University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Computer Science and Engineering, Department

CSE Technical reports of

2001

A Generator of Random Instances of Binary Finite Constraint
Satisfaction Problems with Controllable Levels of
Interchangeability

Hui Zou
University of Nebraska-Lincoln, hzou@cse.unl.edu

Amy Beckwith
University of Nebraska-Lincoln, abeckwit@cse.unl.edu

Berthe Y. Choueiry
University of Nebraska-Lincoln, choueiry@cse.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/csetechreports

b Part of the Computer Sciences Commons

Zou, Hui; Beckwith, Amy; and Choueiry, Berthe Y., "A Generator of Random Instances of Binary Finite
Constraint Satisfaction Problems with Controllable Levels of Interchangeability” (2001). CSE Technical
reports. 18.

https://digitalcommons.unl.edu/csetechreports/18

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csetechreports
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csetechreports/18?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

A Generator of Random Instances
of Binary Finite Constraint Satisfaction Problems

with Controllable Levels of Interchangeability

Constraint Systems Laboratory
Department of Computer Science and Engineering

University of Nebraska-Lincoln

Technical Report, CONSYSTLAB-01-01

Author: Hui Zou, hzouecse .unl .edu
Supervisor: Amy Beckwith

Director: Berthe Y. Choueiry

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

CONTENTS

03100 00 1) T (1) 1 LY 3
PreliINNATICS c.uuueeeeeeeeeeeeeeeesceeeereeseesesssssssessesssosss 3
1 Assumptions 3

2 Input parameters 4

1
2
2.
2.
2.3 Constraint representation 4
2.4 How to compute the degree of interchangeability 5
2.5 How to guarantee the degree of interchangeability 6
3 DeSigN PriNCIPIES ..cciueeiieeeiiniinensenssnncsenssnesssecssnessanssssesssnssssssssssssassssssssssssasssssssssasssnes 6
3.1 Constraint generation 7
3.2 Row permutation 7
3.3 Constraint assignment and connected CSP 8
3.4 Generation and use of random numbers 8
4 The structure of OUI PrOSramiceeiciceicssnesssancsssansssssnssssssssssssssssssssssssssssssssassssnes 9
4.1 Main program 9
4.2 Partl: Generates C distinct constraints 10
5 ADOUt the Programl.....eeccceeiciseicssnicsssnissssnessssnessssnessssnessssnessssssssssssssssssssssssssssssss 11
5.1 Components 11
5.2 Usage 11
5.2.1 Generating problems in batCh............ccccviiiiiiiiiiieceee e 11
5.2.2 Generating problems individually...........cccceeiieriiiiniiniiiieeieeeee e 12
5.3 Appearance 12
6 Output file fOrmMALccouveriiviiiiiiiinriiiiinticisnricsssnicsssnesssssesssssesssssesssssessssssssssssssssssses 12
7 Shortcomings of thiS Programi.........ceeicccncseiecssssnriccssssrecsssssssscsssssssessssssssssssssssss 13
8 Conclusions and fUtUre WOTKcicccnneiiccsssniicssssnsicssssansscsssssssesssssssssssssssssssssssssass 13
O ApPpendix 1: SOUICE COUEuuiereuerersercssnrcssnicsssnsses 14
10 Appendix 2: example of an output fileceveerveeisnenseenrnenseensnensenssnenseessaecsannes 39
11 BiobDlIOZIraphycccceiiiiveiciiseiissnicssnicssnnsssanisssanesses 41

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

Abstract

In order to test the performance of algorithms for solving Constraint Satisfaction
Problems (CSPs), we must establish a large collection of CSP instances that meet a given
set of specifications, such as the number of variables, domain size, constraint density,
tightness, etc. The goal of this report is to describe a generator of instances that have a
specified degree of interchangeability. An example of such a generator is described in
(Freuder and Sabin 1997), which generates non-reflexive constraints and does not allow
us to control concurrently the degree of interchangeability and tightness. We have
developed a technique and written a program in the C language to generate CSP instances
that satisfy the above two conditions at the same time. Our generator removes the
restrictions of the generator of (Freuder and Sabin 1997) and yields more general
constraints. This paper presents an overview of our technique and our implementation.

1 Introduction

We restrict ourselves to binary CSPs with finite domains. A generator of random CSP
instances with a predefined level of interchangeability is presented in (Freuder and Sabin
1997). In this generator, each constraint is defined as the conjunction of two constraints:
one that specifies the level of interchangeability and one that dictates the tightness value.
The resulting constraint, which is obtained by taking the intersection of the definitions of
the two constraints, is not guaranteed to respect the tightness or the degree of
interchangeability specified. In this report, we describe a generator for random CSPs that
allows us to generate instances that precisely satisfy these values.

This document is structured as follows. Section 2 lists the assumptions and introduces the
parameters used in the generator. Section 3 explains the design rationale. Section 4
explains the logical structure of the program as a flow chart. Section 5 discusses the
structure of the code and shows how to use it. Section 6 explains the format of the output
files and Section 7 lists the shortcomings of our method. Section 8 makes a conclusion
and prompts the future work.

2 Preliminaries

In this section, we first state the assumptions that we make for this random generator.
Then we describe other design decisions, such as the input parameters and the internal
representation of a constraint, and our methods for computing the level of
interchangeability in the problem.

2.1 Assumptions

To realize this program, we use the following assumptions:

1. All variables have the same domain.
Any particular pair of variables has only one constraint.
A constraint is not necessarily symmetrical, unlike (Freuder and Sabin 1997).
Any two constraints have a priori distinct definitions.
All constraints have the same degree of interchangeability, defined as the number
of equivalence classes in the domain of the variable according to a single
constraint. Since constraints are not symmetrical, a given constraint is built to
induce equivalence classes on one of the variables to which it applies. The

Nk

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

equivalence relation induced on the domain of the remaining variable is not
controlled.

6. All constraints have the same tightness.

7. Any two variables are equally likely to be connected with a constraint.

2.2 Input parameters

We adopt these parameters for the input to the program:

n : the number of variables

a : domain size

C : number of constraints

IDF: degree of induced domain fragmentation — a measure of the level of
interchangeability that indicates the number of equivalence classes in the
domain of one of the variables.

o t. tightness of each constraint, the percentage of the number of
incompatible tuples to that of all possible tuples between two variables
connected by a constraint. For example, t = 0.25, 0.68 etc.

o
o
o
o

2.3 Constraint representation

We use a binary matrix to represent a constraint connecting two variables. The rows and
columns of the matrix represent the values in the domain of each variable. An entry in
the matrix is set to 0 when the corresponding values of the two variables are not allowed
by the constraint. The entry is set to 1 when the combination is acceptable by the
constraint. Each row in a matrix is implemented as a vector. Additionally, we use one
vector per matrix to record the information about the matrix. For example, the matrix of
Figure 1 represents a constraint where the numbers (1, 2, 3, 4, 5) represent the indices of
the row or column as well as the values in the domain of each variable. For this example,
let V; be the variable whose values index the rows, and ¥V, the variable whose values
index the columns. The set {(1,1), (1, 2), (1, 5), (2, 1), (2,4), (2,5), (3, 1), (3, 2), (3, 5),
4,1),4,2),(4,5),(5,1),(5,2),(5,3),(5,4), (5 5)} is the list of allowed combinations
of the two variables.

