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One problem with using component-based software development approach is that

once software modules are reused over generations of products, they form legacy

structures that can be challenging to understand, making validating these systems

difficult. Therefore, tools and methodologies that enable engineers to see interactions

of these software modules will enhance their ability to make these software systems

more dependable. To address this need, we propose SimSight, a framework to capture

dynamic call graphs in Simics, a widely adopted commercial full-system simulator.

Simics is a software system that simulates complete computer systems. Thus, it

performs nearly identical tasks to a real system but at a much lower speed while

providing greater execution observability. We have implemented SimSight to generate

dynamic call graphs of statically and dynamically linked functions in x86/Linux

environment. A case study illustrates how we can use SimSight to identify sources

of software errors. We then evaluate its performance using 12 integer programs from

SPEC CPU2006 benchmark suite.
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Chapter 1

Introduction

Today’s software systems are usually constructed with many software components

implemented by different teams of software developers. In building an embedded

system, for example, a team of developers may work exclusively on building or

updating a runtime system to manage devices (e.g., Hardware Abstraction Layer or

HAL). Another team may work on porting a real-time operating system. Different

teams within the company or third-party developers develop applications and libraries.

Eventually, these software components interact to perform computing tasks. One

major benefit of using this component-based approach is that a team of developers

can leverage its expertise to build specific software components that are reusable.

On the other hand, such practice can also lead to some dependability issues

especially in embedded systems of which product life-cycles are short but many

software components or modules are reused over multiple generations of products.

Software engineers have found that once these modules are integrated into generations

of systems, they form legacy structures that can be challenging to understand [1]. As

these structures evolve, the effects of changes in system components, programming,

and configurations can be difficult to predict, making further validation more difficult.
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As an example, consider software problems that caused some Toyota Priuses from

2004/2005 to stall or shut down while driving at high speed [1]. To isolate software

errors that cause this problem, Toyota engineers need a complete view of interactions

and dependencies among these legacy and newly developed modules that make up the

drivetrain system. However, they had no tools to obtain such view, so they had to

spend a large amount of time to isolate and identify the cause of this problem [1].

1.1 Motivation

Obtaining a complete view of module interactions is challenging in the scenario

above because: (i) many of these software modules are legacy, so engineers that fully

understand the heuristics and features of these components may no longer be available

to provide necessary debugging information; (ii) many of the interactions are implicit,

meaning that the module dependencies are not clear; (iii) many modules evolve over

time, and thus, part of the code base may be obsolete, making combing through the

source code a tedious and cumbersome process; (iv) in systems that comprise of third

party or legacy software modules, the source code of these modules may not be readily

available; and (v) proprietary systems such as the one controlling the Prius’ drivetrain

often use in-house software components and development tools instead of off-the-shelf

products; hence, finding compatible tools to support testing and debugging can be

difficult.

These five characteristics make most existing techniques inadequate to address

this module interaction problem because these techniques only work for particular

types of modules but do not work across all types of modules. For example, most

instrumentation-based approaches only work at source-code level so they cannot

capture interactions in modules of which source code cannot be instrumented. Dynamic
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call graph tools such as latrace or instrumentation frameworks such as DTrace are

operating system dependent so they do not work on embedded devices with no

operating systems or systems utilizing unsupported operating systems. According

to industry observers, this type of devices accounts for about 60% of all embedded

devices or 2.5 billion units shipped in 2006 [2]. Dynamic instrumentation frameworks

such as Pin can provide such information through binary instrumentation. However,

such instrumentation is intrusive since it adds code that may change system states.

Furthermore, most of existing tools do not provide infrastructure for device

modeling. Therefore, these tools may not work with executables using low-level

hardware-specific code such as device drivers. To ensure dependability of these com-

plex component-based software systems, new tools and methodologies that can provide

interaction information are needed [1]. These new methodologies should be developed

to meet the following two objectives:

1. must capture interactions among all software modules, regardless of types,

without perturbing the system states and

2. must be applicable to embedded systems containing device-specific software

components and can be easily adopted by system developers so that they can

be used to solve real-world problems.

1.2 Approach

In this thesis, we propose SimSight, a framework to generate dynamic call graphs based

on virtualization that allows developers to observe the relationships between software

modules even if the source files are not available. We explore the use of a commercial

full-system simulator, Simics, as a way to provide module interactions in the form
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of dynamic call graphs. We choose Simics because: (i) similar to other full-system

simulators, Simics provides functional and behavioral characteristics similar to those

of the target hardware system, enabling software components to be developed, verified,

and tested as if they are executing on the actual systems; (ii) Simics supports several

instruction sets including PowerPC, ARM, SPARC, x86, and MIPS [3], making it

applicable to various types of computing projects; (iii) through a rich set of Simics

APIs, software developers have the ability to non-intrusively observe various system

behaviors without ever needing the source code; (iv) because of its powerful device

modeling infrastructure, Simics already plays a critical role in hardware/software

(HW/SW) co-designs; therefore, adding the capability to observe module interactions

to it will enable adoption without requiring much efforts [4]; and (v) licensing of Simics

is free for academic institutions, making it a good platform for research.

Our proposed framework is implemented for applications running on x86/Linux

environments as a module extension to Simics. We choose Linux for two reasons.

First, it provides advanced runtime features such as dynamically linked libraries and

multiprogramming that can be a good test for our framework. Furthermore, tools

such as latrace can be used as an oracle to evaluate the correctness of our framework

in generating call graphs.

1.3 Contributions

The presented framework is to take advantage of the non-intrusive probing and

execution observability in virtual platforms to improve software quality. Below, we

summarize our contributions:

1. We proposed a framework to generate dynamic call graph for both statically

and dynamically linked function based on virtualization.
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2. We then implemented a prototype of SimSight to support x86/Linux executables

based on Simics, a full-system simulator. We detailed the algorithms and the

implementation for each of the three components: SimAnalyzer, SimTracer and

SimParser. We also illustrate the applicability of SimSight using two scenarios.

3. We evaluated the performance of SimSight and the overhead to capture function

call information using 12 integer programs from SPEC CPU2006 benchmark

suite.

