insert viral DNA into human host chromosome (34, 35). During replication and transcription, the extremely error-prone reverse transcriptase generates cDNA with a large number of mutations, which can result in immune evasion and drug resistance.
Other unique features about the reverse transcriptase are its ribonuclease activity and DNA-dependent DNA polymerase activity (36, 37).

NF-κB is one of the cellular transcription factors that controls virus production after the viral genome has been successfully integrated into the host chromosome (38). When cytotoxic CD8+ T-cells become activated, NF-κB is upregulated and allows the host genome to actively produce viral particles. Viral non-structural and structural proteins are produced along with host chromosome translation. During viral replication, the integrated viral DNA is transcribed back into viral RNA, which then undergoes RNA splicing and becomes viral mature mRNAs (39). Along with the translation, some viral regulatory enzymes, including Tat, allows better viral production. Another enzyme, Rev, can localize itself to the nucleus and bind to viral mRNA, making the viral mRNA possible to transport out of the nucleus. With Tat and Rev, viral mRNAs leave the nucleus (38), and these mRNAs either function as transcription and translation materials, to produce viral non-structural or structural proteins, or function as new viral genome copies. Viral mRNAs, structural proteins and non-structural proteins, are then packaged and assembled in the Golgi apparatus, and leave the host cell when mature. During maturation, the Env polyprotein gp160 is cleaved by furin protein in the Golgi apparatus. The cleaved gp160 becomes two subunits, gp120 and gp41, which are non-covalently linked and form a heterodimer. Three gp120/gp41 heterodimers form a homotrimer anchored by gp41 subunits on the surface of HIV-1-1 envelope. Virions are finally become mature and are then able to infect neighboring cells (40, 41).
Immune Response

Signs and Symptoms

When having unprotected sex with an HIV-1-1 infected individual, or having direct exposure to HIV-1-1 infected blood or body fluid samples, people are at risk of getting infected with HIV-1-1. Initial symptoms may be inconspicuous since large numbers of individuals only develop influenza-like symptoms (42)(43), and some others have no noticeable symptoms (44)(45). Most commonly reported initial HIV-1-1 symptoms are fever, lymphadenopathy, rash, headache, and throat/mouth/genital inflammation (46). Some opportunistic infections like gastrointestinal symptoms, and neurological symptoms may occur (47). However, all symptoms are not severe, and usually disappear without any treatment in one to two weeks (48). Considering the fact that these symptoms are usually not specific, and are easy to “be cured”, HIV-1-1 infections are often not being recognized or diagnosed. Typically, people who had unprotected sex with an individual with HIV-1-1 before developing with such symptoms, are suggested to have a HIV-1-1 antibody test 1-3 months after suspecting that they have been exposed to HIV-1-1.

In most cases, an HIV-1-1-infected individual first develops the non-specific Flu-like symptoms described above, then the immune system starts to eliminate the virus but leaves some latent virus harboring in CD4+ T cells, Macrophages or Dendritic cells (49). A patient will live normal life until HIV-1-1 progresses and AIDS or AIDS-related
symptoms arise after several years. Without any treatment, this clinical latency may last three to 20 years, with an average of eight years (50)(51)(52). During the latency, patients may first experience asymptotically, or just have a low-grade fever for a short period of time, but at a later latency stage, CD4+ T cells are lost at a higher rate and individuals will eventually progress to AIDS (53). Interestingly, there are some exceptions: about 5% of HIV-1 infected individuals actually retain a high level of CD4+ T cells for more than five years without any treatment (54)(55), these people are known as “long-term non-progressors” (55); another group is known as “elite suppressors” whose viral load is undetectable even without any treatment.

AIDS refers to HIV-1 post latency symptoms and AIDS associated diseases, which is clinically defined by the number of CD4+ T cells declined to a certain critical level (usually, below 200 CD4+ T cells per microliter) (56). Without any antiretroviral treatment, individuals infected with HIV-1 develop these symptoms within 10 years, and swiftly progress to death due to the depletion of the vast majority of CD4+ T-cells and infectious virus domination in plasma. Opportunistic infectious disease develops along with this stage and can be caused by almost any pathogens including bacteria, viruses, fungi and parasites (57). HIV-1 patients at a later clinical state are also very vulnerable to cancers. Kaposi’s sarcoma occurs in 10 to 20% of cases of HIV-1 infected patients, which becomes the most common cancer accompanying AIDS (58). Lymphoma, leading to death in 16% of people living with HIV-1, is the second most common cancer (59). Human papillomavirus (HPV) and Hepatitis C virus (HCV) are
reported to co-infect with HIV-1 and these two viruses also lead to virus-induced cancers.

Innate Immunity

Innate immunity refers to the non-specific in-born immunity. Innate immunity plays a very important role in early HIV-1-1 defense. The innate immunity is also the sub-immune system that bridges humoral and cell mediated adaptive immune response at a later stage. Moreover, white blood cells serve in innate immunity and in the case of HIV-1-1 infection, play a unique role in HIV-1-1 latency, which is a major barrier of HIV-1-1 eradication.

During the first stage of HIV-1-1 infection (also referred to as acute HIV-1-1 infection), HIV-1-1 viral particles can be recognized by phagocytes such as macrophages and dendritic cells (60, 61). HIV-1 envelope proteins, viral mRNAs, and other viral structural or non-structural proteins, are termed as viral pathogen-associated molecular patterns (PAMPs) (61). These viral PAMPs are recognized by pathogen-recognition receptors (PRRs) of infected cells which trigger a series of signaling cascades. These signaling cascades result in an intracellular antiviral immune response such as a production or upregulation of antiviral molecules including interferons, interleukins, cytokines and chemokines (60). These molecules and the phagocytes are also involved in initiation of the adaptive immune system(62). At the first infection stage, HIV-1-1 is recognized by a mode of PRR termed as Toll-like receptors (TLRs) (63). Among
these TLRs, plasmacytoid dendritic cells (pDCs) unitize TLR7 and TLR9 to recognize single-stranded RNA (ssRNA) and double-stranded DNAs (dsDNAs) (63), triggering signaling cascades to control viral replication and reproduction.

Viral replication usually indicates a successful viral infection, however, in the case of pDCs, TLR7 and TLR9 recognition usually does not require HIV-1-1 reproductive infection (63). There therefore must be other PRRs recognition pathways being activated in those infected cells. It has been demonstrated that the infected cells use RIG-I-like receptors (RLR) and other PRRs such as DAI, IFI16, and AIM2 to recognize viral DNAs. Biological interplay between viral DNAs and PRRs leads to transcriptional activation of pro-inflammatory cytokines, chemokines, and type I interferons (I-IFNs) (64, 65). For example, upon TLR7 recognition, I-IFNs are induced, and these IFNs bind to IFN receptors on the surface of the infected and surrounding cells, which further triggers other signaling cascades that activates the transcription and translation of many IFN-stimulated genes (ISGs). ISGs are important in blocking viral replications. One of the most important ISGs is IFI16 (66-68). As mentioned above, IFI16 serves a role as PRR. IFI16 is both a nuclear and a cytosolic protein. This protein binds to cDNA under the assistance of a hin domain (67). After HIV-1-1 has successfully entered and replicated in the reservoir, the viral mRNAs are reversely transcribed into cDNA. IFI16 recognizes and captures viral DNA through hin domain, destroying HIV-1-1 replications (69). A knockdown of IFI16 study shows that the target host cells that undergo HIV-1-1 infection in the absence of IFI16, have a significant higher level of
HIV-1-1 permissiveness and viral replication(68). Thus IFI16 are confirmed to be both an HIV-1-1 PRR and a restriction factor.

RLRs are a family of DExD/H box RNA helicases that function as cytoplasmic sensors of PAMPs. Among these RLRs, RIG-I functions in HIV-1-1-infected cells by binding to HIV-1-1 mRNAs (70), which leads to activation of pro-inflammatory innate immunity response to target cells. Importantly, RIG-I also contributes to crosstalk with TRLs and other PRRs to modulate the adaptive immune response (71). Another sensor that recognizes HIV-1-1 PAMPs in HIV-1-1-infected cells is the cyclic GMP-AMP synthase (cGAS) (69), which recognizes and binds to HIV-1-1 reverse transcriptase in its early replication cycle. cGAS contains an amino-terminal DNA binding domains and a nucleotidyltransferase domain, which allows viral DNA binding and produces cyclic GMP-AMP (cGAMP) (68, 72). cGAMP is a cellular factor that works along with cGAS to induce ISGs. cGAMP also functions as a second signaling factor and binds to an adaptor protein called STING. The cGAMP-STING complex activates a signaling cofactor TBK1, and interferon regulatory factors INF3 and INF7 (72), which finally stimulates antiviral effector genes. Transcriptional factors such as IRF3, IRF7 and NF-κB, also drive the production of viral restriction factors (APOBEC, TRIM5a, SAMHD1, and tetherin) (61, 73) limiting viral replication. Each of these factors has been heavily studied. Recent studies found other restriction factors including SLFN11, IFITM and MX2 (74-77). Interestingly, these factors are not highly expressed in resting cells only until they are induced by IFN. SLFN11 is an RNA helicase-like protein that suppresses
HIV-1-1 replication at a later stage, so it is also associated with control of HIV-1-1 chronic infections. IFITM is transmembrane protein that inhibits HIV-1-1 entry (77). MX2 is GTPase that suppresses HIV-1-1 replication by stopping HIV-1-1 reverse transcribed DNA integration into the host chromosome.