V2

12343

1100 T rewrniicon wf Y\ S V2

10011 ﬂ—mwﬂ[lmll][

1, 3, 4 1,2,3,4,5

VI 51100 1| rewsiuicon (M3 H[2][8]) e dehal

1100 1| =— rowd [11001] __,/ \

$/11 11 1| = rows [11111]

Figure 1: Fragmentation of the domain of V; by the constraint C.

This matrix is implemented as 5 vectors: rowl, row2, row3, row4, and row5. Thus, the
domain size of each variable is a=5. It is easy to check that its tightness is =0.32.
Further, one can check that some vectors are equal, i.e. they have the same definitions.
For the CSP, this means that the values in the domain of the CSP variable used to index

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

the rows are interchangeable. In the above example, we can check that the constraint
partitions the values of this variable into three equivalence classes, which correspond to
indices (1, 3, 4), (2), (5). So, the constraint partitions the domain of the variable into
three equivalence classes, and the degree of interchangeability of the variable with
respect to this constraint is 3, IDF=3. We have IDF=3 by row. However, we note that
the number of equivalence classes induced by the constraint of the domain of V5 is 4.
Our generator controls the degree of fragmentation only by rows, not by columns. So we
are only controlling the interchangeability for one of the variables, not both.

For each matrix 4 representing a constraint, we use one additional vector to record
information about these equivalence sets. The size of this vector is equal to the number of
rows in the matrix, i.e. the size of the domain of the variable. Each equivalence set is
indexed by a number, any two rows of A4 that are in the same equivalence set (i.e., their
vectors are equal) are assigned the same index. This vector is called IDF and the one of
the matrix 4 above is represented below:

(1] «rowl
2| «row?2
IDF-A [1211 3] 1| <rows
1| «<row4
3| «rowd

From this vector, we can quickly retrieve the number of equivalence classes (i.e. induced
domain fragmentation, IDF) by taking the maximum of the entries in the vector. Also we
can check if two rows correspond to equal vectors if the corresponding indices are equal.
In the example above, it is easy to see that we have 3 equivalence classes. We can also
check that rows 1, 3 and 4 belong to the same equivalence class, which means that the
corresponding values are interchangeable according to this constraint.

2.4 How to compute the degree of interchangeability

In order to find the degree of interchangeability of a constraint, we use the vector named
IDF defined in Section 2.3. First, each element of IDF is set to 0. We define a counter
index=0. Starting from the first row,

e If IDF of the current row is 0, then we increment index by 1, and set the
values of the corresponding elements of IDF to index. Then we compare
current row with all other rows below it.

e [fthey are equal and the corresponding elements of IDF is 0, we set the values of
the corresponding elements of IDF equal to the index.

e We move to the next row in the matrix and do the same thing mentioned above.

e At last, we check IDF of the last row. If it still is 0, we increment index by 1
and set IDF to index.

After comparing all rows pair-wise, the value of index is the degree of
interchangeability of the matrix. For example,

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

matrix 4 vector IDF-A
vectl > [1 1 0 0 1] 0] 17 1] 1]
vect2 — 1 0 01 1 0 0 2 2
vect3 — 1 1 0 01 index=0{ 0 | index=1|1 | index=2|1 | index=3| 1
vectd— 11 1 0 0 1 0 1 1 1
veets = |1 1 1 1 1 0 0 0 3
)) initialized stepl step2 step3

2.5 How to guarantee the degree of interchangeability

We design a subroutine to change the IDF of a matrix. It works according to the
difference (dif) between current degree and specified degree. If the difference is equal
0, then the matrix has the specified degree of interchangeability. If it is bigger than 0,
then we need to reduce the degree of interchangeability of current matrix, otherwise we
need to increase it.

>0

\ 4

Reduce

A matrix satisfying
the specified degree

A matrix

Do nothing

<0

A 4

Increase

Suppose we specify IDF=2. The IDF of the matrix A defined above is equal to 3, thus
dif=3-2>0. In order to satisfy the specification, we select any two vectors from two
different equivalence classes and set one to be equal to the other. For example, we can set
vect2«—vectS. When we do so, we obtain a matrix with IDF=2. Note that this operation
may affect the value of the constraint tightness.

Now, suppose we specify IDF=4 while the IDF of matrix A4 is equal 3, the di£=3-4<0.
In this case, we need to select any vector from any equivalence class that has more than
one element and modify it to make it different from the other elements in its class. This
can be done as follows. We choose two random entries in the vector. If they have
different values (one of them is 1, another one is 0) then we swap them. Otherwise, the
value of one of them is changed. (The first operation does not affect the value of the
constraint tightness, while the second does.) In the example above, we select vect3 and
setitto be [1 0 1 0 1], thus yielding a matrix A with IDF=4.

3 Design principles

Based on these data structures and assumptions, we now describe to the implementation
of the Random CSP generator.

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

3.1 Constraint generation

It is difficult to generate a constraint that satisfies the degree of interchangeability and
tightness concurrently, because these two specifications affect each other. To simplify
this problem, we generate a constraint that satisfies the two specifications by the
following steps:

e Stepl: Create a matrix with the specified domain size a.

e Step2: Set the entries in the matrix to realize the given constraint tightness ¢.

e Step3: Modify the matrix to comply with the specified interchangeability degree
IDF.

e Step4: Check whether the tightness of the resulting matrix is equal to the specified
tightness. If yes, then we apply a permutation operation (see Section 3.2) to the
constraint obtained so far, store the resulting constraint, and exit this step with a
success and continue to generate the next constraint. Otherwise, we just give it up
and initialize the matrix, then return to step2 to generate a new constraint.

For example, the steps for generating a constraint with =5, IDF=3, /=0.32 are illustrated
below:

veetl—- 1 1 11 1] [1 1 0 0 1] 11 0 0 1]
vect2z— |1 1 1 1 1 1 00 1 1 1 00 11
veet3— |1 1 1 1 1 1 1 0 0 1| setrowd—rowl |1 1 0 0 1
veetd— |1 1 1 1 1 1 01 01 1 1 0 01
veetS— 11 1 1 1 1 1 1 1 11 1 1 1 11

~ Stepl Step2 (IDF=4) * Step3 (IDF=3)

At step3, it is possible that we fail to define a constraint that satisfies the specifications.
This may happen when:
1. No solution exists: for example for =5, IDF=3, t=0.04. When a=5 and =0.04, it
is easy to check that there only exists solutions with IDF=2.
2. Although a solution may exist, the process of modifying interchangeability in the
matrix continuously changes tightness.