1.4 Organization

We organized the remainder of this thesis as follows. Chapter 2 describes some

relevant backgrounds of the implementation of SimSight. Chapter 3 summarizes

existing tools that can generate dynamic call graphs. Chapter 4 describes the overall

design of SimSight and discusses implementation details of our SimSight prototype for

x86/Linux environments. Chapter 5 reports the results of our experiments to evaluate

the runtime overhead of SimSight using 12 benchmark programs from SPEC CPU2006

suite and our analysis of these results. Chapter 6 illustrates how SimSight can be used

to detect software errors and increase program understanding. Chapter 7 highlights

related research efforts that utilize virtual platforms to gather runtime information.

We conclude the thesis and discuss future work in Chapter 8.
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Chapter 2

Background

As mentioned in Chapter 1, the implementation of our proposed framework is based on

Simics. In order to reconstruct the dynamic call graphs, we first need to capture the

relevant procedure calls during simulation. We then analyze the captured information

to reconstruct dynamic call graphs. In this chapter, we introduce relevant background

information to facilitate understanding of the design and implementation of SimSight

for x86/Linux executables. For readers who are familiar with these concepts, this

chapter can be omitted.

2.1 Instructions Supporting Procedure Calls

Instruction set architectures provide different mechanisms to make procedure calls.

As an example, MIPS architecture provides JAL/JR for procedure calls. On the other

hand, x86 architecture provides CALL/RET. When a CALL instruction is executed, a

new stack frame is created and the control flow is then transferred to the callee [5].

Figure 2.1 shows a common prologue sequence on x86. Assume that a caller is calling

func.
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call addr_of_func
push ebp // save the old frame pointer
mov ebp, esp // get the new frame pointer
sub esp, lsize // reserve place for locals in func
...
mov esp, ebp // free space for locals
pop ebp // restore the old frame pointer
ret // return from the func

Figure 2.1: A Procedure Call Prologue

We capture every instance of CALL and RET instructions and stack information as

a way to identify when a procedure call is made and when a procedure returns. More

information about this process is provided in Chapter 4.

2.2 The Simics Linux-Process-Tracker and Trace

Modules

Simics provides several loadable modules to support profiling and debugging. As

examples, g-cache and trace are two popular modules used for profiling and tracing

memory accesses. The source code of these modules is also available for customization.

A rich set of APIs is also provided to allow users to extend existed modules

or design new modules. Users can specify the objects, interfaces, and events in a

module using Python, C, C++, or the provided Device Modeling Language. Simics

Command-Line Interface (CLI) also supports scripting (in Python or Simics scripting

language) to facilitate automation. As part of our work, we utilize two existing Simics’

modules: linux-process-tracker (tracker) and Simics trace module.
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2.2.1 The Tracker Module

In multiprogramming operating systems such as Linux, we use the Simics’ tracker,

which is a kernel module that can track events occurring in a specific process running

on a simulated Linux system. Currently, the tracker module can only work with Linux

up to version 2.6.15 for PowerPC, UltraSPARC and x86 architectures. However, since

the source code of the tracker is available, developers can create new trackers for

different architecture/OS platforms.

2.2.2 The Simics Tracing Module

This module can be used to observe instruction fetches, data accesses, control register

accesses, I/O accesses, and exceptions during the simulation. For our work, we

designed a new module (SimTracer) to trace instructions of x86/Linux executables.

More details about the design of SimTracer is presented in Chapter 4. Figure 2.2

shows how Simics tracker and trace module work during the simulation.

According to Figure 2.2, when the Simics tracker detects a specified executable

name or Process ID, the tracing process is initiated. The output can be redirect to

stdout or write to file. Note that we can trace multiple processes running in one

processor or multiple processors.

2.3 Executable and Linkable Format

To construct the dynamic call graph of a binary program, SimSight needs to extract

some information from the binary. Currently, Portable Executable/Common Object File

Format (PE/COFF) [6] and Executable and Linkable Format file format (ELF) [7, 8]

are two commonly used file formats for executables, object code, Dlls/shared libraries.
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Host Machine
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Virtual Hardware
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User Program
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Shared

Libraries
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PID

trace.log

Figure 2.2: Tracker and tracer in Simics

PE/COFF is used in Windows operating system and ELF is used in Unix and Unix-like

systems. There are three types of ELF objects: relocatable files, executable files, and

shared objects. All the three objects share a similar file format, which include ELF

Header, Program Header Table and Section Header Table. The ELF Header holds

the information how to access to the Program Header Table and the Section Header

Table. The Program Header Table contains the information that is used to create a

process image. The Section Header Table describes the file’s sections, which contain

the instruction section, symbol table, and relocation information. We can get the

section entry and section name from the Section Header Table.

2.3.1 Static Linking and Dynamic Linking

In static linking, the static linker copies all library routines used in a program into

an executable image during compilation. On the other hand, dynamic linking only

places the name of shared libraries in an executable image. The dynamic loader then



10

resolves these references at runtime [9, 10]. Shared objects in Linux are an example of

dynamic linking. By using dynamic linking, executable files are smaller. However, the

process to resolve references to dynamically linked functions is more complex than

that of statically linked functions. More discussion is provided in Section 2.3.3.

2.3.2 The Symbol Tables

Dynamically linked executables and shared object usually have two symbol tables:

.SYMTAB and .DYNSYM, which are used by the dynamic linker to locate or relocate the

program’s symbolic definitions and references. The .SYMTAB holds the debug informa-

tion such as function names, function addresses, and binding types (LOCAL/GLOBAL) for

both LOCAL and GLOBAL symbols. It is possible to remove .SYMTAB from an executable.

In this scenario, it is not possible to extract the statically linked information.

The .DYNSYM section contains dynamic linking information that is used by the

dynamic linker. Figure 2.3 is an example of the .DYNSYM section. The content is

generated by GNU binary utility readelf [11]. In Figure 2.3, the “UND” means this

symbol is not defined in this ELF object. It contains the information for the dynamic

linker to relocate this symbol at runtime. As an example, function process message

has its function’s address (symbol value) as ZERO; its symbol type as FUNC and its

binding type as GLOBAL. In this case, this symbol must be resolved or relocated at

runtime by the dynamic linker.

