Sorghum Malting: Introduction, Objectives, and Scientific Principles

John R.N. Taylor

University of Pretoria, John.taylor@up.ac.za

Follow this and additional works at: http://digitalcommons.unl.edu/intsormilpresent

Part of the Agronomy and Crop Sciences Commons, Food Chemistry Commons, and the Food Processing Commons

http://digitalcommons.unl.edu/intsormilpresent/21

This Presentation is brought to you for free and open access by the International Sorghum and Millet Collaborative Research Support Program (INTSORMIL CRSP) at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in INTSORMIL Presentations by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
SORGHUM MALTING

INTRODUCTION, OBJECTIVES AND SCIENTIFIC PRINCIPLES

John R.N. Taylor

Dept. Food Science, University of Pretoria
South Africa
John.taylor@up.ac.za
WHAT IS MALTING

Limited germination of cereal grains in moist air under controlled conditions

Pneumatic Germination
Box type Sorghum Maltings
WHY MALT SORGHUM – PRODUCTS

Sorghum Malt for home brewing

For brewing Opaque beer, Lager and Stout

For “brewing” Malt (Malta) type non-alcoholic beverages

To produce Malt Extract for hot malted beverages, cereal and confectionery flavouring and colouring

For Breakfast Cereals

For “Power Flour” – enzyme active flour to “thin” infant porridges
Nigerian sorghum lagers, stout, malta and hot malt drink

Opaque beer

Sorghum malt

Cola flavoured malta

Sorghum malt breakfast cereal
WHY MALT – THE SCIENTIFIC REASONS

• To produce *Hydrolytic enzymes* (Amylases, Proteases, Lipases, Cell wall degrading enzymes, Phytase etc)

By means of these enzymes to:

1. *Modify* the sorghum grain structure during Malting
- So that the grain is more easily solubilised during the brewing process

By means of these enzymes to:

2. Produce *Simple Sugars* and *Amino Acids (FAN)* during Brewing
- The Yeast requires these for fermentation into Alcohol and Carbon dioxide
WHY MALT – THE SCIENTIFIC REASONS (CONTINUED)

3. By means of these enzymes to:
 Produce *Sugars* and *Amino acids* during Malting

- Sugars give malt its sweet taste

- When malt is dried at high temperature (*Kilned*) chemical reactions take place involving sugars and amino acids (*Maillard Browning* and *Caramelization*) to give malt its attractive brown colour and malty flavour
WHAT ARE ENZYMES

They are protein-based catalysts that carry out all the metabolic processes of living organisms.

By far the important malt enzymes are:

Amylases - Break down starch into its component simple sugars

Proteases – Break down proteins into their component amino acids – In brewing the these are referred to as Free Amino Acids (FAN)
SIMPLIFIED MALTA AND BEER BREWING PROCESS USING MALT

MALT + WATER

↓

MASHING

Malt amylases

↓

Malt Starch → Sugars

Malt proteases

↓

Malt Protein → FAN

↓

MALTA (NON-ALCOHOLIC)

Yeast enzymes

↓

Sugars → Alcohol + Carbon dioxide

FERMENTATION

→ **BEER**
STRUCTURE AND COMPOSITION OF THE SORGHUM GRAIN

STARCHY ENDOSPERM
- Source of starch for brewing

BRAN - rich in fibre
- in many sorghum varieties it is pigmented red

SCUTELLEM - Enzymes Migrate from here during gemination

GERM - Rich in oil

PLUMULE - Grows into the shoot

RADICLE - Grows into the root

TESTA - Contains tannins

In some sorghum varieties

STARCHY ENDOSPERM
- Source of starch for brewing

Corneous/Vitreous/Horny Endosperm

TESTA

Aleurone layer

Sub-aleurone

Floury endosperm

SCUTELLEM

Epicarp

Mesocarp

Cross cells

Tube cells

GERM

Floury endosperm

BRAN - rich in fibre
- in many sorghum varieties it is pigmented red
During Germination
Enzymes migrate from the Germ and partially Break Down the Endosperm Starch Granules and Protein Bodies and Matrix – An area of Modification can be seen

NB In Sorghum - Cell Wall break down seems to be Negligible – This is different from what happens in barley malting
STARCH MODIFICATION DURING GERMINATION
(As seen by Scanning Electron Microscopy)

- Grain cells
- Malt cell
- Protein matrix
- Cell walls
 (NB Cell walls Intact in malt)
- Starch granules

NB In malt - starch granules are full of holes
Where amylase has broken them down
PROTEIN MODIFICATION DURING GERMINATION
(As seen by Transmission Electron Microscopy)