To avoid this kind of problems, we use a counter at the beginning of the process to
generate a constraint. When counter <50, we generate a constraint with the tightness ¢
requested. However, when 50<<counter <100, we instead generate a constraint with
=1-t. Although we have modified the ¢ requested, we still obtain a constraint that meets
the specifications through a simple processes trans (). The only work of trans () is
to change 0 to 1 and 1 to O of the matrix. By this method, we increase the success rate to
generate a CSP. The loop is terminated after trying to get solution 100 times and the
generation of the current CSP instance is interrupted, regardless of the number of
constraints generated so far.

3.2 Row permutation

To increase our chances of generating random constraints, each constraint that is
successfully generated is run through a row permutation process that swaps two randomly

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

chosen rows a randomly chosen number of times. The input and output matrices of this
process are guaranteed to have the same tightness and interchangeability degree: the
process does not change the characteristics of the matrix.

1 1001 1 1.0 0 1]
1 0 0 11 I 11 11
1 1 0 0 1| bypermuting,itmaybecome |1 1 0 0 1
1 1.0 01 1 10 01
11 1 1 1] 1 0 0 1 1]

3.3 Constraint assignment and connected CSP

After generating C constraints, we assign each of them to a random pair of variables. This
simple procedure is described below.

The total number of combinations of n variables is ("j _n(=D Of these n(n-1)/2

2 2

combinations, we choose C random pairs of variables. The resulting CSP is not
guaranteed to be connected. A graph is connected when its number of edges |E| is at least
equal to [V|-1, where |V] is the number of nodes in the graph. With respect to the CSP, we
have the following implication:

CSP is connected — (n-1) <C <n(n-1)/2.
C<(n-1).— CSP is not connected

C> n(n-1)/2_— impossible, there are more than one constraint between two nodes.

Therefore, when C<(n-1), it is impossible to have a connected CSP. When we refer to a
connected CSP, we only consider the CSPs with (n-1) <C <n(n-1)/2.

In order to guarantee that the CSP we generate is connected, first we check every CSP
that we generate to see if it is connected, if it is, we store the CSP to the output file. If it
is not connected, we throw away that CSP and begin again. Below we describe the
algorithm to test if a CSP is connected.
1. Set all variables to be unvisited;
2. Choose the first variable v1, mark it as visited;
3. enqueue (vl) ;
4. while ! QueueIsEmpty ()
V=Dequeue () ;
For each variable that is connected to V by a constraint
If the variable is visited, then ignore it;
otherwise enqueue (V) ;
mark it as visited;
5. Check all the variables in the CSP
if any variable is unvisited, then the CSP is disconnected.
otherwise, it is connected.

3.4 Generation and use of random numbers

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

To generate a random CSP instance, we need to generate random numbers. We use two
methods to generate a random number. These are as follows:

1.

2.

Method 1: we set the seed to be the quotient of the id number of the current
process and the system time.

Method 2: we randomly use one of two generators: ranl and ran2. In order to
choose which generator to use, we use the function getseed, which uses a
system function to generate randomly a number between 0 and 1. Depending on
the outcome of getseed, we choose either ranl or ran2. As illustrated in the
chart below:

50

o\°

getseed

\ 4

ranl
) Return a seed

ran2

When we enter the program, we use the first method. After that, we use only the second
method. The random numbers are used in four cases:

1.

2.

4.

Used in Reduce (Section2.5) to select any two equivalence classes and select a
random vector from the two equivalence classes respectively,

Used in Increase (Section2.5) to select a equivalence classes and for this
given class, to select two elements of the class to be modified by the constraint
generation procedure,

The number of times the permutation operator is applied in the permute
function (Section3.2), and

The two rows to be swapped within the permute function (Section3.2).

4 The structure of our program

Below we describe the program for generating random CSP based on the components
described above.

4.1 Main program

Partl

Get data Output

A 4

Part2

The main program has the 3 main components:

1.
2.

3.

Get data -- take input data from command line

The work will be divided into two main parts.
Partl: Generates C distinct constraints.
Part2: Distributes these C distinct constraints to any two particular
variables.

Output: Store the result to a file.

4.2 Partl: Generates C distinct constraints

create a matrix

C=#fof constraint
i=0;counter=0

first?

Q
D
o
n
D
D
Q,
A

tight () <

t—1-t

Level IDF ()

Degree ?

N

Set _equal(()

v

counter++

permute

Y trans ()

N

Get a constraint |«
i+t

Initialize matrix

d Counter=0

i<c

N

We get all constraints
output

10

10.

11.

12.

13.

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

Create a matrix. C is the total number of
constraints to generate.

The first seed is obtained by the id
number of process and by time of
system. With using this method, we get a
different random sequence each time.
Within inner loop, we generate the
random seed by ranl () and ran2 ()
so that we could produce a more general
CSP.

The function tight () will modify the
matrix according to a specified tightness.

The function level IDF () is to compute
the interchangeability present.

Verify if the current IDF is equal to the
specified IDF. If yes, then we have a
solution that satisfies the specified
degree. If not, we continue.

According to the difference of current
degree and specified degree, we increase
and reduce the degree by function
Set equal().

We increase counter by 1 each time
when we use Set equal(). If
counter>50 and<100, we will change
this problem into its reversed form such
that ¢=1-t then solve it. When
counter>100, we will terminate the
processing.

After processing, we test to see if the
tightness, ¢, still meets the specification.
If no, we give up this constraint and
generate a new one.

If yes, we permute the current matrix to
get a more general solution.

If the matrix generated was made with
t=1-t, we transform it by trans ().

Initialize the matrix, then continue to
generate a new constraint if i< C

If i=C, we have C constraints and are
finished. Store the result into a file.

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

S About the program

This program is implemented as several parts. Below we give a brief description of these
parts, and how to use the program.

5.1 Components

There are total 7 files as follows:
1. doit — the shell script

2. vector.h - the head file

3. vector.cpp — the implementation for vector class

4. Matrix.cpp — the implementation for matrix class

5. gen.cpp — the main program for generating problems individually

6. gen batch.cpp - the main program for generating problems in batch

7. Makefile- the make file.
This program was compiled and run under cse . unl . edu. It has not been tested on any
other machine.

5.2 Usage

The code can be run in two different modes: to generate a batch of instances or to
generate an individual instance.

5.2.1 Generating problems in batch

We wrote a shell script to generate large number of instances. All specifications and the
number of instances that we generate for each problem are defined in this shell script file.
After executing this script one time, all generated CSPs are stored into corresponding
files. A file named fail record records the file names of instances that could not be
generated by the program.