Symbol table '.dynsym' contains 9 entries:

Num:    Value Size Type   Bind  Vis Ndx Name

0: 00000000   0 NOTYPE LOCAL  DEFAULT  UND 

1: 00000000   35 FUNC   GLOBAL DEFAULT  UND process_message

2: 00000000  0 NOTYPE  WEAK  DEFAULT  UND __gmon_start__

3: 00000000 441 FUNC    GLOBAL DEFAULT  UND __libc_start_main@GLIBC_2.0 (2)

4: 00000000  54 FUNC    GLOBAL DEFAULT  UND printf@GLIBC_2.0 (2)

……

Figure 2.3: An example of .DYNSYM section (executable object)
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2.3.3 Relocation

Relocation is a process to resolve the addresses of dynamic linked functions, which are

compiled as position-independent code (PIC) [12]. The mechanism is both platform-

and OS-specific. In this thesis, we only discuss the relocation of Linux ELF on x86

architecture.

The ELF file format organizes program instructions, data, and auxiliary information

into sections. There are two notable sections, .PLT and .GOT that are used in the

relocation process. The .PLT section resides in .TEXT segment, and the .GOT section

resides in the .DATA segment, allowing the dynamic linker to write to it during the

relocation process.

Relocation is a two-step process involving both the static and dynamic linkers.

During compilation, the static linker creates an entry for each dynamically linked

function in the .PLT table of an executable. The destination address of each call

instruction is represented as the index of the callee function in .PLT. At runtime,

the dynamic linker substitutes these indexes with the actual addresses pointing to

the .PLT entries. Thus, when a dynamically linked function is called, the processor

jumps unconditionally to the entry, which performs either of the two tasks: jumping

to the resolved address stored in the corresponding entry in .GOT or bootstrapping

the relocation process if the address has not been resolved. For each of the unresolved

function, the relocation routines in the dynamic linker are executed to resolve the

address and patch the value into the .GOT entry. Such relocation is performed during

the initial call to a dynamically linked function. Afterward, any call to this function

can be done directly.
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Chapter 3

Existing Approaches to Construct

Dynamic Call Graphs

There are several existing approaches that can generate dynamic call graphs. Some

of these employ source code instrumentation, while others work on executables. In

this chapter, we focus specifically on approaches that (i) work on executables; (ii) are

capable of tracking functions in dynamically linked libraries; and (iii) must be publicly

available.

3.1 OS Integrated Tools

In this approach, instrumentation frameworks are built into operating system (OS)

kernels. DTrace, an advanced dynamic tracing framework designed to improve the

observability of software systems [13], is an example of this approach. Both Solaris

and Mac OS have incorporated DTrace as a core component of their development and

administration tools. DTrace enables users to observe the system by exporting various

runtime probes, implemented and managed by providers. The fbt (Function Boundary
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Tracing) and pid providers support function tracing in the kernel and user-space.

These providers allow tracing of any function entries and exits by attaching a trap

immediately before each call instruction. DTrace is notified when this trap hits and

automatically executes the user-defined actions. Because DTrace can instrument

programs with low overhead, it is suitable for production environments.

Although such approaches are powerful and high-performance, they are tightly

integrated with kernels and therefore, can only work in the kernels that support such

features. Consequently, such tools do not work in a large class of embedded devices

because they rarely use operating systems with such support.

3.2 OS Interface Tools

In this approach, tools are built to exploit OS and runtime interfaces to capture

dynamic call graphs. As an example, ltrace or library trace is a debugging utility in

Linux [14] that works with fork and clone system calls to perform function tracing.

Currently, ltrace only intercepts the first function call to dynamically linked libraries. It

traces neither the function calls between shared libraries nor statically linked function

calls in programs. Moreover, ltrace only works in Linux.

To address some of these limitations, latrace extends ltrace to support tracing of

dynamic function calls between shared libraries at runtime [15]. It is implemented

on top of LD_AUDIT, which is the GNU dynamic linker audit feature. However, no

dynamic library call can be traced if one of the shared libraries does not include a

relocation Procedure Linkage Table (.REL.PLT) in the ELF binary. Both ltrace and

latrace can operate with low overhead.
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3.3 Dynamic Binary Instrumentation

Binary instrumentation can generate dynamic call graphs by inserting code snippets

at the beginning of functions. However, in doing so, additional code is generated,

which can result in some differences in runtime states when compared to native code

with no instrumentation. As an example, Pin is an open-source binary instrumen-

tation framework that has been widely used in debugging, profiling, and evaluating

performance [16]. Pin provides several APIs so that developers can customize their

own Pintools to perform tasks such as counting executed instructions and collecting

function call information [16]. Currently, Pin can instrument Linux, Mac OS X,

and Windows executables for several architectures. Recent work by Hazelwood and

Klauser [17] shows that the overhead of Pin ranges from 1.5 to 8 times slower than

native execution. Currently, Pin can support basic hardware devices, but it provides

no functionality for developers to model their own devices. As such, its use in HW/SW

co-design is still limited.

Another example is Valgrind, an instrumentation framework that can be used to

build dynamic analysis tools. It currently works in Linux and Mac OS X. One of

the tools in Valgrind that can be used to generate dynamic call graphs is Callgrind.

It is an extension of Cachegrind, a cache profiler. Callgrind augments Cachegrind

with call graph information so that it can generate call graphs for both statically and

dynamically linked libraries [18]. The overhead of Callgrind ranges from 20 to 100

times slower than native execution.
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3.4 Full System Simulators

Unlike typical instruction set simulators, which do not simulate I/O components, full-

system simulators can be modeled to simulate complete computer systems with I/O

components, bus interconnects, processors, and memory subsystems. Therefore, they

provide virtual platforms that can run complex software systems (e.g., applications

and OS kernels) without any modifications.

We conduct preliminary investigation to evaluate the suitability of two full system

simulators, QEMU and Simics, as part of this work [19, 20]. In terms of performance

QEMU is faster than Simics [21]. It also has Trace Generation, which is a component

that works in conjunction with DineroIV, a memory reference tracing simulator,

to generate execution traces and perform analysis [22]. However, QEMU lacks the

capability to allow developers to model a full range of hardware devices. As such,

QEMU is not as widely used in commercial HW/SW codesign projects as Simics [21].

Simics, on the other hand, provides infrastructure for developers to model and use

hardware devices in their simulations. The modeling process is fast so engineers can

have a new virtual platform up and running several months before the completion of

the hardware prototype. As a commercial product, it also supports many advanced

features and interfaces that developers can use to create their own instrumentation

and dynamic analysis tools. However, there are currently no tools in the Simics toolkit

that can generate dynamic call graphs. Based on our experience working with Simics,

its execution overhead can range from 3 times (for processor intensive applications) to

30 times (for I/O intensive applications) slower than native execution.
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3.5 Discussion

We believe that full-system simulators provide an attractive platform to carry out our

work for three reasons.