During the first few hours of HIV-1-1 infection, viruses successfully obtain opportunities to tear into the mucosal epithelium and undergo further interactions with conventional DCs (cDCs) and Monocytes (60). The HIV-1-1-bearing stromal cDCs also have CD4 molecule and CCR5 coreceptor on the cell membrane for HIV-1-1 infection. Activation of cDCs leads virus degradation by the secretion of restriction factors such as APOBEC3G and SAMHD1, to restrict HIV-1-1 replication (78). Also, IFNs and Interleukins such as IL-12, IL-15 and IL-18 induced by the activated cDCs are able to either inhibit viral replication or recruit the NK cells to kill the infected cDCs (79). However, HIV-1-1 uptake by the C-type lectin DC-SIGN on the surface of the DC cell membrane blocks DC maturation thus resulting in DC dysfunction (80). DC-SIGN binds to HIV-1-1 envelope glycoproteins to internalize virus by endocytosis. Binding of DC-SIGN with HIV-1-1 envelope glycoproteins also facilitates HIV-1-1 transmission to CD4+ helper T cells. During the activation of cDCs, the plasmacytoid DCs are also activated. pDCs recognition of HIV-1-1 is achieved by TLR7 and TLR9 recognition. Unlike cDCs, the recognition usually does not require productive HIV-1-1 infection. Both cDCs and pDCs interacts with CD4+ helper T cells and transmit virions via the virological synapse cell (81, 82). Based on the new understanding of the
viral transmission pathway, new ideas of blocking HIV-1-1 infection of CD4+ helper cells could be reconsidered, and this understanding also bring us more insights into HIV-1-1 antiretroviral drug design as well as vaccine development.

Acquired Immunity

Currently, many studies have shown a strong link between the activation of innate immunity pathways and the adaptive immunity response (83, 84). Both the severity and the duration of primary HIV-1-1 infection are associated with the speed of CD4+ T cells lost in chronic infection, and they also positively correlate with the number of deaths in the AIDS phase. So, the events during very early HIV-1-1 infection directly have consequences for the disease. How does the immune activation indicate HIV-1-1 infection? It has been well recognized that HIV-1-1 pathogenicity is characterized by both severe immunodeficiency and significant immune activation (85, 86). There is growing evidence showing that lymphocytes obtained from HIV-1-1-infected patients are found mostly in an activated stage (87). During the acquired immunity activation, phenotypic activation markers on the surface of peripheral T cells and B cells are expressed at a decently higher level regulated by IFNs and other regulatory factors induced in the innate immunity phase, shown by an increased level of inflammatory cytokines in plasma. A sooty mangabey monkey model study (88) suggested a positive correlation between immune activation and immune deficiency. In the absence of dramatic immune activation, sooty mangabeys infected with SIV showed no manifests of infection but detected high level of SIV replication in plasma (89).
Cell Mediated Immunity and Viral Immune Evasion

The acquired immunity against HIV-1 begins with the uptake of virus by CD4+ T helper cells. During initial infections, usually a few hours post HIV-1 uptake by either pDCs or cDCs (90-92), the internalized HIV-1 virions are transmitted from DCs to CD4+ T cells via virological synapse. HIV-1 recognizes and binds to CD4+ T cells through the interplay between viral envelope protein gp120 and cellular membrane receptor and coreceptor CD4 and CCR5 or CXCR4, followed by CD8+ cytotoxic T cells killing infected CD4+ T cells (93). During the first week, HIV-1 rests in HIV-1-bearing T lymphocytes and amplifies within the cells in draining lymph nodes. HIV-1-bearing DCs present HIV-1 antigens to both CD4+ T cells and CD8+ T cells via either MHC class II AND MHC class I (94). This activation of T lymphocytes in draining lymph nodes results in the clonal expansion of HIV-1-specific CD8+ T cells and HIV-1-specific B cells. After activation, HIV-1-specific antibodies generated from B cell follicle start to neutralize viral particles and CD8+ T cells begin to eliminate HIV-1 productively infected CD4+ T cells.

Typically, during virus progression, the activated adaptive immunity eliminates both viruses and virus-infected cells. However, the outcome of HIV-1 infection is that after about 10 years of HIV-1 latency (95), infected individuals finally end their lives in immunodeficiency resulted AIDS. So, what are the reasons make our immune system abnormal? And how does the virus escape from immune detection and establish viral
latency? Unlike other viruses which target on non-lymphocytes, our working immune system clears HIV-1-infected CD4+ lymphocytes. This can be achieved by CD8+ cytotoxic T cells, and NK cells, cytotoxic killing from which eventually results in inadequate CD4+ T cells in plasma. Following initial HIV-1 infections, CD8+ cytotoxic T cells do help control virus proliferation. The infected cells present viral peptide antigens by HLAs (human leukocyte antigens) to CD8+ cytotoxic T cells, resulting in apoptosis of infected cells either by perforin generating holes in the target cells, by granzymes, or by Fas ligand-Fas (CD95) induced cell death (91). CD8+ cytotoxic T cells also regulate the delivery of antiviral soluble factors to infected cells, such as cytokines and IFN-gamma, which promote nearby cells becoming less vulnerable to viral infection (96)(97)(98). Despite these strategies utilized by CD8+ T cells work to some extent eliminated infected cells, the viral defense story is just a beginning, for HIV-1 is a master of escaping from cytotoxic lymphocytes. Under the selective pressure from CD8+ cytotoxic T cells, HIV-1 swiftly acquires mutations against cytotoxic T cell killing. Strong evidence has been found suggesting two viral protein, Nef and Env are responsible for viral immune evasion (99, 100). The Nef protein is necessary for high viral loads in AIDS progression, but the most important and well characterized function of Nef, is its role in antigen presentation during immune evasion. An example is that during an adoptive transfer of cytotoxic T lymphocytes to a HIV-1-infected patient, the transferred cytotoxic T lymphocytes swiftly and effectively selected for viral variants contains a deletion mutation in Nef protein (101, 102). Another method of immune evasion for HIV-1 is that a mutation at the second
residue of the Env epitope reduces binding affinity of peptide to MHC during the cytotoxic T lymphocyte immune response domination. This result indicates that Env mutations can be another immune evasion strategy used by HIV-1-1 during cytotoxic T lymphocytes antiviral selection. Other viral proteins that play roles in immune evasion include Gag and Pol. These viral proteins allow the virus to replicate without recognition by the host (103, 104).

To summarize, strategies of HIV-1-1 escaping cytotoxic T lymphocyte-mediated immunity include: If infected CD4+ T cells are successfully eradicated by CTL killing, the resulting substantial loss of CD4+ T cells will directly influence T helper cell function, and this finally undermines CD8+ T cells immune response to clear infection. On the other hand, HIV-1-1 evolves to obtain antigenic variability through the error-prone-reverse transcriptase resulting in mutations. These viral mutations can result in the dysfunction of cytotoxic T lymphocytes in viral recognition, viral replication inhibition, or viral proliferation. Eventually, the repeated T cell activation ends in T cell exhaustion and leads to chronic HIV-1-1 infection.

Humoral Immunity and Viral Immune Evasion

During early HIV-1-1 infection, typically 1-4 weeks post infection, CD4+ T cells activated by DCs presenting antigens via MHC II differentiate into T follicular helper cells and migrate into the B cell follicle (105, 106)(107). HIV-1-1-specific B cell and early antibody responses are established in the interplay of follicular DCs, follicular B
cells and follicular helper T cells (108). In the early immune activation stage, pro-inflammatory cytokines mediated from innate immune response events lead to the increase of turnover and polyclonal activation of B cells (109). This however will results in either increased B cell apoptosis, follicular hyperplasia, or mature B cell activation. A successful B cell maturation and memory B cell differentiation guided by HIV-1-1 infection establishes the foundation for HIV-1-1-specific antibody production. However, neutralizing antibodies against autologous HIV-1-1 strains develop slowly, usually no earlier than 12 weeks post initial infection (110), and what is worse, even though about 20% of HIV-1-1 patients develop neutralizing antibodies against HIV-1-1, a majority of these antibodies are of only moderate degree of neutralization and aroused after years of infection (106, 111). It is thus important to look at B cells at their early response to HIV-1-1 infection to understand why a neutralizing antibody response cannot be acquired in acute infection as is the case in other viral infections.

The first detectable B cell response is found on day 8 post infection, whereas the first detectable antibody response appears on day 13 post infection. These early induced antibodies are however non-neutralizing antibodies against either gp41 or gp120 (111-115). It is still unknown why these early phase antibodies are non-neutralizing. One possible reason is that denatured or non-functional Env forms may be dominant in the antigen pool (116, 117). The first neutralizing antibodies that induce escape mutants develop 12 weeks post infection (118-120). Although studies have characterized a number of neutralizing antibodies, these neutralizing antibodies majorly bind to the
highly conserved regions of gp120 or gp41. For example, the monoclonal antibodies b12 and VRC01, neutralize virus by specific binding to the CD4-binding site on gp120. Another example would be the monoclonal antibodies that recognize the membrane-proximal external region of gp41, such as 2F5, Z13 and 4E10 (120). Observations based on the neutralizing antibodies binding locus reveal that the HIV-1-1 variable loops under highly-shielded glycans create an antigenic barrier for antibodies neutralizing either HIV-1-1 envelope core domains, or HIV-1-1 envelope variable loops.