We initialize a set of specifications in the doit file then execute doit. The system will
generate problem automatically. The contents of doit are as follows:

R=0
n=10
a=5
NUM=20
for Cin5913 182227 31364045
do
for IDFinl12345
do
fortin 0.04 0.12 0.20 0.28 0.36 0.44 0.52 0.60 0.68 0.76 0.84 0.92
do
=1
while [$i -le NUM]
do
i=expr$i+1°
R="expr R + I"
gen_batch $n $a $C $IDF $t $R irand-$C-$I-$T.$R
done
R=0
done
done
done

11

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

NUM - the number of instances of each problem, which determine the total
problems generated by the program.

We define different CSPs by changing the value of n, a, C, IDF, t, NUM. From above
code we know it could generate at most 10*5*12*20=12,000 problems (in this example).
The result will be stored into an output file named “irand-C-IDF-t.R” C, IDF and t are
respectively corresponding to their actual value, and R is the series number.

5.2.2 Generating problems individually

This program takes 6 command arguments as follows: gen n a C IDF t outfile,
where out £i1le is the filename where results are stored.

5.3 Appearance

({34

During the running of this program, “.” or “ /” will be displayed on the screen to show the
status of the processing:

e “indicates a successful generation.
e “/”indicates a failed generation.

6 Output file format

e Line 1. A string (no white space characters) specifying the name of the problem
(for the log file). Such that CSP-n-a-C-IDF-t, for example CSP-10-5-13-3-0.68
e Line 2. na-1 (all integers).
e The next entries specify the constraints.
1. First specify the number of different constraints C followed by each of the
constraints in the format
c
const # sizei sizej
01
10
const # sizei sizej
01
10
Where C is the number of constraints. Each constraint is specified by first giving
three integers: the constraint number (each must be distinct and numbered in the
range 1 to C), the domain size of the first variable and the domain size of the
second variable.

2. The next set of entries specifies the rows of the constraint matrix, (thus we

have sizei "rows" with sizej entries of 0 and 1 each). These entries
must all be 0 or 1.

12

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

e After each of the constraints is specified we specify the constraints that hold
between particular variables. This is specified by a sequence of triples in the
format:

i1 j1 h1

il §j1 hl
im jm hm

In Appendix 2, we provide an example of output file.

7 Shortcomings of this program

1. We do not guarantee that any two generated constraints are distinct, because
instances are generated independently. This problem can be fixed, but this would
be too costly and require lots of time to compare and reject or accept.

2. At step3 mentioned in section 3.1, we don’t distinguish the two cases that cause
CSP generation to fail. We solve that problem simply by a counter. This method
is time consuming, because we mat have to abandon near solutions and begin a
new generation from scratsch.

8 Conclusions and future work

e We used this program to generate a large batch of CSPs, as given in the example in
Section 5.2.1. Our success rate was 97% under batch mode. Some problems that
failed when run in batch mode succeeded when run individually (see Section 5.2.2).

e The performance of this program mainly depends on the distribution of random
numbers. The performance is better when it is used to generate CSPs individually
than when it is used CSPs in batch. This is because the system gives a better
distribution of random numbers when the process differs every time.

e Since we don’ t distinguish the cases that lead to a failed
generation (Section7), this method increases the times of failure
generation. This problem can be addressed as follows:

1. Before generating a CSP, we first check whether an instance with the specified
conditions(C, IDF, t) can at all be generated. If this is not possible, then we don’t
need to proceed for this case and just exclude it.

2. If there exist solutions to that problem, then we need to improve our algorithm to
effectively generate the solution instead of giving up after a counter has reaches
a threshold value, as we currently do.

13

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

9 Appendix 1: Source Code

1.

gen.cpp

/[A CSP Problem Generator (Ver1.03)

I

/I Name : Hui Zou
/I Date : June 28, 2001

"

I
1
1
I
"
"
I
1
1
I

Description: This program is a CSP problem generator. It takes 6 command arguments as

follows,

gen n a C IDF t outfile
n - the number of variables
a - domain size
C - distinct constraints number
IDF- the degree of interchangeability
t - tightness of each constrain,that is the percentage of zero
outfile - flename you want to store the results
we assume all values of above parameters ,given by user,are appropriate.
A detailed description will be provided with a readme file.

#include "vector.h"

I

int main(int argc, char *argv(]) {

int n,a,C,IDF;float t, seed;
int deg, first_time=0,fail=0;
if (argc 1=7)

usage();

/Ireads data from character strings
sscanf(argv[1],"%d",&n);
sscanf(argv[2],"%d",&a);
sscanf(argv[3],"%d",&C);
sscanf(argv[4],"%d",&IDF);
sscanf(argv[5],"%f",&t);

/lif the degree of interchangeability=1, then the number of zero should be multiple of a(domain
size)
/[Otherwise, it is impossible to get solution at this case
if ((int(a*a*t)%a !=0) && (IDF==1))
exit(0);

/lopen output fule

ofstream fout;

fout.open(argv[6]);

if (fout.fail()) {
cout << "Output file opening failed.\n";
exit(1);

}

fout<<"CSP-"<<n<<"-"<<g<<"-"<<C<<"-"<<|DF <<"-"<<t<<end!:

14

fout<<n<<ll ll<<a<<ll ll<<ll_1 II<<|l\n\nll;
fout<<C<<endl;

//define a matrix class object
matrix m(a);

/lgenerate the first seed
time_tT;

T=time(&T);

pid_t pid;

pid=getpid();

unsigned seed1;
seed1=T/pid;

/lgenerate constraints

float T_temp=t;

for (int i=0;i<C;i++) {
if (first_time==0) {

seed=seed1;
first_time=1;
}
else

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

seed=getseed();//seed will be generated by random generators after first time

srandom(seed);
vector degree(m.getrow(),0);
m.tight(t,seed);
deg=m.Degree_Inter(degree);
bool done=false;
while (deg!=IDF){
fail++;
if (fail>=50 && !done) {
t=1-t;
m.tight(t,seed);
done=true;
}
m.set_equal(deg,|DF,degree);
degree.ini(m.getrow());
deg=m.Degree_Inter(degree);
if (fail>=100) {

[[after try it 50 times, if still no solution, then give up
cout<<"Failure, please try again\n";

/Iremove the outfile
unlink(argv[6]);
exit(0);

}
}

int flag=0;
int tmp=m.tightness();

15

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

/I give up the matrix whose tightness does not satisfy the specification
if(tmp !=int(a*a*t)){
flag=1;
i
}
/Iselect the constraint that satisfies both tightness& the degree of interchangeability
if (flag !'= 1) {
/lin order to get more general problem, we permute the matrix
m.permute(a);
if (t!=T_temp){
m.need_change();
t=T_temp;
}
fout<<i+1<<" "<<g<<" "<<ag<<end!;
fout<<m<<end|;
fail=0;
}
/lput the matix into original status
m.initialization();
Ylend of for

’

/[assign constraints to any two variables
assign_CS(fout,C,n);
cout<<"Success!\n";
fout.close();
return 0;
}
2. gen_batch.cpp
/IA CSP Problem Generator in batch (Ver1.02)
1
/ Name : Hui Zou
// Date : May 29, 2001
/I Description: This program is a CSP problem generator used for generating CSPs in batch.