3.5.1 Non-intrusive Instrumentation of executables

Instrumentation occurs at binary-level and without disturbing execution or affecting

the virtualized state of a system. Therefore, it can simulate and profile systems

accurately in the presence of instrumentation. Furthermore, these simulators can

collect the exact profile data instead of relying on sampling or probability. Thus, the

profiled information is more complete. For the problem we try to address, this is an

important consideration.

3.5.2 Support more types of executables

Full-system simulators support executables with or without operating systems. This

is different than other approaches, which are operating system dependent (e.g., Pin

can only work on Linux or Mac OS X binaries). Therefore, our approach can work

in diverse applications and systems ranging from executables running in stand-alone

embedded devices with no operating systems to executables running in large computing

clusters.

3.5.3 Popularity

HW/SW co-design is a widely adopted method to create computer systems. As

such, full-system simulators especially Simics already play a prominent role in the

development process. Therefore, developers who already use Simics for co-design can
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easily and effortlessly integrate the proposed extension as part of their testing and

debugging toolkits.

In the next chapter, we discuss our implementation of SimSight, a dynamic call

graph generator for Simics. We choose Simics over QEMU mainly due to its widespread

adoption to support HW/SW co-design.
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Chapter 4

Introducing SimSight

Because Simics can simulate different processor architectures and system configu-

rations, the actual implementation of SimSight is system dependent. However, the

overall approach is generic, i.e., there are essential components and steps required to

implement a version of SimSight. We describe them in this chapter. We then discuss

an actual implementation to support generating dynamic call graphs for x86/Linux

executables.

We choose x86/Linux due to four major reasons. First, the execution model is more

complex. Therefore, our implementation of SimSight must support many non-trivial

features such as focusing on particular processes and supporting both statically and

dynamically linked modules. Second, existing tools such as latrace can serve as an

oracle to validate our dynamic call graph construction algorithm. Third, there are

a large number of standardized benchmarks that can run on this platform. Fourth,

our implementation to deal with the complexity of this platform would yield higher

runtime overhead, which is likely to represent the worst-case overhead for our system.

We implemented SimSight on the Simics 4.0.40 simulator with x86-440bx-4.0.4 as

the virtualized target. The host machine is equipped with a 2.66GHz Intel Core 2 Duo
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CPU and 4GB of main memory. It runs Mandriva Linux with 2.6.27.24 multiprocessor

kernel. The virtualized or guest machine is configured to run the tango image provided

by Simics, which is based on Fedora Core 5 Linux with 2.6.15 kernel. The guest

system is configured to be a single-core 2.2GHz with 256MB of memory. In typical

Linux distributions, GNU dynamic linker (ld) and ELF are the default runtime linker

and binary file format respectively. We also set up another system on a real machine

to have a similar software configuration and environment to match the virtualized

platform.

SimSight generates call graphs in three steps: (1) initial parsing of executables,

which is accomplished by SimAnalyzer ; (2) tracing of function call related instructions,

which is accomplished by SimTracer ; and (3) parsing the trace information to generate

dynamic call graphs, which is accomplished by SimAnalyzer and SimParser. Next, we

describe the main functionality and implementation of each of these three components.

SimAnalyzer

SimTracer
(traces instructions 

in simulator)

Executable

SimParser

3

1

Log

Files

Binary

Info

Binary

Info

DCG

3

2

Figure 4.1: Basic workflow in SimSight. Note that circles with numbers indicate
which component is used in a particular step in the workflow.
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4.1 SimAnalyzer

SimSight is a symbolic function-tracing framework that operates on instruction traces

generated by Simics virtual platform. Therefore, mapping of low-level information to

high-level information is necessary. In most binary executable formats, storage and

function information is provided to assist the dynamic linker and sometimes debugger.

For example, both PE/COFF and ELF define a symbol table section embedded in

the binary. The proposed SimAnalyzer is used to extract such pertinent information

to perform this mapping.

Furthermore, dynamic linking systems such as that used in Linux also define

relocation table, which contains information used to resolve addresses of dynamically

linked functions. Our SimAnalyzer extracts the symbol names and addresses for

statically and dynamically linked functions by parsing the symbol tables and relocation

tables. This extracted information is stored for future use by SimTracer to filter out

unwanted events and focus on wanted events.

In addition, SimAnalyzer also extracts information from dynamically linked libraries

referenced by the main module. This information is used by SimParser to match late

binding addresses recorded by our tracer to the actual symbolic function names as

part of the call-graph construction. Thus, SimAnalyzer is first used to extract binary

information for SimTracer (Step 1) in Figure 4.1. In addition, SimAnalyzer is also

used during the parsing phase of our framework (shown as Step 3 in Figure 4.1).

4.1.1 Supporting x86/Linux Executables

Our analyzer extracts the address of each function from x86/Linux executables. For

statically linked functions, the address can be easily found in the symbol table of

that binary. Note that it is possible for the symbol table to be stripped from a Linux
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executable. This is not the case in Solaris, which requires this information to support

tracing frameworks such as DTrace. Fortunately, in all executables that we evaluate,

we find that symbol tables are still included. This is probably because part of the

DTrace framework has been ported to Linux.

For dynamically linked functions in shared libraries, the address calculation is

more complicated. In Linux, shared libraries are compiled as PIC, which can be

mapped to any memory location prior to execution. These shared libraries are loaded

as programs are being launched but the dynamically linked functions are resolved on

demand by looking up in the Procedure Linkage Table (PLT) and patching the Global

Offset Table (GOT). The algorithms to calculate function addresses are summarized

below and illustrated in Figure 4.2 and Figure 4.3.

1. Statically Linked

a) Main: st value

b) Library: st value + map base

2. Dynamically Linked

a) Main: plt base + (si+1) * 16

b) Library: plt base + (si+1) * 16 + map base

For functions that are statically linked to the main module (1a), st_value is the

value field of a function’s entry in the symbol table (.SYMTAB). For statically linked

functions to a library (1b), map_base is the memory address where the library is

loaded. Figure 4.2 shows how the address resolved for statically linked functions.