Reasons for the broad-specificity, poor neutralizing, and rarely induced antibodies are complex. First, as mentioned above, HIV-1-1 escapes antibody recognition by the error-prone reverse transcriptase-resulted antigenic mutations. Under antibody selection, more than 95% of gp120 nucleotide changes resulted in an amino acid change (121). Second, during HIV-1-1 progressive infection, follicular B cells are damaged by virus-induced and pro-cytokine induced apoptosis. The loss of follicular B cells has a direct influence on antibody production, resulting either in a poor antibody response or hypergamaglobulinemia. This damage further contributes to substantial loss of germinal centers (about 50%) (122) and gradually progresses to HIV-1-1 chronic infection. Third, during the chronic and advanced infection, CD4+ T cell lymphopenia stimulates the secretion of IL-7, which increases the number of immature transitional B cells. The consequence of expansion of immature B cells promotes a declined B cell response to HIV-1-1 antigens. In addition, Nef mediated class-switch recombination, during the expansion of immature B cells and naive mature B cells, results in the paucity
of HIV-1-1-specific IgA at mucosal sites (122). At a later AIDS stage, inadequate CD4+ T helper cells are not functional enough to transit the decreased number of resting memory B cells or splenic marginal zone B cells into memory B cells, which ends up with memory B cell exhaustion. Taken together, the antigenic variability of HIV-1-1 envelope proteins, the vast damage in both germinal centers and follicular B cells, the loss of CD4+ T helper cells and the exhausted memory B cells are eventually not able to produce high affinity broadly neutralizing antibodies against HIV-1-1 progression.

HIV-1-1 Viral Latency

HIV-1-1 can infect both activated and non-activated, resting CD4+ T cells. Infection of activated CD4+ T cells recruits CD8+ T cell cytotoxic killing and results in a substantial depletion of CD4+ T cells. Whereas infection of resting CD4+ T cells usually leads to viral latency. Viral latency is therefore a major challenge for virus eradication, even under the treatment of highly active antiretroviral therapy (HAART) (123). In a normal T cell immunity model, naive CD4+ T cells are activated by antigens presented by antigen presenting cells (APCs). Following activation, CD4+ T cells start clonal proliferation, during which, a majority of T cells undergo apoptosis and some effector T cells differentiate into memory T cells. Other naive or memory T cells stay at the G0 phase of the cell cycle. However, during HIV-1-1 infection, viral genomes are reverse transcribed and replicated into double-stranded cDNAs (dscDNAs) (124). The dscDNAs are relatively unstable and exist in the cytosol. This is called a reversible pre-integration latent state. However, when ATP is abundant in the cytosol, pre-integration
state dscDNAs are permanently integrated into the host genome. The provirus after successful integration remains quiescent before another cycle of immune activation. These latent HIV-1 provirus bearing CD4+ T cells can be differentiated into memory CD4+ T cells (125), and the nightmare for the host starts from here. As the antigens fade, most effector T cells die by apoptosis, but a small portion of T cells remains as memory T cells, and carry a permanent HIV-1-1 genome in their chromosome (126, 127). Some of these memory CD4+ T cells transit into a resting state that have an extended lifespan and lack the markers for T cell activation. These virus-bearing resting CD4+ T cells are thus not recognized by immune system and are less likely to be activated during HIV-1-1 progression (128, 129). Viral latency is therefore established.

Anti-HIV-1-1 Therapy Development against AIDS

Antiretroviral Therapy

There is no cure for AIDS at the moment. Neither antiretroviral therapy (ART) nor a protective vaccine can eliminate the virus or cure the disease. However, with ART or HAART, HIV-1-1 infected individuals are able to live with HIV-1-1 for a longer time and have their life extended to a close-to-normal life span. Also, ART does great job in preventing mother-to-child HIV-1-1 transmission when treatment is given at a very early stage to both child and mother. In the absence of any treatment, mother-to-child transmission ranges from 15% to 45%, and ART brings the number down to below 5% (130). This ART also provides optimal efficacy of reducing HIV-1-1 transmission during sexual contact, reducing viremia and transmission by more than 96% (131)(132).
Before given any ART, infected individuals are advised to undergo some tests to examine the patient’s medical history, to determine the best choices of medicine, or to avoid potential side effects. These tests includes, but not confined to, complete blood count (including CD4+ T cell count), urinalysis, liver and kidney function tests, infectious disease or sexually transmitted diseases tests, and a coreceptor tropism assay. Typically, ART consists of several classes of HIV-1-1 medicines, and each individual may take a regimen of different medicines in combination. The anti-HIV-1-1 medicine classes are: non-nucleoside reverse transcriptase inhibitors (NNRTIs), which prevents HIV-1-1 reverse transcriptase converting viral RNA to cDNA; nucleoside reverse transcriptase inhibitors (NRTIs), which also prevents reverse transcription; protease inhibitors, which inhibit viral-cleavage of the host genome; fusion inhibitors (e.g. T20), which blocks virus-cell membrane fusion; CCR5 antagonists (e.g. Maraviroc), which inhibits viral entry through coreceptor blocking; and integrase strand transfer inhibitors (INSTIs) (133). There are however side effects that come with these medical treatments. Physicians prescribing ART medicines always try to find a right combination of medicines without eliciting too many side effects. However, these drugs may lead to some short-term problems such as diarrhea, fatigue or headaches etc., or long-term side effects such as lipodystrophy, insulin resistance, and lactic acidosis etc. The short-term side effects usually last and fade from days to a month, but people suffering from the long-term side effects should consider seeing their doctors periodically (134). Drug resistance is another problem. HIV-1-1 mutates during their replications, and the
mutations selected by antiretroviral drugs will gradually decrease antiretroviral drugs efficacy.

Immunotherapy

Immunotherapy is another way of treating HIV-1-1-infected individuals. Immunotherapy refers to passively transferring HIV-1-1-specific neutralizing antibodies to HIV-1-1 infected patients. However, pre-clinical and clinical trials of these therapies all have failed to neutralize viruses (135-137). Therefore immunotherapy against HIV-1-1 had been abandoned due to its ineffectiveness for many years. However, recent studies taking advantage of novel strategies such as cell-based immunotherapy successfully suppressed HIV-1-1 in infected humans. On June, 2015, Caskey M et al. proved that HIV-1-1 viremia can be suppressed in HIV-1-1 infected humans by passive transfer of a monoclonal antibody named 3BNC117 (138).

Based on the single-cell-based antibody cloning methods, a new generation of potent broadly neutralizing antibodies have been uncovered (139-142), making it possible for researchers to produce large amount of broadly neutralizing antibodies (bNAbs). These bNAbs have shown promising protection and viremia suppression in humanized mice and nonhuman primates (143-145). In addition, a very recent study carried out by Nancy Haigwood in 2016 (146), showed that by passively transferring human bNAbs as a cocktail of PGT121 and VRC07-523 to infant macaques, SHIV-1 infection can be halted with no viral emergence even after CD8+ T cell depletion. This results suggest that this human bNAb cocktail immunotherapy can eliminate both viral foci and viral
reservoirs at very early stage, making this immunotherapy promising to completely eradicate HIV-1-1 and stop HIV-1-1 infection in human infants.

Vaccine Development against AIDS

The typhoid vaccine against typhoid bacterium was commercially available after a 105 year endeavor since pathogen had been discovered. A pertussis vaccine was available 89 years after the first reported case. It took us 47 years to develop a vaccine against polio and 42 years to develop a vaccine against measles. It therefore seems quite understandable that over 35 years of HIV-1-1 vaccine research has not provided us with an effective HIV-1-1 vaccine. We must however realize that the time course for those released vaccines was reducing, and it only took us 16 years to develop a vaccine against the hepatitis B virus. It is predictable that at this age an effective vaccine for HIV-1-1 is coming in the foreseeable future.

Traditional vaccine strategies such as subunit, killed or live attenuated vaccines are not protective against HIV-1 infection. These vaccines either induce non-bNAb or NAb but strain specific, so that the low bNAb content is inadequate to have antibody protection against HIV-1-1 infection. The first generation HIV-1-1 vaccine, typically is represented by the AIDSVAX gp120 subunit vaccine, stimulates antibodies towards HIV-1-1 envelope glycoproteins, but proved to be non-neutralizing, and thus failed to protect vaccinated individuals from HIV-1 infection (147). The second generation, named the STEP vaccine, uses adenovirus serotype 5 virus as backbone vector, to
carry HIV-1-1 Gag, Pol and Nef genes, expressing these HIV-1 viral proteins. This design was predicted to stimulate CD8+ T cell mediated immunity against HIV-1, but again showed no effective protection (148, 149). After the above two failed trials, a third generation vaccine was created (or we should call it a third efficacy trial, because it utilizes a combination of two vaccines described above). This trial, known as RV144 (150) was conducted in Thailand. This vaccine strategy is described as using a canary pox viral vector carrying HIV-1-1 envelope gene gp120, Gag, and Pol to prime the immune response, followed by the AIDSVAX gp120 subunit vaccine to boost. The outcome of this trial is not promising: the vaccine efficacy is only 31.2% in their modified intention-to-treat study involved 16,395 subjects. In addition, there are no significant changes in the degree of viremia or the number of CD4+ T cells. This limited protection although not promising, offers insight for further research.

What lessons shall we learn from these vaccine trial failures? First, we understand that an effective vaccine should have the potential to stimulate both CD8+ T cell and B cell response to multiple epitopes, especially to those highly conserved regions. In addition, an effective vaccine that allows T cell response to the common epitopes of different variants of the founder virus could inhibit viral immune evasion. Second, the fact that bNabs induced by these conventional vaccines are usually low in number, poor in quality, and elicited slow in time reveals that a more reasonable strategy would be to create a vaccine that exposes as many conserved epitopes as possible, and also stably preserves the native form without denaturing in vivo. In addition, more advanced
adjuvants and therapies that can protect bNAbs-producing B cells or rescue the damaged or exhausted CD8+ T cells and bNAbs-producing B cells may be necessary to work synergistically with vaccines. Third, it will be very wise to understand the HIV-1-1 envelope structures both in a native form, and in a complex form with potent bNAbs binding. Understanding the structures of the HIV-1-1 virion as well as the envelope glycoproteins allows us to investigate the epitopes that are targeted by bNAbs, or to find out how the conserved regions are shielded by the variable loops and glycans.