I It takes 7 command arguments as follows,

Il gen_batch n a C IDF t R outfile

Il n - the number of variables

1 a - domain size

1 C - distinct constraints number

1 IDF - the degree of interchangeability

1 t - tightness of each constrain,that is the percentage of zero
I R - the series number of instance

1 outfile - filename you want to store the results

1 we assume all values of above parameters ,given by user,are appropriate.
1 A detailed description will be provided with a readme file.

1 After a succefull generating, "." is displayed. otherwise,

1 "/" will be displayed.

I

#include "vector.h"

1l

16

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

int main(int argc, char *argv[]) {
int n,a,C,IDF;float t, fn,seed;
int deg, first_time=0,fail=0;
if (argc 1=8)
usage();

/lreads data from character strings
sscanf(argv[1],"%d",&n);
sscanf(argv[2],"%d",&a);
sscanf(argv[3],"%d",&C);
sscanf(argv[4],"%d",&IDF);
sscanf(argv[5],"%f",&t);
sscanf(argv[6],"%f",&fn);

/lif the degree of interchangeability=1, then the number of zero should be multiple of a(domain
size)
//Otherwise, it is impossible to get solution at this case
if ((int(a*a*t)%a !=0) && (IDF==1))
exit(0);

/lopen output fule

ofstream fout;

ofstream fout1;

fout.open(argv(7]);

if (fout.fail()) {
cout << "Output file opening failed.\n";
exit(1);

}

fout<<"CSP-"<<n<<"-"<<a<<"-"<<C<<"-"<<|DF<<"-"<<t<<endl;

fOUt<<I"I<<" ||<<a<<u |l<<ll_1 ||<<||\n\n||;
fout<<C<<endl;

//define a matrix class object
matrix m(a);

/lgenerate the first seed
time_tT;

T=time(&T);

pid_t pid;

pid=getpid();

unsigned seed1;
seed1=T/pid;

/lgenerate constraints
for (int i=0;i<C;i++) {
if (first_time==0) {
seed=seed1;
first_time=1;

17

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

}

else

seed=getseed();//seed will be generated by random generators after first time
srandom(seed);

vector degree(m.getrow(),0);
m.tight(t,seed);
deg=m.Degree_Inter(degree);
while (deg!=IDF)
m.set_equal(deg,|DF,degree);
degree.ini(m.getrow());
deg=m.Degree_Inter(degree);
fail++;
if (fail>=50) {
/[after try it 50 times, if still no solution, then give up
cout<<"/";
/Iremove the outfile
unlink(argv[7]);
fout1.open("fail_record",ios::app);
fout1<<"irand-"<<C<<"-"<<IDF<<"-"<<t<<"."<<fn<<end|;
fout1.close();
exit(0);
}
}
int flag=0;
int tmp=m.tightness();
/I give up the matrix whose tightness does not satisfy the specification
if(tmp !=int(a*a*t)){
flag=1;

}
IIselect the constraint that satisfies both tightness& the degree of interchangeability
if (flag != 1) {
/lin order to get more general problem, we permute the matrix
m.permute(a);
fout<<i+1<<" "<<g<<" "<<g<<end|;
fout<<m<<end|;
fail=0;
}
//put the matix into original status
m.initialization();
Y/lend of for

/lassign constraints to any two variables
assign_CS(fout,C,n);
cout<<".";

fout.close();
return O;

18

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

3.vector.h

1l
/[Name : Hui Zou
/[Date: June 27, 2001
/I Description: This is the header file of vector ,matrix and Queue class.
/[ver 1.02
1l
#include <iostream.h>
#include <math.h>
#include <iomanip.h>
#include <stdlib.h>
#include <fstream.h>
#include <sys/types.h>
#include <unistd.h>
#include <time.h>
#include <float.h>
#include <stdio.h>
#include <signal.h>
1l
/la structure CS_vars to record each constraint assigned to any two varibles
struct CS_vars {

int var1;

int var2;

h

class matrix;
/!
[/Ivector class prototype
Il
class vector {
friend class matrix;
public:
/I constructor
/lto initialize each element to be zero
//Precondition: the size of vector shall be given.
/IPostcondition: each element in vector is initialized to be 1.
vector(int);

/[constructor

/lto initialize each element to be the specified value

//Precondition:the size of vector and the specified value shall be given
//[Postcondition: each element in vector is initialized to be the specified
1l value

vector(int,int);

/lconstructor

/I to initialize vector by a given array
/[Precondition: an given array and the size of vector is avalable

19

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

/[Postcondition:the vector copys each element of the given array
vector(const vector*,int);

/[copy constructor

//make a copy of an object
//Precondition:an object of class existing
//Postcondition: the vector is copied
vector(const vector&);

/[distructor

//deallocate the memory used by an object
//Precondition: none
/[Postcondition:memory is free

~vector();

/[assign =operator

//assign an object to another

//Precondition: an object existing

//Postcondition:the object is assigned with the given object
vector& operator= (const vector&);

/Iset each element of the vector to be 0
//Precondition:the size of vector shall be given
/[Postcondition:each element=0

void ini(int);

/lthe [] opreator
/Ireturn the value of element indexed by int
int& operator(](int);

/Ireturn the size of a vector
int getsize();

/Ireturn the value of one element of an object

/[Precondition: the index of an existing object given
//Postcondition:return the value of the element pointed by the index
int getvalue(int);

/lto swap any two elements in vector

void swap(int,int);

/lthe output operator
friend ostream& operator<<(ostream&,const vector&);

private:
int size;
int *vec;

20

%

I

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

/Imatrix class prototype

I

class matrix {
public:

/lcontructor
/[Precondition : two integers should be given

//Postcondition: a matrix size of integer1*interger2 will be defined

matrix(int,int);

/[contructor
//Precondition : an integer should be given

/[Postcondition: a matrix size of integer*interger will be defined

matrix(int);

/[copy constructor

//Precondition :a marix class object is existing
//Postcondition:to make a copy of the existing object
matrix(const matrix&);

//destructor

/[Precondition : none
/[Postcondition: deallocate memory
~matrix();

/[] operator
/lreturn a complete row vector
vector& operatorf](int);

/lassign operator

/[Precondition :a marix class object is existing
//Postcondition:to assign the existing object to another object
matrix& operator=(const matrix&);

/o test if two vetors(such that two rows) are equal
//Precondition: two vector class objects is existing
/IPostcondition:if equal,then return 1,otherwise 0
bool Isequal(const vector&,const vector&);