For dynamically linked functions called from main or other libraries (2a) and (2b),

plt_base is the start address of the .PLT; and si is the index of the function in
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.symtab (main)

…
…

void hello( )

address space

void bar( )

…

main

0x08048571

libfoo.so

0x00ba0214

(1b)

(1a)

0x00ba0000

(map_base)
…

0x08048571

0x08048572

…

.symtab (libfoo)

…

0x00ba0213

0x00ba0214

…

st_value

st_value

Figure 4.2: An illustration of calculating addresses of statically linked functions

the dynamic symbol table (.DYNSYM). The multiplier 16 is the size of each entry in

the .PLT section. Figure 4.3 shows how the address resolved for dynamically linked

functions.

PLT (main)

…
…

void A( ) *

address space

void B( ) *

…

main

0x080483bc

libfoo.so

0x013660d0

(2b)

(2a)

0x009b3000

(map_base)

PLT (libfoo)

si

1

0

2

si

1

0

2

…
…

0x009b30b0

(plt_base)

0x0804838c

(plt_base)

Figure 4.3: An illustration of calculating addresses of dynamically linked functions

The calculated addresses are then stored in a hash table, which is used by SimTracer

and SimParser. In addition, the analysis tool also creates a data structure to store

additional information such as symbolic name and resident library. Algorithm 1

describes the algorithm to implement SimAnalyzer for x86/Linux executables. Note

that we construct the hash table H by extracting information based on the existence

of symbol tables.



23

Algorithm 1 SimAnalyzer Algorithm

Require: program binary: bin
Ensure: hash table: H

parse (.SYMTAB, .PLT, .REL.PTL, .DYNSYM)
if .SYMTAB exists then

Add(H, static/dynamic)
else if .DYNSYM exists then

Recalculate for dynamic (.PLT, .REL.PLT)
Add(H, dynamic)

else
No ELF information

end if
return H

4.2 SimTracer

Most modern architectures have specialized instructions to support procedure calls. For

instance, x86 and SPARC support procedure calls by the CALL instruction. Similarly,

MIPS architecture offers the JAL (jump-and-link) instruction for making procedure

calls. This, together with the advance in simulation technology, provides a golden

opportunity for tracking any procedure call by targeting this type of instructions

issued by virtual processors. Our proposed SimTracer is designed based on this simple

idea.

In sophisticated virtual platforms such as Simics, dynamic tracing of memory

accesses and instructions are already supported. Thus, our SimTracer is built on top

of this feature to selectively monitor instructions related to procedure calls. However,

filtering is also needed since some traced instructions do not always indicate function

calls. As an example, in our x86/Linux implementation, instruction PUSH is only traced

when it is used for address resolution of dynamically linked functions. Thus, we need

to exclude the occurrences of PUSH for other purposes. Therefore, SimTracer evaluates

information generated by SimAnalyzer to identify these extraneous instructions.
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A major limitation of such trace-based approach is that the overhead is proportional

to the amount of trace being generated. As will be shown later on, this overhead

can sometimes be several orders of magnitude in very large programs. Furthermore,

porting SimTracer to a new system (e.g., MicroC-OSII running on ARM9) will require

thorough knowledge of function calling conventions of the architecture and possibly

the OS.

4.2.1 Supporting x86/Linux Executables

SimTracer extends the functionality of the trace module provided by Simics. Its main

responsibility is to capture and dissemble x86 instructions related to function calls.

It also extracts other important runtime information from registers such as stack

pointers, frame pointers, and privilege levels. The information for each application is

continuously recorded into a trace log file, which is a compressed binary file. Figure 4.4

gives the structure of the trace log file.

type ebp esp eip address privilege

Figure 4.4: Trace Log Format

In x86 architecture, stack is commonly used for parameter passing and the registers

are used for returned values. This is due to the limited number of general-purpose

registers. Typically, a procedure call is made through the CALL instruction. The stack

frame is maintained using two special registers: EBP and ESP, which store the current

base frame pointer and stack pointer.

According to the x86 calling convention, when a procedure call is made, the caller’s

frame pointer is pushed onto the stack and a new stack frame is created for the callee.

Therefore, the current EBP will be the value of old ESP decremented by 4 bytes (in a

32-bit system) or 8 bytes (in a 64-bit system), and the current stack pointer points
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to the top of the stack. Note that in gcc x86 calling conventions, the stack grows

downwards. When a procedure returns, the callee’s stack frame is unwound and the

saved caller’s EBP is popped off the stack, which indicates the end of a procedure.

Thus, we can detect procedure-call events by monitoring these two registers. Figure 4.5

shows the process of a procedure call represented in the stack frame of IA32.
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Figure 4.5: Stack Frame for Call Procedure

For dynamically linked functions in shared libraries, tracking invocation information

is more difficult. This is because the target address of a procedure call instruction does

not directly point to the real code of the invoked function. Instead, it initially points

to “stub” code, which determines if the procedure has already been resolved. If it has

not, the stub code invokes a runtime function to search for the shared library, patches

the GOT table with the actual address of the dynamic function, and then performs

an unconditional jump to that address. By monitoring registers, target addresses of

function calls, and actual addresses of dynamic functions, our SimTracer can generate

information that can be used to construct call graphs with complete calling contexts.

The algorithm to implement SimTracer for x86/Linux executables shows in Algorithm
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2.

Algorithm 2 SimTracer Algorithm

Require: program binary: bin
Require: prefix-set: CALL, PUSH EBP, RET
Ensure: trace log file: T.log

symtab ← SimAnalyzer.read(bin)
H ← SimAnalyzer.process(bin, symtab)
if INST is in prefix-set then

T.log ← Process Function Addresses(H, address)
end if

Note that Process Function Addresses(H, address) is the aggregated infor-

mation written to the trace log file. The INST is the instructions from the specified

process running in the simulated system. The key consideration to generate this infor-

mation is to monitor the contents of EBP and ESP registers that indicate occurrences

of function calls as shown in Figure 4.5.

To automate the process, we developed a python script (tracing.py) that uses

Simics APIs to issue commands through the Simics CLI. A handler is set up to register

a callback for Simics tracker when a specified process is running. The callback then

triggers SimTracer to trace related instructions defined by prefix-set. The tracer is

activated until the process swapped out. The tracer is disabled when a different

process is scheduled.

4.3 SimParser

Once the runtime traces have been generated, our proposed SimParser analyzes the

trace files generated by the first two steps. The parsing process can be done either in

a virtualized system or a real system. The latter is only applicable in the scenario that

the real system has the same execution environment (exactly the same libraries, OS,
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etc.) as the virtualized system. This is to ensure library consistency of dynamically

linked functions.