There is a remarkable endeavor in recent HIV-1-1 vaccine studies. In 2013, a study carried in China designed a novel adjuvant for HIV-1 vaccine delivery (151). Fullerenol is self-assembled into virus-sized nanoparticles, and they use this dual-functional nano-adjuvant to deliver a HIV-1-1 DNA vaccine. Surprisingly, this adjuvant not only shows promising adjuvant activity, but also decreases the antigen dosage and immunization frequency while maintaining decent immunity levels. What is more, the nano-adjuvant promotes effector memory CD8+ T cells in immune response, which has great significance in earlier immunity against HIV-1 infection. In November, 2015, a new method investigating how HIV-1-1 vaccine induce humoral immunity, termed “systems serology”, reported by Chung AW et al. (152), provides us more ideas to understand the multi-dimensional relational comparisons in humoral immune response against HIV-1-1 vaccine. Furthermore, researchers from Duke University designed a HIV-1 Env using the novel 3D-printing technique (153). A ligand-free HIV-1-1-Env trimer was fixed in its native conformation, and epitopes were analyzed. These antigenicity-
guided structural designs are promising for a new generation of vaccine antigens. In February, 2016, one research team lead by Harvard Medical School and Beth Israel Deaconess Medical Center, recombined an HIV-1-1 clade A Env gene into adenovirus serotypes 26 and 35 (154). Assessment of the safety and immunogenicity of these two adenovirus-vectored-HIV-1 vaccines showed that both vaccines elicited significant immune responses without noticeable side effects in monkey model tests. This study provides us ideas about designing a desirable HIV-1-1 vaccine delivery system, but how long the protection lasts and how well the vaccine protects human after HIV-1 infection remains unknown. These recent HIV-1 vaccine studies, either focus on the adjuvant development, on understanding the humoral response rationale beyond vaccination, on choosing a safe and effective antigen delivery vector, or on a structural basis to design immunogens with reasonable antigenicity, are very good examples representing the promising directions of HIV-1 vaccine development.
Chapter 2: Introduction and Objectives

The structure-based design of HIV-1 vaccine emphasizes the rationale on the structural relationship between antigens and antibodies. This method is substantially rational and sophisticated in designing immunogens to elicit potent neutralizing antibodies. Traditional HIV-1 vaccine designs do not pay much attention to the structural instability or the potential for antigen denaturing after *in vivo* antigen delivery, which is likely one of the reasons why potent bNAbs cannot be elicited. It is in this context that studies focused on structural-based design of HIV-1 vaccines have been started recently (146, 155).

The envelope glycoprotein of HIV-1 is expressed as the gp160 precursor, which is then proteolytically cleaved into gp120 and gp41 during maturation in the Golgi apparatus (35, 155-158). The two glycoprotein subunits gp120 and gp41 are the sole spikes on the surface of HIV-1 virion, so a large number of vaccine designs are based on these glycoproteins. Naturally, these two glycoproteins are non-covalently linked and are formed as heterodimers, and eventually function as trimers of gp120/gp41 dimers. Despite the fact that viral envelope protein complexes are well exposed on the surface, generation of HIV-1-specific neutralizing antibodies are shown to be narrow in breadth. As been discussed above, possible reasons may include viral mutation resulting in immune evasion. However, recent studies focusing on the HIV-1 envelope trimer structures reveal that another HIV-1 immune evasion mechanism
may be associated with the rearrangement of the envelope trimer structure during a pre-fusion to post-fusion transition (159-161). During recent years, the Cyro-EM technique has brought the structure of a soluble HIV-1-1 envelope trimer to our horizons (159-161). This trimer structure was represented in a cleaved state without gp41 MPER region and cytoplasmic tail. Later, the crystal structure of this cleaved trimer captured by antibodies PGT122 and 35O22 was also established. These findings make blueprints for mapping the prevalence and location of effective HIV-1-1 immune recognition.

Over the past 20 years, substantial HIV-1-1 envelope subunits structures have been obtained at atomic or near atomic levels. Some of these important findings include the structure of the gp120 core and its interaction with CD4 molecule (162), and the structure of post-fusion gp41 (163-165). In the context of the trimer, gp120 subunits shield most of the gp41 subunit and becomes the most exposed subunit, so that gp120, compared to gp41, has been more commonly studies (166)(167)(168)(169)(170). The first generation of candidate immunogens was designed based on monomeric gp120 (146, 164, 165, 171-173). The peptide sequence of gp120 is made up of five conserved regions and five variable regions (174-177), the five conserved regions together represent the gp120 core. The gp120 core is shielded by highly glycosylated variable regions, protecting the core from being neutralized.

Monoclonal antibodies (Mabs) against HIV-1-1 envelope proteins are primarily generated from naturally infected human beings or other animals. Among these Mabs,
a large number are antibodies that have no neutralizing ability. However, there are some potent Mabs which are able to neutralize several primary HIV-1 isolates (165, 178, 179). These neutralizing Mabs include 2F5, 2G12 and IgG1b12. Other Mabs particularly interact with the variable loops and are classified as V1/V2/V3 antibodies, but they are however only able to neutralize certain epitopes, so their value in vaccine development is less promising (178-188). The last group of antibodies directly targets the CD4 binding site, called CD4-BS antibodies. These antibodies also provide limited neutralizing effect, but they are able to neutralize laboratory-adapted isolates such as MN27 and HXBc2 (189, 190) (191). X-ray studies looking at the crystal structures of the HIV-1 gp120 (191)(192) core region demonstrated that the variable regions in two isolates HXBc2 and YU2 share very little accordance in terms of neutralizing antibody responses and coreceptor binding. However, the X-ray 3D crystal structures of these two isolates are nearly identical (191, 193, 194).

Figure 3 represents the crystal structure of the gp120 core, which is composed of three domains: the inner domain, outer domain and bridging sheet (198-201). Moreover, a red circle at the junction of three domains indicates the location of the CD4 binding site. Recent studies looking at the binding of the structure of gp120 to VRC01, suggests that its binding site on gp120 seems to be, to some extent, identical to the CD4 binding site, as shown in **Figure 4**. However, a closer look at their binding sites revealed that VRC01 majorly binds to the outer domain of gp120, whereas the CD4 binding site consists of the junction of the three domains of gp120. These studies provide us with more details
about the outer domain of gp120. Compared to the inner domain and bridging sheet, the gp120 outer domain is relatively more stable, and is also highly conserved. One idea is that by making the outer domain protein as an immunogen, VRC01-like antibodies could possibly be induced. A recent study in our lab created two disulfide bonds to stabilize the C-N terminal, as well as the β21/22 hairpin in the CD4-bound conformation of the gp120 outer domain (195). Immunogenicity of that modified OD has been evaluated and showed that OD2 (stabilized with additional two disulfide bonds from OD1) compared to OD1, was able to induce and circulate a higher amount of neutralizing antibodies in guinea pigs (196). Based on that study, we have introduced an additional S375W mutation to the CD4-bond conformation of outer domain, and named it OD3, to further investigate its potential of inducing neutralizing antibodies compared to OD1 and OD2. An X-ray crystal study of the gp120-CD4 binding complex reveals how the structural conformation of gp120 differs from the unbound state, and a thermodynamic study (195) of S375W gp120 binding to sCD4 reveals that there is less of an enthalpic and entropic change exhibited upon CD4 binding, which confirms the S375W-triggered CD4-bound conformation. The S375W-induced gp120 CD4-bound conformation appears to be a valuable conformation for further studies in vaccine design. We hope to make the gp120 outer domain a more stable immunogen and bring insights for further HIV-1-1 vaccine development.
Chapter 3: Materials and Methods

General Experimental Design

Figure 5 illustrates the general experimental design in this study. The objective of the study is to evaluate the immunogenicity of our designed OD3 immunogen compared to OD1 and OD2. Primers were designed to generate the S375W mutation by site-directed mutagenesis, and the new gene segment was cloned into the expression vector pET28b. Plasmids were transformed into *E.coli* BL21 (DE3) for protein expression and purification. Purified samples were validated by SDS-PAGE, to evaluate immunogens’ purity, followed by Western-blot with antibodies targeting different epitopes of the gp120 outer domain. Circular dichroism was conducted to confirm the secondary structure of the immunogens and to ensure their folding status. Verified immunogens were sterilized using the Minisart® 0.20 μm non-pyrogenic single-use filter for guinea pig immunization. A 63-day immunization protocol was followed. Guinea pig serum was collected at different time points for immunogenicity studies. HIV-1-1 pseudotyped viruses were generated by transfection of viral envelope plasmid, a CMV packaging plasmid and a luciferase plasmid into 293T cells. These pseudotyped viruses were utilized in the viral neutralizing assay.

Virus Strains

Viruses used for the neutralization assay were pseudotyped HIV-1-1 viruses produced by transfection of 293T cells with three plasmids: a plasmid carrying luciferase
expressing gene (pHIV-1-luc), a plasmid packaging HIV-1 Gag and Pol gene (pCMV Gag-Pol) and plasmids expressing the HIV-1-1 envelope proteins of isolate variants (pSVIIIenv) (197, 198). Transfection of these three plasmid produces luciferase-expressing HIV-1-1 isolates in 293T cells after three days of incubation.

Molecular Modeling and Designing of OD3

The glycoprotein-antibody complex, HIV-1-1 subtype B strain gp120 and the VRC01 monoclonal antibody complex were used as structural models to study and predict the gp120 structure of the HIV-1-1 subtype C strain 1084i. Based on a paper published from our lab (199), we designed the OD1 and OD2 immunogens using the software Discovery Studio Client 3.5 (Accelrys, San Diego, CA). OD1 is the wildtype gp120 outer domain and OD2 refers to the disulfide bond induced gp120 outer domain. OD3, used in this study, was modified from the OD2 protein with a serine to tryptophan mutation at location 375. This S375W mutation was first assessed in a full length gp120 in 2002 (200). The S375W mutation resulted a tryptophan indole ring occupying the Phe 43 cavity, which favors a gp120 conformation close to the CD4-bound state, which was better recognized by either CD4 or CD4-induced antibodies, and less favorable to CD4-binding-site antibodies. Considering the fact that S375 is located in the outer domain of gp120, we introduced the S375W mutation and designed OD3 to test its immunogenicity. All structural-based modification designs were performed on the platform of Discovery Studio Client. We numbered the protein sequences of OD1, OD2,
and OD3 based on the reference of the envelope sequence of the HIV-1-1 prototypic HXBc2 strain (201).

