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Domain-Wall Pinning at Inhomogenities of
Arbitrary Cross-Sectional Geometry

Ralph Skomski, Jian Zhou, Arti Kashyap, and David J. Sellmyer

Abstract—The coercivity of cellular Sm-Co based permanent
magnets is investigated by model calculations. The grain bound-
aries responsible for the pinning coercivity are modeled as planar
inhomogenities with arbitrary cross-sectional geometry. The calcu-
lation yields a physically transparent integral equation for the pin-
ning energy, whose derivative is the pinning force. The theory ratio-
nalizes experimental data on a semiquantitative level, but without
adjustable parameters, and bridges the gap between smooth con-
centration gradients and abrupt interfaces. Explicit results are ob-
tained for sinoidal profiles, for very thin grain boundaries, and
for profiles intermediate between attractive and repulsive pinning.
The corrections predicted by the present model elucidate the oc-
currence of coercivity when the main and grain-boundary phases
have the same wall energy.

Index Terms—Coercive force, magnetic anisotropy, magnetic
films, permanent magnets, samarium alloys.

I. INTRODUCTION

P INNING-TYPE Sm-Co magnets, first developed in the
1970s [1]–[3], [22], have attracted renewed attention as

permanent magnet materials for high-temperature applications
[4]–[12]. Industrial pinning-type Sm-Co magnets [1]–[3], [22]
consist of regions of the main phase (essentially )
surrounded by a grain boundary phase (essentially ).
The coercivity of these magnets reflects chemical composition
fluctuations, which translate into inhomogeneous profiles of
intrinsic properties. For example, a variation of the elemental
composition across grain boundaries has been observed by
energy-dispersive X-ray diffraction (EDX) microanalysis [5].

The leading contribution is usually from the anisotropy; ex-
change stiffness and spontaneous magnetization tend to be less
inhomogeneous. The pinning occurs at grain boundaries, and
the energy barriers responsible for coercivity are, in crude ap-
proximation, proportional to . Fig. 1
shows typical anisotropy profiles. Depending on whether the
anisotropy of the 1:5 grain-boundary phase is lower or higher
than that of the main 2:17 phase, one encounters attractive pin-
ning, as in Fig. 1(a), or repulsive pinning, as in Fig. 1(b).By ad-
justing the chemical composition [3] or, for some compositions,
the temperature [4], it is possible to tune the anisotropies of the
two phases.

A key problem is to derive the coercivity from the variation
of the micromagnetic parameters, that is, essentially, from the

Manuscript received October 16, 2003. This work was supported by AFOSR,
DOE, NSF MRSEC, the Keck Foundation, and CMRA.

The authors are with the Department of Physics and Astronomy and Center
for Materials Research and Analysis, University of Nebraska, Lincoln, NE
68588 USA (e-mail: rskomski@unlserve.unl.edu; jzhou@unlserve.unl.edu;
akashyap2@unl.edu; dsellmyer@unl.edu).

Digital Object Identifier 10.1109/TMAG.2004.832163

Fig. 1. Pinning energy at a grain boundary phase: (a) attractive pinning, (b)
repulsive pinning, (c) no pinning, and (d) “residual” pinning. K (x) reflects the
local chemistry.

anisotropy profiles. Various concentration profiles, such as slow
variations and steps, have been used in micromagnetic simu-
lations and in model calculations [9], [13], but these calcula-
tions assume simplistic concentration profiles and produce re-
sults that are difficult to compare with experiment. Here we con-
sider the coercivity caused by arbitrary anisotropy profiles.

II. MICROMAGNETIC BACKGROUND

Pinning is encountered in strongly inhomogeneous magnets
and means that the coercivity is determined by the interaction
of domain walls with structural inhomogenities [13]–[15]. As
in other areas of micromagnetics, the starting point of the con-
sideration is the field-dependent micromagnetic (free) energy
[16]–[18], which depends on the spontaneous magnetization

, on the exchange stiffness A, on the first uniaxial anisotropy
constant K, and on the unit vector determining the easy axis.
These parameters are all local parameters, because they depend
on the local chemistry, crystal structure, and crystallite orienta-
tion.

From the micromagnetic energy, the local magnetization
is obtained by tracing minima of E as a function of the

external field. When the spatial variation of the anisotropy is
sufficiently smooth, then the well-known equation [14]

(1)

can be used, where is the domain-wall energy
per wall area. Taking the derivative of this equation with re-
spect to x yields the , and the maximum
of H is the pinning coercivity. However, the applicability of
this macroscopic approach is limited, because the domain-wall
width is usually comparable to or larger than the thickness b
of the grain-boundary region. Note, furthermore, that the con-
sideration of the coercivity as a derivative of the micromag-
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netic free energy is a static approach. It does not account for
the finite-temperature dynamics of the coercivity, but the cor-
responding sweep-rate correction is small and can usually be
ignored [18].

Another simple expression exists for small planar inho-
mogenities with rectangular cross section. For an inhomogenity
of anisotropy and thickness b, the pinning
coercivity is

(2)

where is the Bloch-wall width of the main
phase and . In the context of magnetostrictive
anisotropy, (2) was first derived in the 1930s [14].