In our implementation, we choose to parse separately to reduce the parsing overhead.

In this scenario, parsing can take very little time. On the other hand, if a system with

the same runtime environment as the virtualized platform is not available, parsing has

to be done in the virtualized platform. In this scenario, parsing can take much longer

due to inefficient I/O and slower processor speed in simulators. Chapter 5 reports the

parsing time for both scenarios.

4.3.1 Supporting x86/Linux Executables

The implementation of SimParser has two parts: extracting memory mapping infor-

mation and dynamic call graph reconstruction. Next, we detail our implementations

of these two functions.

Extracting memory mapping. In most UNIX-like operating systems, a proc

pseudo file system exposes runtime information of each process. In addition, the file

/proc/<pid>/maps reports the detailed memory mappings of the process identified

by <pid> when queried. It is worth noting that there are alternative mechanisms

such as LD AUDIT [23], Library Interposer [24] for Linux and GNU runtime linker

that can be used to obtain the same information. However, we did not use these

approaches because they require calling additional methods that are not part of the

traced programs, which can pollute the traced instructions. Instead, we developed a

small program called Spawn to capture the /proc/<pid>/maps information when the

binary is running in Simics. The information is saved to a file (map file) for later use

by SimParser. Below is a snippet of the memory mappings of an example process.

address perms offset dev inode pathname

......
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04442000-0463c000 r-xp 00000000 08:07 506739 /usr/lib/libpython2.6.so.1.0

0463c000-0463d000 r--p 001f9000 08:07 506739 /usr/lib/libpython2.6.so.1.0

0463d000-0468c000 rw-p 001fa000 08:07 506739 /usr/lib/libpython2.6.so.1.0

......

To trace a program, Spawn first launches the program as its child process by calling

posix spawn [25]. After getting the pid, Spawn reads the memory mapping of the

target process from /proc/<pid>/maps and saves it to the user-specified log file.

Dynamic call graph reconstruction. As stated earlier, we leverage the relationship

between base pointer or frame pointer (EBP) and stack pointer (ESP) to compute the

level of each function in a calling hierarchy. Thus, SimParser maintains a virtual stack

that is pushed and popped synchronously as the instruction traces are being processed.

It follows the x86/cdecl calling convention1. Specifically, the parser memorizes the

EBP and ESP of each call instruction on the virtual stack. As it parses to the next

call, if both EBP and ESP are decremented (stack grows downward in x86), the parser

concludes that the call is one level lower in the call graph and pushes its (EBP, ESP) onto

the stack. If the EBP and ESP values of this function are greater than the top-of-stack

value, it indicates multiple calls have returned. Thus, the parser also unwinds its

virtual stack until it reaches the direct caller of the current callee. The caller function

can be found by repeatedly comparing the current (EBP, ESP) with those on the virtual

stack. Next, we present our algorithm used by SimParser to construct dynamic call

graphs.

As shown in Algorithm 3, SimParser takes an executable as well as a trace log

and library mapping, which were generated by SimTracer as inputs, returning the

corresponding dynamic call graph G. SimAnalyzer is also used in this process to

generate symtab and a function hash table (H) indexed by the runtime addresses of

1x86 calling conventions http://en.wikipedia.org/wiki/x86 calling conventions
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Algorithm 3 SimParser Algorithm

Require: trace log: log
Require: library mappings: maps
Require: program binary: bin
Ensure: dynamic call graph: G

symtab ← SimAnalyzer.read(bin)
H ← SimAnalyzer.process(bin, symtab)

for lib in maps do
symtab ← SimAnalyzer.read(lib)

H ← SimAnalyzer.process(lib, symtab)

end for
for rec in log do

level = convention(rec.ebp, rec.esp)
G.add(H[rec.addr], level)

end for
return G

functions in both the main module and dynamic linked libraries. These data structures

are used for mapping traced callee addresses to the actual function information.

Once the hash table is created, for each record in the trace log, we retrieve the base

pointer ebp and stack pointer esp from each record. A platform-specific subroutine

convention is invoked to compute the level of the procedure call with respect to

the calling convention. Then the graph is repeatedly constructed by appending the

function information H[rec.addr] with the computed level in the calling chain. In

the end, the algorithm returns the dynamic call graph G to the user.

Without accounting for the time to retrieve symbol information from binaries, the

read and process routines in SimAnalyzer have O(n2) time complexity, where n is the

number of functions. Because on most platforms, the convention subroutine is O(1);

and in theory, hash table look up is also an O(1) operation, the total complexity of

SimParser is bounded by O(n2).

Call graphs that are too complex may not provide the developers with sufficient

insight to debug software problems. This is because complex call graphs are difficult to
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comprehend. Therefore, our implementation of SimParser for x86/Linux also includes

a feature to allow developers to focus on particular modules and their interactions with

other modules. In this mode, only function calls that originate from these modules are

generated. We also provide commands so that developers can only focus on statically

linked functions or dynamically linked functions. Our parser can also profile the

number of invocations of each function in a program.
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Chapter 5

Overhead of SimSight

In this chapter, we report results of our empirical evaluation to determine the overhead

of SimSight. The evaluations were conducted on the system specified in Chapter 4.

We used 12 benchmarks from SPEC CPU2006 Integer, a standardized CPU-intensive

benchmark suite for evaluating performance of system’s processor, memory subsystem

and compiler. The first three columns in Table 5.1 describe each benchmark and its

size, which ranges from 1.5K lines to over 250K lines.

There are three sources of overhead in our proposed framework. The first source is

SimAnalyzer, which performs initial analysis of executable. The analysis is performed

on a native machine so the amount of time needed to complete this process is negligible.

The second source is SimTracer, which is the most expensive component. According

to Table 5.1, the overheads of SimTracer range from 3.5 to 28 times slower than

execution times of Simics without it. The sizes of generated log files range from 120KB

to about 1GB.