Cloning and Expression of OD3

The gene design of OD3 was based on our previous work on OD1 and OD2, and all the genes were designed using the HIV-1-1 subtype C strain 1084i (201). OD1 and OD2 were synthesized by GenScript®. Basically, the wildtype OD1 has 214 amino acids, from 246 to 460 of gp120, and the design of OD2 was modified from OD1 to introduce two disulfide bonds (4 cysteine substitutions were introduced at the amino acid locations 257, 370, 425, and 472). In the design of OD3, a serine at the amino acid location 375 was mutated to tryptophan (S375W) from OD2 by mutagenesis. To be specific, the forward primer (5’-CGT TGC ATC ACC ATG CAC TGG TTC AAC TGC CGT GGT-3’) and the reverse primer (5’-ACC ACG GCA GTT GAA CCA GTG CAT GGT GAT GCA CAG-3’) were synthesized by GeneScript®. Primers were used in site-directed mutagenesis and OD3 was cloned into the vector pET28b. All the genes were designed with a 6xHis-tag at the N-terminus for the future purpose of protein purification.

The designed OD3 gene was cloned along with OD1 and OD2 into the pET28b expression vector (Novagen), and *E.coli* BL21 (DE3) was used as the protein expression system. Sequence confirmation was conducted by Operon® to make sure the open reading frame, the designed mutation as well as the N-terminal 6x histidine
tag were correct and present. Three genes in pET28b were transformed into *E.coli* BL21 (DE3) competent cells. 60 µL competent cells were mixed with 100ng plasmid of each gene on ice for 10 minutes in a 1.5 mL Eppendorf tube. The tubes with plasmid and cells mixture were then incubated in a 42°C water bath for 2 minutes. Tubes were then placed on ice following heat shock for 5 minutes. 0.5 mL of LB Broth (Lennox) media with no antibiotics was added into each tube containing the OD1, OD2, and OD3 plasmid transformed cells, and were then incubated in the 37 °C shaker at 200 rpm for 20 minutes. 50 µL of cell culture suspension were then taken from each tube, and were spread on LB agar plates supplemented with 50 mg/L kanamycin. After 14 hours of incubation at 37°, single colonies from each of the 3 plates were picked up and grown in 3 mL LB media with 50 mg/L kanamycin in the 37 °C shaker at 250 rpm until the optical density reached between 0.4 and 0.6 at 600 nm. The cells were induced by adding 1mM isopropyl-D-thiogalactopyranoside (IPTG) at a final concentration of 1 mM, and continuously grown for another 3.5 hours. All the bacterial culture was finally harvested and collected by centrifugation at 6000 G for 15 minutes. The cell pellets were washed once with STE buffer containing 100 mM NaCl, 10 mM pH 7.5 Tris, and 1 mM Ethylenedinitrilo tetraacetic acid disodium salt (EDTA). Cells were suspended in STE+ buffer (100 mM NaCl, 10 mM pH 7.5 Tris, 1 mM EDTA, 0.5% NP40, 100 mg/L lysozyme, and protease inhibitors), and incubated on ice for 20 minutes. Cells were then disrupted by sonication and were centrifuged at 14000 rpm at 4°C for 10 minutes. Both supernatant and cell debris were collected to determine whether the protein of interest was in supernatant or insoluble fraction. An SDS-PAGE test followed
by Coomassie blue staining and anti-6xHis western blot were conducted to determine the existence of our protein of interest. We found that the majority of the recombinant protein existed as inclusion bodies. The transformed strain *E.coli* BL21 (DE3) containing each OD1, OD2, OD3 plasmid were made into glycerol stocks for further experiments.

Immunogen Purification

OD1, OD2 and OD3 protein expression began by the inoculation from the glycerol stock of *E.coli* BL21 (DE3) containing each OD1, OD2, OD3 plasmid into 3 mL LB media with 50 mg/L kanamycin. 3 mL bacterial culture were then added into 300 mL LB (1:100) with 50 mg/L kanamycin, then were incubated, induced with IPTG, collected, washed, and lysed using the same method mentioned above. To purify the recombinant protein as inclusion bodies, 4 subsequent washes were performed to gradually increase the purity of our protein of interest. First, they were washed with 1x PBS+0.1% SDS, then with 1x PBS+1% NP-40, then with 1x PBS+1% TritonX-100 and finally with 1x PBS+2 M urea. Short periods of sonication impulse were introduced during the washes to better diffuse the inclusion bodies. The insoluble fraction after 4 washes was finally solubilized in 3 mL solubilization buffer (8 M urea, 50 mM NaCl, 20 mM Tris (pH=7.5), and 5 mM Dithiothreitol (DTT) at 4°C for 30 minutes. The solubilized sample was then transferred into a dialysis cassette (Slide-A-Lyzer™ G2, Thermo Scientific). Our sample was then renatured by successive dialysis against the refolding buffer at 4°C (pH=7.5 20 mM Tris, 400 mM L-Arginine, 1 mM EDTA, 5%
glycerol, 0.4 mM Glutathione (GSH) and 1 mM Glutathione disulfide (GSSG) containing 4 M, 2 M, 1M, 0M urea), for 2 hours, 8 hours, 8 hours, and 24 hours respectively. The refolded protein samples then underwent an affinity purification known as immobilized metal affinity chromatography. Ni-NTA resin beads (Thermo Scientific) were used to further purify the protein. Protein purity was measured by Coomassie blue staining and Western blot analysis. Concentration of the protein samples was determined by a BCA protein kit (Pierce). Purified and renatured protein samples were then used for further characterization.

Immunoblotting

Purified protein samples were loaded into a 10% SDS-denaturing gel along with negative (bovine serum albumin (BSA)) or positive (recombinant gp120) controls. The gels were run for 75 minutes at 60 volts. Nitrocellulose membrane transfer followed the SDS-PAGE (204). After 30 minutes blocking with 5% non-fat dry milk in phosphate-buffered saline (PBS), nitrocellulose membranes were incubated for one hour at room temperature with primary antibodies. Following six washing steps (five minutes each) with PBS+0.1% Tween-20, horse radish peroxidase (HRP) conjugated secondary antibodies were incubated with membranes for 30 minutes at room temperature. Six washes were followed as explained previously. The outcome of antigen-antibody binding was detected either using SuperSignal West Dura Extended Duration Substrate kit (Pierce) or using a BioRad ChemiDoc (LiCor Inc., Lincoln, NE) (205).
Secondary Structure Characterization

A desalting process was performed prior to the circular dichroism (CD) characterization. A desalting column (zeba™ Spin Desalting Columns, 7K MWCO, 5 mL) was used to remove L-arginine from the protein solution to avoid noisy signals. The instrument used for CD is a Jasco J-815, which is equipped with a cell compartment with a Peltier-type thermostat and a water circulator. The acquisition and data analysis are also from Jasco. Data was recorded using either a 1 mm cell-path 300 μL quartz cuvet or a 0.1 mm 15000 μL circular quartz cuvet at 20°C. The data was exported in XY asci format and analyzed with the program CD-Pro located at the DichroWeb site from the University of London, for the purpose of estimation of the secondary structure of the protein. The data was analyzed in the raw machine units (millidegrees) with the same resolution as the acquired data (1 data point per nanometer). The cell path, average molecular weight and protein concentration were provided prior to the fitting, which was carried out using the various models available (CONTINLL and SELCON3 yielded the lowest RMSD values) until a satisfactory fit was obtained. The results were imported into Sigmaplot (SPSS) which was used to plot the data along with the simulated secondary structure spectrum. Our three protein samples were measured at the same concentration of 0.35 μg/ml, solubilized in buffer containing 20mmTris-HCl and 2mm EDTA at pH=8.0, and the recording pathlength is 0.01 cm.
Guinea Pig Immunization

The standard 63-day immunization protocol of Cocalico Biologica, Inc. (CBI) for guinea pigs was followed. 16 guinea pigs were assigned evenly into 4 groups: inoculated with OD1, OD2, OD3 or adjuvant only (Complete Freund’s Adjuvant or Incomplete Freund’s Adjuvant). Three booster injections were carried following the first injection. Blood samples were collected from all guinea pigs on Day 0, prior to immunization as prebleed samples; on day 35 as test bleed samples after 2 boosts on day 14 and day 21; and on day 63 as exsanguination samples following the third boost on day 49. Blood samples collected (pre-bleeds, test bleeds and final bleeds) were used in antibody testing, ELISA and neutralization assays. All animal experiments were performed according to the protocol approved by the IACUC of CBI (Reamstown, PA).

ELISA

Flat-bottom, with low evaporation lid 96-well plates (FalconTM) were coated with 200 ng per well of test protein (OD1, OD2 and OD3) diluted in coating buffer (15 mM Na₂CO₃ and 35mM NaHCO₃, pH 9.6). Prior to blocking, plates were washed with phosphate buffered saline with 0.1% Tween-20 (PBS-T, Sigma-Aldrich) 3 times. Plates were blocked with 200 μL/well blocking buffer (PBS-T with 5% milk) at room temperature for 1 hour. After 3 washes with PBS-T, 100 μL/well of guinea pig sera diluted in PBS-T at different ratios was added and incubated at room temperature for 2 hours. Plates were washed 5 times prior to the addition of 100 μL/well of HRP-conjugated goat anti-guinea pig IgG secondary antibody (Jackson ImmunoResearch
Laboratories Inc.), and incubated at room temperature for 2 hours. Plates were washed 5 times, and 100 μL/well SureBlue Reserve™ TMB substrate (KPL) was added and incubated for 1 min in the dark. 100 μL/well of 1 M HCl was added to stop the reaction. Absorbance data was collected at 450 nm using an ELX 800 UV universal microplate reader (Bio-Tek Instruments).

