5-13-2002

A class of boron-rich solid-state neutron detectors

B.W. Robertson
University of Nebraska-Lincoln

Shireen Adenwalla
University of Nebraska-Lincoln, sadenwalla1@unl.edu

A. Harken
University of Nebraska-Lincoln

P. Welsch
University of Nebraska-Lincoln

Jennifer I. Brand
University of Nebraska-Lincoln, jbrand1@unl.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/physicsdowben

Part of the Physics Commons

http://digitalcommons.unl.edu/physicsdowben/21

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Peter Dowben Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
A class of boron-rich solid-state neutron detectors

B. W. Robertson, a) S. Adenwalla, A. Harken, P. Welsch, J. I. Brand, and P. A. Dowben
Departments of Mechanical Engineering and of Physics and Astronomy, and Center for Materials Research and Analysis, University of Nebraska–Lincoln, Lincoln, Nebraska 68588

J. P. Claassen
Veterans Administration Medical Center, Omaha, Nebraska 68105

(Received 2 January 2002; accepted for publication 13 March 2001)

Real-time solid-state neutron detectors have been fabricated from semiconducting boron–carbon alloys, deposited by plasma-enhanced chemical vapor deposition. Single neutrons were detected and signals induced by gamma rays were determined to be insignificant. The source gas closo-1,2-dicarbododecaborane (ortho-carborane) was used to fabricate the boron–carbon alloys with only the natural isotopic abundance of 10B. Devices made of thicker boron–carbon alloy layers enriched in 10B could lead to increased detection efficiency and active diodes could use the inherent micron scale spatial resolution, increasing the range of possible applications. © 2002 American Institute of Physics. [DOI: 10.1063/1.1477942]

There are really only four elements suitable for forming solid-state semiconductor neutron detectors—B, Cd, Gd, and Li. Lithium semiconductors exist (LiInSe_2, LiInS_2, and LiZnP) but are difficult to fabricate reliably into devices and are very difficult materials with which to work. Gd conversion-layer-based Si diodes have been fabricated and proposed for neutron detection, but are unlikely to be particularly stable. Cadmium zinc telluride has yielded thermal neutron detection and the Cd neutron capture cross section is high, but the neutron capture produces such high energy γ-rays (>0.5 MeV) that the detectors must be large in order to detect these γ-rays efficiently.

Boron absorbs neutrons efficiently and should yield an excellent solid-state detector if a suitable semiconductor material is found. Recently, a very robust, structurally forgiving boron-rich semiconductor—boron carbide prepared by chemical vapor deposition (CVD) methods—has successfully been used in heterojunction diodes, transistors, and tunnel diodes. Here we demonstrate that this semiconductor yields single neutron detection and forms the basis for a whole class of solid-state neutron detectors.

The potential of boron-rich semiconductors as solid-state neutron detectors has received serious consideration. Boron phosphide (BP) heterojunction diodes with silicon were successfully tested as alpha radiation detectors, but failed to work as neutron detectors. Boron carbide (B$_2$C) was successfully used as a neutron detector based upon resistivity changes resulting from increased lithium doping, as were (111) BP wafers. Lithium is a result of 10B(n,α)7Li neutron capture reactions

$$^{10}\text{B} + n \rightarrow ^{\text{Li}} \text{(0.84 MeV)} + ^{\text{He}} \text{(1.47 MeV)}$$

$$\text{+ } \gamma \text{(0.48 MeV)}$$

$$^{10}\text{B} + n \rightarrow ^{7}\text{Li} \text{(1.02 MeV)} + ^{\text{He}} \text{(1.78 MeV)}$$

that have 94% and 6% probability, respectively, and yield the large kinetic energies listed in parentheses. Boron has also been considered for conversion coatings with silicon (Ref. 19) and GaAs (Ref. 20) diodes, but the attainable efficiencies are low (<5%) because of the limited range of the 7Li and 4He ions in any coating.

For the heterojunction diode used in the present work, boron carbide films with composition near B$_2$C were deposited on n-type Si(111) (resistivity ~ 30 ohm cm) in a custom designed parallel plate 13.56 MHz rf plasma-enhanced CVD reactor. The Si(111) substrate surfaces were prepared by Ar$^+$ ion sputtering in the plasma reactor. Closo-1,2-dicarbododecaborane (ortho-carborane, $\text{C}_2\text{B}_{10}\text{H}_{12}$) was the single molecular source of B and C for growing the boron carbide.

The current–voltage (I–V) curve of the particular diode used in this work is shown in Fig. 1. The boron carbide layer was 276±5 nm thick, as measured by grazing incidence x-ray reflectivity. At the reverse bias of 18 V applied during neutron detection, the diode leakage current was ~0.16 μA.