There are three major components in SimTracer. The first component is the

tracing module, which is provided by Simics. By using this module, we find the

execution to be 3 to 5 times slower than Simics without the tracing module. The
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LOC log size W/O W Slowdown
Benchmark Description (K) (MB) (seconds) (seconds) (times)

perlbench Derived from Perl V5.8.7 126 4.1 575.59 2280.14 3.96
interpreting various workload.

bzip2 Julian Seward’s bzip2 version 1.0.3 5.73 8.3 347.65 1550.40 4.46
modified to do most work in memory.

gcc Based on gcc Version 3.2, 236.27 61.8 274.81 2301.20 8.37
generates code for Opteron.

mcf Uses a network simplex algorithm 1.57 7.2 181.36 2169.33 11.96
to schedule public transport.

gobmk Go plays the game of Go (AI). 157.65 1024 980.41 13799.93 14.07
hmmer Protein sequence analysis using 20.66 13.6 387.04 2540.31 6.56

profile hidden Markov models.
sjeng A highly-ranked chess program 10.54 112.1 339.70 4358.4 12.83

that also plays several chess variants.
libquantum Simulates a quantum computer 2.65 0.12 144.79 499.06 3.45

running Shor’s factorization algorithm.
h264ref An implementation of H.264/AVC 36 65.4 850.77 23894.40 28.09

encoding a videostream.
omnetpp Uses the OMNet++ simulator 19.99 45 223.27 2086.44 9.34

to model a large Ethernet network.
astar Pathfinding library for 2D maps. 4.28 60.5 296.88 8215.06 27.67
xalancbmk Transforms XML documents 267.32 23.8 172.16 743.58 4.32

to other document types.

Table 5.1: Describes the basic characteristic of each SPEC CPU2006 benchmark and
reports the tracing overhead and size of each log file. Notes that W/O and W refers
to SimTracer.

second component is the implementation of our algorithms to filter instructions and

identify function addresses. The last component is to log the tracing information into

a file. Figure 5.1 provides detailed distribution of the overhead based on these three

runtime components.

As shown in Figure 5.1, in most applications, processing function addresses domi-

nates the execution overhead. In each of the four benchmarks that has small slow-down

(libquantum, perlbench, bzip2, and xalancbmk), the time spent by Simics’ tracing mod-

ule heavily contributes to the overhead. We also find that the logging component has

very negligible effects on the overall overhead even when the size of the compressed

log file is over 1GB. For the two applications with the greatest slow-down (h264ref

and astar), the cost of processing the function addresses dominates the overhead.

The last source of overhead is SimParser. As stated earlier, SimParser can run

on a native system if it is configured to be the same as the virtualized system. On
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Figure 5.1: Overhead distribution of SimTracer for each benchmark.

the other hand, if such a native system is not available, SimParser must run in the

virtualized system, which can result in much longer parsing time.

Running in a virtualized system. We first ran SimParser in the same virtualized

system that we used to run SimTracer. It takes 61 seconds to parse the trace log of

libquantum (less than 1 MB of compressed information), 16 minutes to parse the log

of perlbench (4 MB), 61 minutes to parse the log of h264ref (65 MB), and nearly 3

hours to parse the log of gobmk (1 GB). These long parsing times are mainly due to

inefficient file I/O in Simics.

Running in a real system. We performed the SimParser in a real system, which

has a similar environment to that of the virtualized system. The performance of

SimParser is 10 to 73 times faster than that of the virtualized execution. It only
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takes 1 second, 13 seconds, 6 minutes, and 17 minutes to parse the logs of libquantum,

perlbench, h264ref, and gobmk, respectively. Table 5.2 listed the performances of the

four benchmarks in these two systems.

Host/Guest libquantum perlbench h264ref gobmk

Trace log size < 1 MB 4 MB 65 MB 1 GB

Virtualized System 61 seconds 16 minutes 61 minutes 3 hours

Real System 1 second 13 seconds 6 minutes 17 minutes

Table 5.2: SimParser Performance in virtualized / real system

In summary, parsing time is not a major performance factor if there is a system

with a similar runtime environment to that of the virtualized system. On the other

hand, if such a system is not available, the parsing time of a large log file can be many

hours longer than that of the real machine.



35

Chapter 6

Usability Studies

In this chapter, we evaluate the usefulness of SimSight to aid developers to increase

program understanding and isolate sources of programming errors.

6.1 Improved Program Understanding

Modern computer systems often employ advanced runtime systems to perform tasks

that can make execution faster [26], overcome binary incompatibilities [27], ease

the management of computing resources [28, 29], and increase programmer produc-

tivity [30]. For example, dynamic translator can be used to dynamically translate

code written for one architecture to another architecture or dynamically optimize an

executable that may have been compiled for a previous processor architecture [31, 27].

Runtime systems such as Hardware Abstraction Layers and garbage collectors are

used to simplify the management of hardware components and memory, accordingly.

Dynamic linkers and loaders are used to simplify the task of managing shared binary

objects such as libraries that are commonly used by applications [30, 9, 10, 32].

On the other hand, these runtime systems can make understanding program
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execution more difficult. This is because their executions often interleave with the

application execution. For example, reference counting, an automatic dynamic memory

management technique used in Perl and Visual Basic, performs accounting tasks to

track changes in the object reference graph and increments and decrements references

while a program is running [29]. A dynamic linker and loader loads a dynamically

linked object the first time it is accessed [32]. It also needs to update the reference so

that subsequent accesses can be done directly. In these two examples, the time spent

executing these runtime systems accounts for part of the overall execution time of

an application. Furthermore, many of these runtime systems can change application

behaviors (e.g., less efficient memory management techniques can suffer from out-of-

memory errors or cause memory leaks). Therefore, understanding when and how often

these runtime systems are invoked can be helpful to application developers who have

to test and debug these systems.

In SimSight, any procedure call information related to an application is auto-

matically captured. This information includes any calls made by the application

and calls made by runtime systems to support the application. For example, our

implementation can log any calls to dynamic linker and loader (calls to ld.so) and

any calls made by ld.so to its helper functions, allowing developers to observe module

and function-call dependencies. Figure 6.2 shows the dynamic call graph of a program.

Note that functions dl fixup, dl lookup symbol x, and do lookup x are used to access

dynamically linked functions.

6.2 Improved Debugging Capability

It is a common practice for software developers to rely on existing software compo-

nents to perform some tasks for their applications. Unfortunately, these common
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components often have their own complex module dependencies that can result in

hard-to-understand and possibly conflicting module dependencies. Thus, maintain-

ing library compatibility in systems that use dynamic link libraries is a challenging

problem [30].

libbar.solibfoo.so

executable

program 

…
…

…
…

…
……

…

libc.so

…
…

bar( )

call barz( )

…
…

…

barz( )

call strcpy( )

strcpy( )

call bar( )

foo( )

call foo( )

main( )

Figure 6.1: Dependency of our sample program

Figure 6.1 depicts a simple example that utilizes three shared libraries: libfoo.so,

libbar.so, and libc.so. Note that a solid arrow represents a call to a function local

to the libary. dotted arrow represents a call to a dynamically linked function. As

shown in the figure, main() calls foo(), which is part of the shared library libfoo.so.