Generation and Titration of Viral Stocks

HIV-1-1 isolates used for neutralization assay are pseudotyped HIV-1-1 viruses produced by transfection of 293T cells with three plasmids: pHIV-1-luc, pCMV Gag-Pol, and pSVIIIenv of different isolates, as mentioned above. Transfection of these three plasmid produces luciferase-expressing HIV-1-1 isolates in 293T cells after a three day incubation period. Transfected 293T cells were grown at 37°C with 5% CO2, and maintained in DMEM medium with 584 mg/L L-Glutamine (Gibco), supplemented with 10% FBS and 1X penicillin-streptomycin. Twenty-four hours prior to transfection, 1.5x10^6 cells were plated in 10 cm dishes. Cells were transfected by adding 6μg of replication-deficient HIV-1 luciferase plasmid pHIV-1-luc, 2 μg HIV-1-1 envelope construct pSVIIIenv-Yu2/1084i/89.6/JRFL/HXBc2/ADA, and 2 μL CMV backbone plasmid diluted in 1 mL unsupplemented DMEM. Polyethylenimine (PEI) was the transfection reagent used in this experiment. Cell supernatants were collected at 72 hours post-transfection, and passed through a 0.45 μM syringe tip filter. The amount of virus in the supernatants were measured by reverse transcriptase (RT) assay (202).
Virus Neutralization Assay

The neutralization assay was based on methods previously described in our published paper (199). TZM-bl cells were incubated at 37°C supplement with 5% CO2, and maintained in DMEM medium containing 4.5 g/L D-glucose and 584 mg/L L-Glutamine, supplemented with 10% FBS and 1X penicillin-streptomycin. One day prior to the assay, cells for infections were seeded at 0.6x10^4 per well in 96-well plates, flat-bottom, black-sided plates (Grenier Bio-One). In another separate 96-well plate, heat-inactivated guinea pig serum was serially diluted to a final volume of 100 μL of cell growth media, mixed with 2000 RT units of pseudotyped HIV-1-1 in 50 μL cell growth media. The virus and cell mixtures were incubated for 1 hour at 37°C with 5% CO2, and during this incubation, the TZM-bl growth media was replaced with 50 μL media containing 160 μg/mL DEAE-Dextran (Sigma-Aldrich) (40 μg/mL final concentration). The serum-virus mixture was added to cells and incubated at 37°C for 60 hrs. The luciferase assay system (Promega) was used to detect Tat-inducible luciferase. Luminescence was measured on a Veritas luminometer (Turner Biosystems). Percent neutralization was determined using the following equation: \((1 - ((\text{test well} - \text{cell control well}) / (\text{virus control well} - \text{cell control well}))) \times 100 \) (203).
Chapter 4: Results and Discussions

Structural Based Immunogen Design

The outer domain (OD) of HIV-1-1 gp120 envelope glycoprotein contains epitopes for CD4-BS antibodies due to the biological nature of its interactions with CD4 molecule. Some CD4-BS bNAbss neutralize 90% of HIV-1-1 isolates, such as VRC01. Considering the fact that the outer domain is relatively more stable than other domains of gp120, the outer domain has been considered to be a potential HIV-1-1 vaccine immunogen candidate. However, efforts to elicit bNAbss with the outer domain have not been successful. Studies of the outer domain crystal structures revealed that the when the outer domain only was represented in a truncated form, the protein structure does not remain consistent with the native form when the outer domain was presented within gp120 (204)(195) (205). To be more specific, the C and N terminal of OD1 (refers to the truncated outer domain without any structural modifications) are more widely open, and the β20-21 hairpin is less closed to the outer domain core and the structure around the Phe 43 cavity does not exactly resemble the native form. Here, we based our design the OD2 structure and introduced a S375W mutation to further stable the outer domain. In summary, an OD3 immunogen design involves the following strategies: 1) keeping the outer domain core structure by removing all the variable loops; 2) introducing two disulfide bonds to stabilize the C-N termini and the β20-β21 hairpin; 3) introducing an S375W mutation to have the indole ring from tryptophan filled into the Phe 43 cavity.
Figure 6 represents details of superimposed structures of the OD3 compared to OD1, and Figure 7 shows the designed structures of three proteins, and the amino acid locations of the mutations for the disulfide bonds and S375W. The outer domain designed in this way is predicted to be more favorable to CD4-BS bNAbs binding and thus is more promising to recruit potent bNAbs such as VRC01-like antibodies. The highly conserved outer domain, as mentioned previously, has more antigenic importance in eliciting effective antibodies than the variable loops. In our design, the variable loops have been completely removed so that the outer domain core is free from variable loop masking and glycan shielding. Furthermore, the S375W mutation is predicted to further stabilize the outer domain into a CD4-bound state, which is more vulnerable to CD4-BS antibody neutralizing. This taken together may explain why our OD3 design is able to induce higher level of potent neutralizing antibodies compared to OD1 and OD2, which will be further discussed.

Generation and Validation of Immunogens

The designed OD3 gene was cloned into a bacterial vector pET28b and expressed in the E. coli strain BL21 (DE3). The strain BL21 is an E. coli K12 derivative which contains mutations in both the thioredoxin reductase and glutathione reductase genes that allows an intracellular environment for proper disulfide bond formation. OD3 was expressed along with OD1 and OD2 in this strain and was induced by IPTG for optimal recombinant protein expression. Purification of these three immunogens was achieved
by washing inclusion bodies followed by protein refolding dialysis and 6x His-tag metal affinity chromatography purification. A SDS-PAGE gel, shown in Figure 8, reflects the size and purity of three proteins. The clear bands around the molecular weight of 25 kDa marker suggested the recombinant proteins (weight 22.2 kDa) were detected at correct size. Proteins were concentrated by Pierce™ Protein Concentrators PES, 10K MWCO to a range from 0.2-2 μg/μl for experiments.

Purified proteins were further validated by immunoblotting, as shown in Figure 9. To be more specific, the CD4-BS monoclonal antibodies F105, VRC01 and b12 demonstrated binding affinity to all three proteins. In addition, polyclonal antibodies including patient sera and a commercially available anti-gp120 (abcam Inc. ab53840) all showed distinct bands responding to the immunogens. Last, a CD4 induced monoclonal antibody 17b, also showed binding activity to all three immunogens but was relatively weaker than other antibodies.

Secondary Structure Verification

Circular dichroism (CD) is an excellent method of rapid protein secondary structure determination. Typically, protein samples with α-helixes will show negative ellipticity bands at 222 nm and 208 nm and a positive band at 193 nm (206), whereas protein samples containing β-sheets have negative bands at 218 nm and positive bands at 195 nm (207). Proteins with disordered turns have very low ellipticity above 210 nm and negative bands near 195 nm (208). Figure 10 shows the secondary structure analytical
results of our three outer domain immunogens (OD1, OD2 and OD3) obtained through circular dichroism. The data was analyzed by software CDSSTR and is summarized in Table 1. The analytical results showed that: 1) OD2 is different from OD1 with two disulfide bonds, and this difference is reflected by the increase in the OD2 positive ellipticity absorbance at 193nm and same absorbance at 195nm. This result suggested that the two disulfide bonds help the protein organize some unordered turns into well-ordered α-helix-like structures, without disrupting β-sheets. 2) OD3 is different from OD2 with a S375W mutation, which stabilizes the outer domain to a CD4-bound state. In the Figure 10, an OD3 curve not only showed positive ellipticity absorbance at both 193nm and 195nm, but also showed an increase in the negative band at 208nm, 218 nm and 222 nm, suggesting more unordered peptide structures transferred to α-helixes, helixβ-sheets structures and ordered turns. These data provided us an idea that our S375W mutation in outer domain is very likely to stabilize the immunogen by making the outer domain secondary structure more organized.

In the total amino acid sequence, there are 26 amino acids organized in alpha helices and 70 in beta sheets, out of a total of 195. Thus the composition as far as secondary structure is predicted to be 13 % alpha helical and 36% beta sheet. This is in good agreement with the observed results for the beta sheets. Note that type 1 helix which is the most common, is usually more accurate, yielding 13-14%, in agreement with the predicted secondary structure.
Immunogenicity of Designed Immunogens in Guinea Pigs

The purified, validated protein immunogen samples were then utilized in immunization studies. We ordered 16 guinea pigs and evenly divided them into 4 groups, each of those was inoculated with our three immunogens respectively, and one group was inoculated with adjuvant only as negative control. The Freund’s adjuvant system (CFA/IFA) was used for this immunization test. Figure 11 shows the basic protocol and timeline of the immunization carried out in this study. Blood samples were collected at three time points: at day 0, which is referred to as the pre-bleed serum samples used as a negative control; at day 35, which is referred to as the test bleed serum samples, and at day 63, the last day, which is referred to as the final bleed serum samples. All inoculations, boosts, and blood sample collection was conducted by Cocalico Biologica, Inc. in Reamstown, PA. Serum samples of all guinea pigs were shipped overnight in dry ice to us and were properly stored at -80°C. These serum samples were used in immunogenicity studies including Western-blotting, ELISA and virus-serum neutralization assay.