/lto calculate the tightness of a matrix
//Precondition :a matrix class object is existing
/[Postcondition:return the number of zero in matrix
int tightness();

/to calculate the degree of interchangeaqgbility of a matrix
/lreturn the degree

21

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

int Degree_Inter(vector&);

/laccording to the tightness, to fix the matrix
void tight(double,unsigned);

/laccording to the degree of interchangeability, to fix a matrix
void set_equal(int,int,vector);

//set the matrix to its orignal status
void initialization();

/Ireturn row
int getsize();
int getrow();

/lreturn col
int getcol();

/lto swap any two vectors of the matrix
void swap(int,int);

/lto exchange two elements of some vector of the matrix
/lthe 1st numner is the row#, and the 2rd&3rd are the indexs of the elements of the row
void change(int,int,int);

void need_change();

/lto get a transpose matrix of the original matirx
void transpose();

/lin order to get a more general solution and improve the rate of distinct constraints
//after we get a solution, we permute this matrix in random
void permute(int);

/lto test if two matrixs are equal
/Ireturn 1 if equal, otherwise return 0;
friend bool operator==(const matrix&,const matrix&);

/lthe output operator
friend ostream& operator<<(ostreamé&,const matrix&);

private:

h

I

int row;
int col;
vector **mat;

/IQueue class prototype

I

22

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

class Queue; [/ forward declaration
1l
/I Class for a node to be used in a linked list:creates and empty element
/l Programming note: no implementation coding is needed.

/I The queue is implemented as a linked list with two external pointers.
/I One points to the front of the queue, another one points to the rear
/lof the queue.

class QueueNode

{

private:

// Data members
int element; /I Queue element
QueueNode *next; /I Pointer to the next element

friend class Queue;

3

/I
class Queue

{
public:

Queue (); /I Constructor

/I The constructor. creates an empty queue

// Precondition : none

// Postcondition: the variable front and rear has an appropriate
1l value assigned.

~Queue (); /I Destructor

/I The destructor. Deallocated the memory assigned to pointers
/[Precondition: a Queue object has been created
/IPostcondition: Memory used by the queue is freed

Queue(const Queue& TheQ); /I Copy constructor
/lInitializes Queue by making a copy of an existing Queue object
/[Precondition: object to be copied to is empty or can be emptied
1 and object to be copied from exists

//Postcondition: a copy of the object is made

Queue& operator=(const Queue & TheQ); /I Assignment operator
/lInitializes Queue by making a copy of an existing Queue object
/[Precondition: object to be assigned to is empty or can be emptied

1 and object to be assigned from exists

//Postcondition: makes a copy of the Queue TheQ

void enqueue (int newElement); /l Enqueue element

//Adds a new item to the rear of the Queue
/[Precondition: A previously created Queue. The parameter newElement

23

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

1 is added to the rear of the Queue.

1 There is memory available to add the new item in the Queue.
/[Postcondition:If the Queue is not full, the item is added to the rear

i of the Queue. Otherwise, the Queue is unchanged.

int dequeue (); /I Dequeue element

//[Removes an item from the front of the Queue.

//Precondition: A previously created Queue.

//Postcondition: If the Queue is not empty, it has its front item removed
/land returned. Otherwise (the Queue is empty) 0 is returned.

void make_empty(); /I Clear queue
//ITo make an existing Queue empty.
/[Precondition: A Queue object has been created.
/[Postcondition: The Queue is cleared.

bool empty () const; /I Queue is empty
/[Class instance tester

/[Precondition: A previously created Queue.
//[Postcondition: returns true if empty, false if not.

private:

/l Data members

QueueNode *front, /I Pointer to the front element
*rear; /I Pointer to the rear element
|3
Il
[lother functions in main program
Il

/ltwo random number generators to generate seed in random
float ran1();
float ran2();

/Ireturn seed in random with ran1() or ran2()
float getseed();

/lassign constraints to any two variables
void assign_CS(ofstream&,int,int);

/Ito display the usage
void usage();

4.vector.cpp

I

24

/I Name : Hui Zou
/I Date: May 8, 2001

/I Description: This is the implementation of vector class.

/I'Ver 1.0
/!

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

#include "vector.h"
Il

vector::vector(int n) {
size=n;
vec=new int[size];
for (int i=0; i<size;i++)
vecli]=1;

}

vector::vector(int n,int value){
size=n;
vec=new int[size];
for (int i=0;i<size;i++)
vecl[i]=value;

}

void vector::ini(int n){
size=n;
vec=new int[size];
for (int i=0; i<size;i++)
vecli]=0;

}

vector::vector(const vector *a, int n){
size=n;
vec=new int[size];
for (int i=0;i<size;i++)
vec[i]=a->vec]i];

}

vector::vector(const vector& vect) {
size=vect.size;
vec=new int[size];
for(int i=0;i<size;i++)
vecli]=vect.vec]il;

}

vector::~vector() {
delete vec;

}

vector& vector::operator=(const vector& vect) {
if (size |= vect.size) {

25

delete vec;

size=vect.size;

vec=new int[size];

}

for (int i=0;i<size;i++)
vecli]=vect.vec]i;

return *this;

}

int vector::getsize() {
return (size);

}

int vector::getvalue(int index) {
return vec[index];

}

int& vector::operator(](int i){
return vec|i];

}

void vector::swap(int x,int y) {
int temp=vec[x];
vec[x]=vecly];
vec[y]=temp;

}

ostream& operator<<(ostreamé& out,const vector &vect) {
for(int i=0;i<vect.size;i++)
out<<vect.vecli]J<<" ";
out<<end|;
return out;

}

5. Marix.cpp

I

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

/I Name : Hui Zou
/I Date: June 27, 2001

/I Description: This is the implementation file of matrix and Queue class. The header file is

I in vector.h
/I Ver 1.03

Il
#include "vector.h"
/I

/lImplementation of matrix class
1

matrix::matrix(int n) {

26

row=n;col=n;

mat=new vector*[row];
for (int i=0; i<row;i++)
mat[i]=new vector(col);

}

void matrix::initialization() {
for(int i=0;i<row;i++)
for(int j=0;j<col;j++)
mat[i]->vecl[j]=1;

}

matrix::matrix(int r, int c){
row=r;col=c;
mat=new vector*[row];
for (int i=0;i<row;i++)
mat[i]=new vector(col);

}

matrix::matrix(const matrix& m) {
row=m.row;col=m.col;
mat=new vector*[row];
for (int i=0;i<row;i++)
mat[i]=new vector(col);
for (i=0;i<row;i++)
*mat[i]=*m.mat][i];

}

matrix::~matrix() {
for (int i=row;i>0;i--)
delete mat[i-1];
delete mat;