Grain

AC = part of Aleurone Cell
SAC = part of Sub-Aleurone Cell
Pb = Protein body
Pm = Protein matrix

Malt

In Malt – Protein bodies and Protein matrix degraded away at edges, Where proteases have broken them down
STARCH HYDROLYSIS BY AMYLASES

Starch – polymer of 100s of glucose sugar units

There are millions of starch molecules in every starch granule

and

Millions of granules in every sorghum grain

and

Millions of sorghum grains in every brew
The are two major type of amylases in sorghum malt:

1. Alpha-amylase chops the starch molecule at random

These short chains of glucose units are called Dextrins
2. Beta-amylase chops up the dextrins into Maltose (2 glucose units)

-\text{G-G-G-G-G-G-G-G-G-} \downarrow

-\text{G-G} -G-G -G-G- G-G -G-

N.B. There is much less beta-amylase in sorghum malt than in barley malt

The joint activity of the alpha- and beta-amylase enzymes is referred to as Diastatic Power (DP)
There is essentially no amylase activity in unmalted sorghum grain.

Activity develops during germination and is affected by germination temperature and moisture – This shows beta-amylase activity but Alpha-amylase is similar
PROTEIN HYDROLYSIS BY PROTEASES

Proteins – polymers of 50+ amino acid units

There are many millions of protein molecules in each sorghum grain

Proteins are broken down by two main types of protease

1. Endoproteases – Chop at random to produce peptides (short chains of amino acids)

2. Exopeptidases – Chop up peptides to produce FAN
Sorghum malt is rich in FAN

– Particularly the external roots and shoots

However

FAN production during brewing, unlike starch hydrolysis, is very slow

- Major sorghum proteins are resistant to break down
DEVELOPMENT OF FREE AMINO NITROGEN DURING SORGHUM MALTING

There is very little FAN in unmalted sorghum grain. FAN is produced as a result of protease activity. FAN production is affected by Germination Temperature and Moisture – This shows the effect of Moisture. Optimum temperature is around 24°C, as for amylase activity.
PHENOLICS IN SORGHUM

Three different types of phenolics can be found in sorghum

1. Phenolic acids – simple chemicals found in all varieties of sorghums (in fact in all cereals)

Sorghum phenolic acids basic structures
2. Flavonoids

More complex chemicals
- Found in all types of sorghum, but concentration differs between varieties
- Flavonoids are pigments – so Red Sorghums contain much higher levels
- Concentrated in the Pericarp (bran layer)
3. Condensed Tannins (Proanthocyanidins)

Complex polymers of flavonoid units

- *Only found in Tannin Sorghums* (those with a Pigmented Testa layer)
- Colour of sorghum grain is a very poor guide as to whether it contains tannins
- N.B. Most Red varieties Do Not (as in previous slide)
- Some White varieties to do (as here)

Sorghum Condensed tannin

\[n = \text{up to approx. 20 units of flavonoids} \]
N.B. Tannins in malts made from Tannin Sorghums will inactivate malt enzymes when in brewing, unless tannins are inactivated.

Treatments to Inactivate tannins during malting:

- Steep grain in very dilute formaldehyde solution (formaldehyde is a hazardous chemical. Its use in foods is not allowed in many countries)

- Steep grain in dilute Sodium Hydroxide (Caustic Soda) Solution (preferred treatment)

Caustic steep of White Tannin Sorghum
Note: red phenolics extracted into Steep water
MOULDS AND MYCOTOXINS

The warm and damp conditions of sorghum malting encourage Mould (Fungal) growth

Some moulds can produce Mycotoxins (literally meaning “Fungal Toxins”)

Examples of Mycotoxins include:
Aflatoxins - produced by Aspergillus fungi
Fumonisins - produced by Fusarium fungi
Mycotoxins are extremely poisonous

They are Acute Poisons and Will cause Cancer with repeated exposure

Countries have very strict limits on Mycotoxins in Foods

South African Regulations
10 micrograms Aflatoxin per kg (10 parts per billion)
i.e. 10 milligrams per ton of sorghum malt
Would you eat this malt?

I understand that the company involved brewed beer with it
PREVENTING MOULD GROWTH IN MALTING

1. Don’t use mouldy grain
2. Clean grain properly – remove all broken grains
3. Only use grain that has high germinability (>90%)
4. Caustic steep - reduces fungal load on grain
5. Keep germination time as short as possible
6. Don’t stress the germinating grain (malt on previous slide got too dry and died, and then was watered)
7. Make sure that the Turners prevent the germinating grain from clumping
8. Make sure that the Turners are not crushing the sorghum grains
9. Steam clean the malting boxes after each malting
Which of these two sorghum maltings will produce the better quality malt?