Antibody Specificity Validation

Immunogenicity of our designed immunogens was first evaluated by Western-blotting assay to see whether there were antigen specific antibodies elicited in the immunized guinea pigs. The data from these experiments is shown in the Figure 12. We blotted each antigen with the final bleed serum collected from all groups. All sample groups inoculated with their assigned antigens (OD1, OD2 and OD3) showed related binding
activity. And the clear bands indicated our purified antigens remained stable in the storage condition of -80°C. In addition, all groups inoculated with any antigens (except for the group immunized with adjuvant only) showed that their serum not only contains antibodies against gp120 outer domain. Instead, as we predicted, no guinea pigs elicited outer domain specific antibodies when were just inoculated with adjuvant (only some results are shown here). These results proved the inoculation of our designed immunogens successfully induced outer domain specific antibodies.

Antibody Titer Determination

In order to further evaluate the immunogenicity of our designed antigens, typically, to compare the immunogenicity differences between the three antigens, an ELISA assay was conducted and the results compared the total outer domain-specific antibodies induced by three antigens in guinea pigs. As previously mentioned, “pre-bleed”, “test bleed” and “final bleed” refers to serum samples collected from day 0, day 35 and day 63 respectively. **Figure 13**, shows the data combining ELISA panels from the pre-bleed, test bleed, and final bleed of four groups. The three panels on the Y-axis represent the pre-bleed, test bleed and final bleed antibody titers compared in four groups, whereas the four panels on the X-axis represent the antibody titers in four groups immunized with OD1, OD2, OD3, ADJ (adjuvant only). In general, before inoculation, of all groups, no guinea pig individuals contain outer domain specific antibodies, reflected by the antibody titers of pre-bleed panels, which were all negative background. However, after antigen inoculation and two boosts followed at day 14 and day 21, test
bleed serum from day 35 showed evidence of outer domain specific antibody generation. There were no significant individual difference among all 12 guinea pigs in group one, two and three, except for one case in the OD3-immunized group, in which one guinea pig seemed to generate lower titers of outer domain specific antibodies. The difference is significant at the serum dilution ratio of 1:100 to 1:2500. However, when we looked at the final bleed panels, we found that although the individual differences are still not significant in all groups, the guinea pig in OD3-immunized group who showed a lower antibody titer at day 35 recovered with higher amounts of antibody, making the individual difference less significant at day 63 than day 35. This increase in antibody titer is supported from the third boost in day 49, reflected in the OD3 immunized test bleed and final bleed panels, in which the antibody titers (absorbance at 450nm) increased from 1.5 to 2.2. Moreover, antibody titers are slightly increased in guinea pigs at day 63 than that at day 35, although the difference in OD3 immunized group is less significant. This result suggests that the third antigen boost provided some limited help in recruiting antigen-specific antibodies. Lastly, no HIV-1-1 outer domain specific antibodies were found in all adjuvant immunized guinea pigs. It is therefore confirmed again that antibodies found in the immunized guinea pigs were specifically induced by the immunogens of the outer domains (OD1, OD2 and OD3).

Another important analysis is to evaluate the antigenic differences among these three immunogens, and the differences can be more easily assessed in Figure 14, which reorganizes the ELISA data in another way, represented as bar charts. From this figure
we can tell that all three antigens induced a significant amount of antibodies compared to adjuvant immunized groups. This figure however cannot detect any significant differences between the OD1 and OD2 groups, but there is a significant difference when comparing the antibody titers between OD3 and the other two groups, from which we found that at 1:100 serum dilution ratio, the antibody titers of OD3-immunized groups, reflected by absorbance at 450 nm, showed an average value of 2.87 in the test bleed panel and 3.06 in the final bleed panel. Similar results were obtained at a lower serum dilution ratio of 1:500 and 1:2500, suggesting that this assay has some value to distinguish the antigenic differences between the three antigens, reflecting a higher amount of the total antigen specific antibody titers in the OD3 immunized group.

Taken together, these results reveal that: 1) there are very small individual differences in the antibodies elicited between the four guinea pigs in the same groups; 2) there is some effect of inducing a higher amount of antigen-specific antibodies from the third boost in OD1 and OD2 group, but no significant increase in OD3 group; 3) there is no significant difference in the total antigen-specific antibodies between the OD1 and OD2 groups, but antigen specific antibody titers are significantly higher in OD3 groups. However, there is a need to further investigate the antigenicity difference of the three antigens and thus the virus-serum neutralization assay is needed to compare the differences of their antigen-specific broad neutralizing antibody titers.
Serum Neutralization against Diverse Viral Strains

In order to evaluate the immune response to the antigens resulting in antigen-specific HIV-1-1 neutralizing antibodies, we investigated the neutralizing abilities of serum from guinea pigs in all groups. Six HIV-1-1 isolates from subtype B and C including five primary isolates YU2, ADA, 89.6, 1084i, JRFL and one lab-adapted strain HX-Bc2 were evaluated in this assay. Figure 15 compares the neutralizing activity of the pre-bleed serum, test bleed serum and final bleed serum among the three antigens. Each panel line on the X-axis represents one HIV-1-1 isolate involved in the neutralizing experiment. Clearly, the figure points to a conclusion that, compared to the serum collected in day 0, all antigen-immunized guinea pigs at day 35 and day 63 generated neutralizing antibodies against all six HIV-1-1 isolates. However, the neutralizing activities differ among the three antigen-immunized groups. To be specific, for all panels, OD2 and OD3 are more capable of inducing neutralizing antibodies against all six HIV-1-1 isolates than OD1. Overall, there is no significant percentage of neutralization difference between the test bleed and final bleed serum in all antigen-immunized groups, for any virus isolates. The only exception was the isolate 89.6 neutralized by OD3 serum, in which the final bleed serum remains stronger protection at all four serum dilution ratio. Previous ELISA data showing no significant difference in the total antibody titer in all groups may explain the insignificance of neutralizing antibody titers between the test and final bleed sera in these groups. The exception of 89.6 being neutralized at a higher percentage by OD3 final bleed serum than test bleed
serum may be explained by the fact that 89.6 isolate is somehow more sensitive for serum neutralizing when the total antigen specific antibody titers are at a higher amount. The fact that overall there is no significant difference between test bleed and final bleed serum neutralizing activities suggests that during the guinea pig immune response, though the total antigen-specific antibodies were continuously recruited after the third boost, the level of broad neutralizing antigen-specific antibodies remained the same, indicating either there is an antigenic limit for these antigens to induce neutralizing antibodies, or the total neutralizing antibodies are all induced at day 35 so that there are few remaining neutralizing antibodies induced by the third boost.

To compare the biological activity of the neutralizing antibodies in guinea pig serum induced by our designed antigen OD3, to the wild type OD1 and two-disulfide-bond OD2, the original data is reorganized into Figure 16. Each panel on the X-axis again represents one HIV-1-1 isolate neutralization, but each of the 6 panels on the Y-axis are serum from day 0, day 35 or day 63. As negative controls, pre-bleed sera is not supposed to have neutralizing antibodies, which is clearly represented by the day 0 panels, showing that there are no HIV-1-1 neutralizing antibodies that exist before antigen inoculation. Furthermore, serum from day 35 and day 63 show all three antigens elicited neutralizing antibodies, but the neutralizing activities are different. Generally, OD1 induced less neutralizing antibodies, and the percentage of viruses neutralized by OD1-immunized serum is only slightly larger than that of adjuvant alone. Although this is not necessarily true in the cases of YU2 and JRFL, the overall performance of OD1
was not satisfactory. Serum from OD2-immunized guinea pigs showed significantly stronger protection than the OD1 group. In Figure 16 we show that OD2-immunized sera from both day 35 and day 63 neutralized a higher percentage of viruses in all HIV-1-1 isolates than OD1. Furthermore, OD2-immunized sera from day 63 reduced 1084i and JRFL viral infection by 81% and 79% respectively, compared to the OD1 group, which reduced infection by 62% and 43% respectively. These results suggest that the disulfide bonds formation, to some extent stabilized the immunogen to become more immunogenic in terms of inducing neutralizing antibodies. Moreover, serum from the OD3-immunized group contains more neutralizing antibodies than the OD2 group. The data in Figure 16 shows that OD3-induced neutralizing antibodies were more potent than OD2 in neutralizing five of the six HIV-1-1 isolates: 89.6, ADA, HXBc2, YU2 and 1084i. In the case of the HIV-1-1 isolate JRFL although there is no significant difference between OD2 and OD3 in antibody titers, the percentages of viral reduction were quite comparable.

Finally, data in Figure 17 compares the neutralizing activity of OD3-immunized serum in six HIV-1-1 isolates and one non-HIV-1-1 virus strain AMLV (Amphotropic Murine Leukemia Virus). The non-HIV-1-1 AMLV served as a good negative control, reflecting that the neutralizing antibodies are HIV-1-1 specific since they did not neutralize AMLV. Among these HIV-1-1 isolates, the dual-tropic 89.6 is the most vulnerable strain to OD3-induced antibody neutralization, followed by the lab-adapted strain HXBc2. On the other hand, YU2, and ADA are relatively more challenging for
neutralization. However, all of these isolates are neutralized by OD3-immunized serum at 70% or higher at the 1:20 serum dilution ratio, suggesting OD3 to be a valuable immunogen for further characterization.