}

matrix& matrix::operator=(const matrix& m) {
if (m.row !=row || m.col != col) {
for (int i=row;i>0;i--)
delete matfi-1];
row=m.row;col=m.col;
mat=new vector*[row];
for (i=0;i<row;i++)
mat[i]J=new vector(col);
Ylend of if
for (int i=0;i<row;i++)
*matfi]="m.mat]i];
return *this;

27

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

vector& matrix::operator{](int i) {
return *mat][i];

}

int matrix::getsize() {
return row;

}

int matrix::getrow() {
return row;

}

int matrix::getcol() {
return col;

}

void matrix::swap(int i, int j) {
vector *temp=mati];
mat[i]=mat[j];
mat[j]=temp;

}

void matrix::change(int num, int x, int y) {
int temp;
temp=mat[num]->vec|x];
mat[num]->vec[x]=mat[num]->vecly];
mat[num]->vec[y]=temp;

}

bool matrix::Isequal(const vector &v1,const vector &v2) {
for (int i=0;i<col;i++)
if (v1.vec]i] != v2.vec]i])
return 0;
return 1;

}

void matrix::transpose() {
int x=row; int y=col,
matrix mt(y,x); //create a transpose matrix;
for (int i=0;i<y;i++) {
for(int j=0;j<x;j++)
mt.mat[i]->vec][j]=mat[j]->vec]i];
}
}

bool operator==(const matrix &m1,const matrix&mz2){
if (m1.row 1= m2.row) || (m1.col = m2.col))
return false;
for (int i=0;i<m1.row;i++) {

28

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

vector v1(m1.mat[i],m1.row);vector v2(m2.mat[i],m2.row);
for(int j=0;j<m1.col;j++) {
if(v1.getvalue(j) != v2.getvalue(j))
return false;
}
}

return true;

}

ostream& operator<<(ostreamé& out,const matrix &m) {
for(int i=0;i<m.row;i++)
out<<*m.matfi];
return out;

}

int matrix::tightness() {
int sum=0;
for(int i=0;i<row;i++)
for(int j=0;j<col;j++)
sum=sum-+mat[i]->vec][j];/get the sum of all 1s in matrix
return (row*col-sum);//return the number of zeros

}

int matrix::Degree_Inter(vector °ree){

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

/lwe use the vector class object- degree to record the information of a matrix

int max_index=0;
for(int i=0;i<row;i++) {
for(int j=i+1;j<row;j++){
vector v1(mat[i],row);vector v2(mat[j],row);
if (degree.vec[i]==0X
max_index=max_index+1;
degree.vecli]=max_index;
}
if(Isequal(v1,v2)) {
if(degree.veclj]==0)
degree.vec[jl=max_index;
}
}
}
if(degree.vec[row-1]==0) {
max_index++;
degree.vec[row-1]=max_index;
}

return max_index;

}

void matrix::tight(double tight,unsigned seed) {
int tmp;

29

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

do{

int num1=random()% row;

int num2=random()% col;
mat[num1]->vec[num2]=0;
tmp=tightness();

twhile (tmp <int(tight*row*col));

}

void matrix::set_equal(int current_dg,int desired_dg, vector degree) {
int index=0;
int num1,num2,num3,num4;
int dif=current_dg - desired_dg;//we need dif pairs of vectors to be equal
int *A=new int[current_dg+1];
for(int i=1;i<=current_dg;i++)
AJi]=0;
//A[j] contains the number of elements whose value=j (j>=1)
for(int j=0;j<row;j++)
Aldegree.vec[j]]=A[degree.vec][j]]+1;
/to classify each vector into its responding equivalence class
int **B;
B=new int*[current_dg];
for(i=0;i<current_dg;i++)
Bli]=new int[A[i+1]];
for(j=1;j<=current_dg;j++) {
for (int k=0;k<row;k++) {
if (degree.vec[k]==j) {
B[j-1][index]=k;
index++;
}// end of if
} /lend of inter for
index=0;
}
if (dif>0) {//if the current degree > the desired degree, we need to set some pairs of vectors
/lto be equal.

/lto select any two vectors to be equal
for (i=0;i<dif;i++) {
num1=random()%current_dg;
num2=random()%current_dg;
num3=random()%A[num1+1];
num4=random()%A[num2+1];
if (num1>num2)
mat[B[num1][num3]]=mat[B[num2][num4]];
else
mat[B[num2][num4]]=mat[B[num1][num3]];
} /lend of for
[/[free memory
delete A;

30

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

delete []B;
}
else if (dif<Q){// if the current degree < the desired degree, we need reduce the number of
equivalent class
for(int i=0;i<(-1)*dif;i++) {
/ltake any one vectors out of the equivalent classes in random
num1=random()% current_dg;
while (A[num1+1] == 1)
numi=random()% current_dg;
num2=random()% A[num1+1];
num3=random()%col;
num4=random()%col;
int count=0;
while((count<=current_dg)&&(mat[B[num1][num2]]->vec[num3]==mat[B[num1][num2]]-
>vec[num4])) {
num3=random()% col;
num4=random()% col;
count++;
}
/lcout<<"ok"<<end|;
if (mat[B[num1][num2]]->vec[num3] != mat[B[num1][num2]]->vec[num4])
change(B[num1][num2],num3,num4);
else {
if (((random()% 10) /10.0)>0.5}
if (mat[B[num1][num2]]->vec[num3]==0)
mat[B[num1][num2]]->vec[num3]=1;
else
mat[B[num1][num2]]->vec[num3]=0;
}
else {
if (mat[B[num1][num2]]->vec[num4]==0)
mat[B[num1][num2]]->vec[num4]=1;
else
mat[B[num1][num2]]->vec[num4]=0;
}

}
Y/end of for

Ylend of if
else {//if dif=0, then do nothing
}
delete A;
delete []B;
Y/end of function

void matrix::;permute(int K)
int i,num, v1,v2 fail=0;
num=random()%(K*(K-1)/2);
int **V;
V=new int*[K];

31

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

for(i=0;i<K;i++)
V[i]=new int[K];
for(i=0;i<K;i++)
for(int j=0;j<K;j++)
VIil[i]=0;
for(i=0;i<=num;i++) {
vi1=random()%K;
v2=random()%K;
while(v1==v2 && fail<=num) {
vi=random()%K;
v2=random()%K;
fail++;
}
swap(v1,v2);
}
delete []V;

}

void matrix::need_change() {

matrix n(row);

for(int i=0;i<row;i++) {

for(int j=0;j<col;j++) {

if (mat[i]->vec[j]==1)
n.mat[i]->vec[j]=0;
else
n.mat[i]->vec[j]=1;
}
}
*this=n;

}

I
/I Implementation of Queue class
I

Queue::Queue() {
front=NULL;
rear=NULL;

} /l end constructer

Queue::~Queue() {
make_empty();
} // end destructor

Queue::Queue(const Queue& TheQ) {
if (TheQ.empty()) {
front=NULL,;
rear=NULL,; //original list is empty
}

32

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

else {
QueueNode *x=TheQ.front;// x is temporary pointer, which traverses TheQ.