III. CALCULATION AND RESULTS

For the calculation, we assume that the grain boundary lies
in the y-z plane. In the limit of weak inhomogenities, the do-
main-wall fine structure remains unperturbed. The wall is then
described the position of its center, and the pinning energy is
obtained by straightforward integration.

The spin structure of a Bloch wall in the y-z plane is

(3)

where and is the
wall-width parameter of the unperturbed or “rigid” wall [17].
Using (3) to calculate the micromagnetic energy for an arbitrary
anisotropy profile yields

(4a)
By exploiting and

, we can also write

(4b)
These two equations are equivalent but reflect slightly different
interpretation of domain-wall pinning. In (4a), pinning is in-
terpreted as an interaction of a magnetization gradient with an
anisotropy inhomogenity, whereas in (4b) the magnetization in-
teracts with the anisotropy gradient.

From (4), the pinning field is obtained by evaluating the
derivative of E with respect to . Fig. 2 shows the re-
sulting coercivity for a sinoidal variation of the anisotropy,

. The coercivity exhibits a
maximum when the wavelength of the inhomogenity becomes
comparable to the wall width. For long-wavelength inhomogen-
ities the pinning force is small, because wall-energy gradient

goes to zero. In the opposite limit of rapidly oscillating
inhomogenities, the pinning force is reduced due to averaging
over a distance of order . In a slightly different context [13],
[17], this regime is known as weak pinning. The coercivity
maximum occurs at , and the corresponding
coercivity is 1.41 . Since the domain-wall widths
of and are of the order of 5 nm,

Fig. 2. Pinning due to a sinoidal anisotropy inhomogenity of wavelength �.

Fig. 3. Energy landscape describing the pinning due to a well-localized
planar defect. The functional structures of the curves are 1 � tanh (x =� )
for lowest-order pinning (dashed line) and � d tanh(x =� )=dx for
second-order pinning (solid line).

very smooth (sinoidal) concentration profiles maximize the
coercivity when the the modulation wavelength is about 8.2 nm.

A relatively simple solution is also obtained for very thin
grain boundaries of arbitrary cross section. This case is only oc-
casionally encountered in practice, but it provides insight into
nanoscale deviations from the macroscopic picture of (1). The
pinning potential is obtained by expanding the hyperbolic tan-
gents in (4) into powers of the distance between wall and pinning
inhomogenity. The problem then reduces to the consideration of
the moments characterizing the pinning strength of
the inhomogenity.

For one encounters attractive or repulsive
pinning, depending on whether the sign of the zeroth moment
is negative or positive, respectively. For , as in
Fig. 1(c) and (d), higher moments become important. The first
moment, , vanishes for symmetric grain boundaries,
but there is some residual pinning associated with the second
moment . This explains why profiles such as that
in Fig. 1(d) yield nonzero coercivity, in spite of the fact that
the average anisotropies of the main and grain-boundary phases
are equal. The second-moment pinning contribution scales as

, strongly decreasing with grain-boundary thickness b.
When b is comparable to or larger than , higher-order mo-
ments must be included, but the qualitative picture remains the
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same. Based on these considerations, we estimate that the coer-
civity in the regime of Fig. 1(d) is 6 ( 3) times lower than those
in regimes of Fig. 1(a) and (b), in fair agreement with experi-
ment.

Fig. 3 shows the pinning energies for (dashed
line) and (solid line). It is important to note that
the shape of the energy landscape reflects the domain-wall fine
structure but is independent of the details of K(x). This is con-
trast to the limit of smooth extended boundaries, where (1) ap-
plies and details of K(x) are important.

IV. DISCUSSION AND CONCLUSIONS

The present theory relies on three main assumptions. First,
we have assumed that the pinning reflects inhomogenities of the
anisotropy constant. This is a fair assumption, because other in-
homogenities, such as exchange inhomogenities, are often less
pronounced and tend to have a disproportionally small effect on
micromagnetic properties [4], [19]. Second, we have made the
physically transparent but idealized assumption of a planar do-
main wall. Domain-wall curvature is generally nonnegligible,
but their discussion [20], [21] goes beyond the scope of this
paper.

Finally, we have assumed that the magnitude and extension
of the inhomogenity are small. This assumption is unrealistic
in many cases but yields only moderate corrections. Extended
defects, as well as defects where is comparable to , mean
that the domain-wall structure adjusts to the K(x) profile and the
“rigid-wall” approximation of Section III becomes inadequate.
For example, in (4) can no longer be considered as a
constant. It can be shown that this effect reduces the coercivity,
and in the long-wavelength limit ( in Fig. 2) the reduction
is by a factor of two.

In conclusion, we have developed a semiquantitative theory
to describe pinning at planar inhomogenities of arbitrary
cross section. These inhomogenities reflect details of the
microchemistry, such as the degree of interdiffusion, and are
an essential aspect of the coercivity of pinning-type Sm-Co
magnets. Starting from an approximate but closed integral,
explicit solutions have been obtained for sinoidal profiles of
different periodicities and for well-localized planar defects. In
the case of well-localized defects, the pinning is conveniently
described in terms of a moments expansion of the anisotropy
inhomogenity. The zeroth moment is essentially the average
anisotropy difference between the grain-boundary and main
phases and determines whether the pinning is repulsive and
attractive. Higher-order moments are important when the main

and grain-boundary phases have the same average anisotropy
and then yield a residual coercivity.
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