Taken together, the virus neutralization results showed that the disulfide-stabilized OD2 immunogen had better neutralization activities than the wild-type outer domain (OD1), and the S375W-stablized OD3 had the best neutralizing activity against various HIV-1-1 isolates. The S375W mutation serves a role in better stabilizing the immunogen in a way that is favorable to elicit potent neutralizing antibodies against heterologous HIV-1-1 isolates. This example of design using structural information demonstrated that structural-based modification for immunogen stabilization is a better strategy for improving vaccine immunogen design.
Chapter 5: Summary

Our designed OD3 was purified at an optimal purity, and validated by Western blots. The secondary structures of all three immunogens were evaluated and the designed OD3 was found to be more organized in the secondary structure. The immunogenicity of the OD3 immunogen designed with the S375W mutation and two disulfide bonds has been evaluated clearly in guinea pigs. Compared to OD1 and OD2, OD3 induces a higher level of both total antigen-specific antibodies and neutralizing antigen-specific antibodies. Our experimental results suggest that a structural-based vaccine design is a better strategy compared to conventional vaccine designs using killed or subunit particles without any structural modifications. Due to the breadth limitedness of this project, there are some imperfections in applying our designed OD3 vaccine. First, although OD3 induces both total and neutralizing antigen-specific antibodies higher than OD1 and OD2, and even though these antibodies are capable of neutralizing diverse HIV-1 isolates, these antibodies did not reach 100% neutralization against any HIV-1 isolate at the lowest serum dilution ratio. Second, although the ELISA assay showed that there is a significant amount of antigen-specific antibodies even when the serum was diluted to 1:2500, our serum lost its neutralizing activity at a serum dilution lower than 1:180. Taken together, this outer domain stabilization largely improved the outer domain’s immunogenicity compared to the native wild type, however more efforts are needed to make this immunogen to become applicable. Other structural-based immunogen designs may work synergistically with our strategy. For
example, structural-based designs targeting the MPER domain of gp41 may work
together with the outer domain in inducing potent broad neutralizing antibodies. Also,
novel adjuvants and vaccine delivery methods may help to improve the
immunogenicity of the structural-based designed vaccines and finally provide us a
potent vaccine that is capable of inducing both T cell and humoral immunity to
eliminate HIV-1-1.

Tables and Figures

Table 1: Compositions of the secondary structures in OD1, OD2 and OD3.

<table>
<thead>
<tr>
<th>Secondary Structures</th>
<th>Immunogens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OD1 (%)</td>
</tr>
<tr>
<td>Helix1</td>
<td>14</td>
</tr>
<tr>
<td>Helix2</td>
<td>8</td>
</tr>
<tr>
<td>Strand1</td>
<td>21</td>
</tr>
<tr>
<td>Strand2</td>
<td>14</td>
</tr>
<tr>
<td>Turns</td>
<td>22</td>
</tr>
<tr>
<td>Unordered</td>
<td>21</td>
</tr>
</tbody>
</table>
Figure 1: Diagram of an HIV-1 virion structure. (Adapted from the website of Wikipedia, the free encyclopedia) [Back to text]

![Diagram of an HIV-1 virion structure](image1)

Figure 2: Schematic presentation of HIV-1-1 genomic organization. (Adapted from HIV-1 Sequence Compendium 2015). [Back to text]

![Schematic presentation of HIV-1-1 genomic organization](image2)
Figure 3: The gp120 core structure: Inner Domain (ID), Outer Domain (OD) and Bridging Sheet (BS). [Back to text]

Notes: The CD4-binding site (CD4-BS) is located at the junction of three domains indicated by the red circle. The picture was adapted from Kwong et al. (Nature. 1998 Jun 18; 393(6686):648-59).
Figure 4: Superimposed CD4 receptor and VRC01 antibody bindings to the gp120 of HIV-1-1. [Back to text]

Notes: The gp120 is depicted in a surface model. The gp120 inner domain (ID) is in gray, and outer domain (OD) in cyan. The HIV-1 receptor CD4 (color yellow) and neutralizing antibody VRC01 are depicted in ribbon strips (colored red for the heavy-chain (HC), magenta for the Light-chain (LC)).
Figure 5: Schematic presentation of the general experimental design. P-OD2, plasmid OD2; P-OD3, plasmid_OD3. [Back to text]
Figure 6: Superimposed OD3 (color cyan) and the wild-type outer domain OD1 from HIV-1-1 strain HXBc2, PDB # 4I3S, color purple) structure. [Back to text]

Notes: 4I3S refers to the sequence of HXBc2 outer domain. Od3_1084i refers to the OD3 gene mutated from 1084i outer domain. Dis-1: disulfide bond-1, was created to stabilize the C-N termini, and Dis-2: disulfide bond-2, was created to stabilize the
beta 20-21 hairpin. The OD1 structure is from published data on the HXBc2 outer domain, and OD3 structure was modeled in Discovery Studio Client 3.5 based on the outer domain sequence of 1084i isolate. [Back to text]

Figure 7: 3D modelling of the three designed immunogens and their amino acid changes. [Back to text]

Notes: The outer domain was cut-off from the position 254 of full length gp120 molecule, which corresponds to the position 1 of the outer-domain numbering in this diagram. Based on the full length sequence of gp120 standard numbering system
(209), these mutations in this diagram are also indicated as follows: Dis 1: Dis 1: disulfide bond-1, T/C257-G/C472 (T/C4-GC185 in this table); Dis 2: disulfide bond-2, E/C370-N/C425 (E/C97-N/C139); S375W (S/W102).

Figure 8: Antigen purification represented by SDS-PAGE. [Back to text]

![Image of SDS-PAGE](image)

Figure 9: Characterization of the three immunogens by Western blot. [Back to text]

![Image of Western blot](image)

Notes: After SDS-PAGE and membrane transfer, protein samples of OD1, OD2, OD3 and BSA were probed with pooled serum from HIV-1-1 positive patients, anti-gp120 polyclonal antibody, CD4-BS monoclonal antibodies VRC01, F105, b12 or b12, and CD4-induced monoclonal antibody 17b.
Figure 10: Circular dichroism spectra of three immunogens with representative secondary structures. [Back to text]

![Circular Dichroism Spectra](image)

Notes: CD spectra of OD1 (black), OD2 (orange), and OD3 (green) at pH 8.0, room temperature. Spectral data analysis was performed by Dr. Javier Seravalli in the UNL protein core facility.

Figure 11: Guinea pigs immunization protocol. [Back to text]

| Animal: Total 16 Hartley Guinea pigs (Females, 6-8 weeks of age) |
| Control group: 4 animals (Freund’s Adjuvant only) |
| Sample groups |
| OD1 group: 4 animals |
| OD2 group: 4 animals |
| OD3 group: 4 animals |
| Immunogen used for each time injection: 100ug/animal |
| Injection method: subcutaneous (s.c.) |

Time schedule of Immunization:

0	14	21	35	49	63 (Days)
Pre-Bleed (Initial Inoculation) | 1st Boost | 2nd Boost | Test Bleed | 3rd Boost | Final Bleed (Exanguination) |
Figure 12: Western blot analysis of antisera from immunized guinea pigs. [Back to text]

Notes: Each band represents one independent Western blotting experiment. 4 serum samples from each group were used as the primary antibody against the assigned immunogens. All antigen-immunized groups showed antibody-binding activity to gp120, and here only one is shown as a positive control. All adjuvant-immunized group showed no antibody binding activity to OD1, OD2, OD3 and BSA (shows in Adjuvant 1, 2, 3, and 4 respectively).
Figure 13: ELISA analysis of antisera from immunized guinea pigs and their individual antigenic differences. [Back to text]

Notes: 96-well plates were coated with three antigens, then were probed with dilutions of pre-bleed serum (day 0), test bleed serum (day 35, or final bleed serum (day 63). Experiments were performed in triplicate and figures represent an average data of multiple experiments.
Figure 14: ELISA analysis of antisera from immunized guinea pigs comparing antigenic differences among three immunogens. [Back to text]
Figure 15: Virus neutralization assay of antisera from immunized guinea pigs comparing serum neutralizing activities at different time points. [Back to text]
Notes: Neutralization assays of antisera from four groups of antigen-immunized or adjuvant-immunized groups. Neutralization activities were represented as the percentage (%) of reduction in relative luciferase units compared to wells with virus and cells only. Experiments were performed in triplicate and figures represent an average data of multiple experiments.
Figure 16: Virus neutralization assay of antisera from immunized guinea pigs comparing serum neutralizing activities of three immunogens. [Back to text]
Notes: Neutralization assays of antisera from four groups of antigen-immunized or adjuvant-immunized groups. Neutralization activities were represented as percentage (%) of reduction in relative luciferase units compared to wells with virus and cells only. Experiments were performed in triplicates and figures represent an average data of multiple experiments.

Figure 17: Virus neutralization assay of antisera from OD3-immunized guinea pigs comparing serum neutralizing activities against diverse HIV-1-1 isolates and non-HIV-1-1 isolate. [Back to text]
only. Experiments were performed in triplicates and figures represent an average data of multiple experiments.

References

42. Mandell, Bennett, and Dolan (2010). Chapter 121.
45. Mandell, Bennett, and Dolan (2010). Chapter 118.

68. Sun LJ, Wu JX, Chen ZJ. 2013. Cyclic GMP-AMP Synthase (cGAS) is a cytosolic DNA sensor that activates type I interferon pathway by generating a second messenger. *Journal of Immunology* 190

173. Wrin T, Nunberg JH. 1994. HIV-1-1MN recombinant gp120 vaccine serum, which fails to neutralize primary isolates of HIV-1-1, does not antagonize neutralization by antibodies from infected individuals. AIDS 8: 1622-3

Richard Wyatt,1,2 Peter D. Kwong,3 Wayne A. Hendrickson,3,4 and Joseph G. Sodroski1,4

Structure of the Core of the HIV-1 gp120 Exterior Envelope Glycoprotein

Retrieved online

Jesse Thompson, Pankaj Kumar, Jizu Yi, Dane Bowder, Charles Wood, Shi-Hua Xiang, Stabilization of Outer Domain of gp120 from HIV-1 subtype C for Vaccine Immunogen Design, Procedia in Vaccinology, Volume 9, 2015, Pages 6-15, ISSN 1877-282X

HIV-1 gp120: antigenic optimization, structural malleability, and crystal structure with antibody VRC-PG04. *J Virol* 87: 2294-306