/I copy the first Queuenode
front=new QueueNode;
front->element=x->element;
rear=front;// The new Queue just has a node.

Il copy the rest element of the list.

X=X->next;

while (x = NULL) {

rear->next=new QueueNode;
rear=rear->next;
rear->element=x->element;

X=X->next;

}

rear->next=NULL,;

}

} // end copy constructor
Queue& Queue::operator=(const Queue& TheQ) {

// Deallocated memory.
if (this = & TheQ)
make_empty();

[/l Special case, the Queue is empty

if (TheQ.front == NULL && TheQ.rear == NULL) {
front=NULL,;

rear=NULL; // The original list is empty

}

else {
QueueNode *x=TheQ.front;// x is temporary pointer, which traverses TheQ.

/I copy the first Queuenode
front=new QueueNode;
front->element=x->element;
rear=front;// The new Queue just has a node.

/I copy the rest element of the list.

X=X->next;

while (x = NULL) {

rear->next=new QueueNode;
rear=rear->next;
rear->element=x->element;

X=X->next;

}

rear->next=NULL;

33

}

return *this;
} // end assignment operator

//Uses stdlib.h and iostream.h

void Queue::enqueue(int newElement) {
/I creat a new node
QueueNode *newptr;
newptr=new QueueNode;

if (newptr I=NULL) { // check allocation and allocation successful,

/I set data portion of new node
newptr->element=newElement;

/l insert the new node

Il special case, the Queue is empty
if (front==NULL && rear==NULL) {
front=newptr;

rear=front;// The new Queue just has one node.

}

/l the queue is not empty
else {
rear->next=newptr;
rear=newptr;
}
}

else {

cout<<"The Queue is full, insuffucient memory. \n";
exit(1);

}

} /lend enqueue

/IUses stdlib.h and iostream.h
int Queue::dequeue() {

if (lempty()) { // the Queue is not empty.
int front_item=front->element;

/l special case: the Queue just has one node.
if (front==rear) {
delete front;

front=NULL,;

rear=NULL;

}

/l the queue has more than one node
else {

QueueNode *x=front;// x is temporary pointer.
front=front->next;

34

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

delete x;
x=NULL,
}
return front_item;
}
else {// the Queue is empty
cout<<"The Queue is empty. \n";
return 0;

}

} /l end dequeue

void Queue::make_empty() {
QueueNode *x=front; // x is temporary pointer, which traverses the Queue.
while (! empty()) {
/Il special case: the Queue just has one node.
if (front==rear) {
delete front;
front=NULL,;
rear=NULL;
}
/I the queue has more than one node
else {
front=front->next;
delete x;
x=front;
}/lend if
} // end while loop
} /lend make_empty

bool Queue::empty() const {
if (front==NULL && rear==NULL)
return true;
else
return false;
} / end empty

1
/limplementation of other functions in main program
1l
float ran1() {
static long int a=100001;
a=(a*random())%2796203;
return a;

}

float ran2() {
static long int a=1;
a=(a*32719+random())%32749;
return a;

35

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

}

float getseed() {
float x=(random()%10/10.0);
if (x>0.5)
return ran1();
else
return ran2();

}

void assign_CS(ofstream& fout,int C,int NX
inti, j,k,v1,v2;bool Connected,;
int size=N*(N-1)/2;
int *V=new int[size+1];//indicates which two variables are constrained
CS_vars *constraint=new CS_vars[C+1];//keep the record of two variables limited by a
constraint
int *visited=new int[N+1]; //to mark a variable if it is visited

do{
Connected=1;
for(i=1;i<=size;i++)
VI[i]=0;

/lassign a constraint to any two variables
for (k=1;k<=C;k++) {
int num=random()%(size+1-k);
int count=1;
bool finish=false;
for (j=1; (j<=size) && (!finish);j++) {
if ((count==(num+1)) && (V[j]==0)) {
VIil=1;
finish=true;
}
else if (V[j]==0)
count++;
} /lend of for
} /lend of for
int count=1;
int index=1;

/Ipick up the two constrainted variables, and store them.
for (i=1;i<=N;i++) {
for (j=i+1;j<=N;j++) {
if (V[index]==1) {
constraint[count].var1=i;
constraint[count].var2=j;
count++;
Ylend of if
index++;

36

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

}
}

/Il to check if the CSP is connected
Queue Q;
for(i=1;i<=N;i++)
visited[i]=0;
visited[1]=1;
Q.enqueue(1);
while (!Q.empty()) {
int v=Q.dequeue();
for(int j=1;j<=C;j++) {
v1=constraint[j].var1;
v2=constraint[j].var2;
if (v1==v && visited[v2]==0) {
Q.enqueue(v2);
visited[v2]=1;
}
if (v2==v && visited[v1]==0) {
Q.enqueue(v1);
visited[v1]=1;
}
} /lend of for
} /lend of while

/lif C<(N-1), it is impossible to be connected
if (C>=(N-1)){
/lif there exists any a variable that is not visited, then this CSP is not connected
for(i=1;i<=N;i++) {
if (visited[i]==0) {
Connected=0;
break;
}
} /lend of if
} /lend of if
} while (1Connected); //if not connected, then select againt
/Istore the connected CSP into output file
for (i=1;i<=C;i++) {
v1=constraint[i].var1;
v2=constraint[i].var2;
fout<<v1<<" "<<setw(3)<<v2<<" "<<setw(3)<<i<<end];
}
//deallocate memory
delete visited;
delete constraint;
delete V;

37

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

void usage(){
cout << "Usage: gen N K C | T outfile"<< end];
exit(1);

38

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

10 Appendix 2: example of an output file

CSP-10-5-13-3-0.36
10 5 -1

13
155
10110
11111
10110
10110
11000

255

11010
11011
10011
10011
10011

355

10011
10011
11110
10011
01101

455

11010
01011
01011
01011
11011

5565

01011
01011
01011
11110
10110

655

01110
01110
11101
11001
01110

755

39

01110
01110
01110
11100
11101
855

01011
01011
01011
11101
10110

40

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

Technlcal report, CONSYSTLAB-01-01
Zui, H., Beckwith, A.M., Choueiry, B.Y.

OO == 0hw

11 Biobliography

Freuder, E. C. and D. Sabin (1997). Interchangeability Supports Abstraction and Reformulation
for Multi-Dimensional Constraint Satisfaction. Proc. of AAAI-97, Providence, Rhode
Island.

41

	A Generator of Random Instances of Binary Finite Constraint Satisfaction Problems with Controllable Levels of Interchangeability
	

	Microsoft Word - TR-01-01.doc