Within foo(), there is a function call to bar(), which is part of the shared library

libbar.so. In bar(), there is a static function call to barz(), which is also in

libbar.so, and within barz(), there is a call to strcpy(), which is part of the

shared library libc.so. In this dependency structure, it might be possible that a

libc.so upgrade can cause this program to fail. In this example, when we try to

execute this program, a “segmentation fault” occurs.

Typically, this type of the error message appears without providing the precise

location that causes the error. One option is to use SimSight to generate a call graph
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that includes both statically and dynamically linked libraries. Figure 6.2 shows the

result from SimSight. Note that it reports every function call made by the program.
 C:\Documents and Settings\peng\桌桌桌桌桌桌桌桌\casestudy-dcg-ld.log  2010年年年年7月月月月8日日日日 23:21
__libc_start_main [/lib/libc-2.4.so] [D]

_dl_fixup [/lib/ld-2.4.so] [S]

  _dl_lookup_symbol_x [/lib/ld-2.4.so] [S]

    do_lookup_x [/lib/ld-2.4.so] [S]

      strcmp [/lib/ld-2.4.so] [S]

  ...

      foo [/usr/lib/libfoo.so.1.0] [D]

      _dl_fixup [/lib/ld-2.4.so] [S]

        _dl_lookup_symbol_x [/lib/ld-2.4.so] [S]

          do_lookup_x [/lib/ld-2.4.so] [S]

            strcmp [/lib/ld-2.4.so] [S]

            strcmp [/lib/ld-2.4.so] [S]

            strcmp [/lib/ld-2.4.so] [S]

        bar [/usr/lib/libbar.so.1.0] [D]

        _dl_fixup [/lib/ld-2.4.so] [S]

          _dl_lookup_symbol_x [/lib/ld-2.4.so] [S]

            do_lookup_x [/lib/ld-2.4.so] [S]

              strcmp [/lib/ld-2.4.so] [S]

              ...

              strcmp [/lib/ld-2.4.so] [S]

          0x0049e1dc [-] [-]

          _dl_fixup [/lib/ld-2.4.so] [S]

            _dl_lookup_symbol_x [/lib/ld-2.4.so] [S]

              do_lookup_x [/lib/ld-2.4.so] [S]

                strcmp [/lib/ld-2.4.so] [S]

...

          barz [/usr/lib/libbar.so.1.0] [S]

            strcpy [/lib/libc-2.4.so] [D]

            _dl_fixup [/lib/ld-2.4.so] [S]

              _dl_lookup_symbol_x [/lib/ld-2.4.so] [S]

                do_lookup_x [/lib/ld-2.4.so] [S]

                  strcmp [/lib/ld-2.4.so] [S]

  ...

                  strcmp [/lib/ld-2.4.so] [S]

-1-

Figure 6.2: Dynamic Call Graph of our sample program

In summary, developers can use SimSight to assist with identifying difficult errors

such as library incompatibility and achieve greater system observability.
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Chapter 7

Related Work

In academic research, virtual platforms such as Simics are often used to simulate new

research ideas in hardware. For example, numerous researchers have used virtual

platforms to model new memory organization or cache optimization [33, 34, 35]

then evaluate their effectiveness by running benchmark programs in the virtual

platforms [36, 37].

In addition, researchers also use these virtual platforms to observe low-level runtime

behaviors that can be difficult to obtain in real hardware. For example, Wright et

al. [37] uses Simics to observe the behaviors of the HotSpot JVM. The goal is to be

able to achieve non-disruptive inspection of the JVM states. As part of this work, they

create a service that can relate low-level events back to JVM activities. For example,

they create a service module that can map virtual addresses to symbolic names. Li

et al. uses full system simulation to characterize the behaviors of SPECjvm98, a

standardized Java benchmarks at that time [35]. In their work, they profile execution

time of JIT compiler and interpreter, cache behavior, paging behavior, and instruction-

level parallelism characteristic.

Albertson introduces Holistic Debugging as a method for observing execution
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of complex software systems [38]. Simics was used to non-intrusively gather low-

level runtime information. The holistic debugger framework then maps this low level

information to higher abstraction level observation tools such as debugger. A prototype

was built on Simics to map low level storage information to application level data such

as variables and types. This is accomplished by parsing the data structures of the

operating system and virtual platform. One major difference between the standard

debugger and holistic debugger is the use of Simics non-intrusive probing to support

debugging. Our work shares a similar motivation with that of [38, 37]; that is, we

want to take advantage of the non-intrusive probing and execution observability in

virtual platforms to improve software quality. As such, it may be acceptable to suffer

significant runtime overhead in favor of greater visibility and completeness.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

We have described SimSight, a framework for generating dynamic call graph based

on virtualization. The motivation for introducing the proposed framework is to take

advantage of the non-intrusive probing and execution observability in virtual platforms

to improve software quality. This is done in spite of suffering significant runtime

overhead. We then implement a prototype in Simics full system simulator to support

x86/Linux executables and apply it on a case study. To evaluate the overhead to

capture function call information, we use 12 programs from SPEC CPU2006 benchmark

suite. The result indicates that the execution times of Simics with function tracing is

3.5 to 28 times slower than those of Simics with no tracing. The parsing time is also

not significant if it can be accomplished in a real system.
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8.2 Future Work

For future work, we plan to experiment with on-demand tracing to reduce overhead

and increase applicability. For example, a scenario that can benefit from on-demand

tracing mode is when a program crashes after a certain period of execution or when

a certain human detectable event occurs. In this situation, the subset of the call

graphs leading up to the failure may be more interesting. To support on-demand

tracing, we exploit the snapshot feature of Simics. A snapshot is a set of files that

contain enough information about the system and the processes running on the system

to enable restart [39, 40]. In the on-demand tracing mode, SimSight begins tracing

from the snapshot location. By starting close to an execution point of interest, we

can eliminate the unnecessary tracing efforts while still generating useful module

interaction information. We will also explore an event-based technique to initiate

tracing.
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