![FIG. 1. I–V curve of the B–C/n–Si diode used as the neutron detector, and, inset, the schematic diode geometry. Note the low leakage current. The arrow indicates the reverse bias used in neutron detection.](image-url)
Assuming a band gap of 0.5 to 1 eV in the semiconducting boron carbon alloy,\(^6\,^{21}\) the highly energetic Li and He ions should produce at least \(10^5\) electron–hole pairs per neutron capture. A suitable bias applied to the diode resulted in a depletion region whose electric field enabled substantial charge collection before the electrons and holes recombined.

The heterojunction diode had a detection area \(\sim 1\) mm\(^2\) and was wired in the “mesa” geometry shown inset in Fig. 1. The neutron source was a 20 kW TRIGA (training, research, isotopes, general atomic) reactor (Veterans Administration Medical Center, Omaha, Nebraska) with a maximum thermal neutron flux of \(1.5 \times 10^{11}\) n cm\(^{-2}\) s\(^{-1}\), based on calculations for the fission chamber. The diode, surrounded by a grounded electrostatic shield, was connected to a charge to voltage preamplifier (Amptek, model A250) and pulse counting electronics (Canberra, Digital Signal Processor model 9600) and inserted beside the reactor core in a location usually employed for neutron activation of materials. During neutron detection, a 6 m long triaxial cable connected the diode and preamplifier and so the associated electrical noise was not optimal. The digitized preamplifier output was processed using a digital trapezoidal filter with rise and fall times of 0.4 and a 0.1 \(\mu\)s flat top that responds essentially only to signals occurring on a sub-\(\mu\)s time scale.

Figure 2 contains pulse height spectra, truncated to exclude most electronic noise pulses, for \(<1\%\), 15.5\%, and 55\% of maximum, as measured by the fission detector. The peak positions and all other aspects of the shape of the spectra are constant for reactor powers from \(-0.4\%\) to 92\%, i.e., over more than 2 orders of magnitude of neutron flux. A simple momentum conservation calculation for the \(^{10}\)B\((n,\alpha)\)\(^{7}\)Li reaction indicates that the directions of the Li and He ions are close to 180\(^\circ\) apart. The range of each ion is \(\sim 1\) mm in solid materials, comparable with our measurement at a beam port of a second TRIGA reactor 5 cm from the diode. In addition, the constancy of spectral shapes in Fig. 2 over such a wide range of detection rates implies that the spectral features do not contain radiation-generated “pulse pile-up” artifacts, that could arise if the arrival rate of these pulses were too high.

Neutron-generated pulses of up to a few tens of mV were measured at the output of the preamplifier as a result of the \(1\) pF charge-to-voltage conversion response of the preamplifier, implying that \(\sim 2 \times 10^5\) electron–hole pairs created following the \(^{10}\)B\((n,\alpha)\)\(^{7}\)Li reaction were collected in some cases.

Total neutron detection rates (Fig. 3) were calculated by integrating the pulse height spectra over all pulse heights above channel 500 (Fig. 2), after subtracting the pulse height spectrum obtained at zero reactor power. From \(-0.4\) to at least 55\% reactor power, these detection rates scale linearly with power and hence with neutron flux incident on the detection area.

The detection efficiency for an ideal 276 nm thick B–C detector is \(1.3 \times 10^{-3}\). Based on the following assumptions: the \(^{10}\)B proportion of B in this film is the natural 19.8\% isotopic abundance; the B to C ratio is the same as in orthoboracene; the cross section for neutron capture by \(^{10}\)B is 2125 barns (that of a neutron with 1 Å wavelength); and the detected charge pulses include all electron–hole pairs that could result from neutron capture by \(^{10}\)B. The neutron detection efficiency determined from the data in Fig. 3 is \(\sim 5 \times 10^{-5}\), for the correlation between reactor power and nominal incident neutron flux indicated. From additional experiments at a beam port of a second TRIGA reactor (Kansas State University), made with more accurate measures of neutron capture reactions, the highly energetic Li and He ions are close to 180\(^\circ\) apart. The range of each ion is \(\sim 1\) mm in solid materials, comparable with our measurement at a beam port of a second TRIGA reactor 5 cm from the diode. In addition, the constancy of spectral shapes in Fig. 2 over such a wide range of detection rates implies that the spectral features do not contain radiation-generated “pulse pile-up” artifacts, that could arise if the arrival rate of these pulses were too high.

Neutron-generated pulses of up to a few tens of mV were measured at the output of the preamplifier as a result of the \(1\) pF charge-to-voltage conversion response of the preamplifier, implying that \(\sim 2 \times 10^5\) electron–hole pairs created following the \(^{10}\)B\((n,\alpha)\)\(^{7}\)Li reaction were collected in some cases.

Total neutron detection rates (Fig. 3) were calculated by integrating the pulse height spectra over all pulse heights above channel 500 (Fig. 2), after subtracting the pulse height spectrum obtained at zero reactor power. From \(-0.4\) to at least 55\% reactor power, these detection rates scale linearly with power and hence with neutron flux incident on the detection area.

The detection efficiency for an ideal 276 nm thick B–C detector is \(1.3 \times 10^{-3}\). Based on the following assumptions: the \(^{10}\)B proportion of B in this film is the natural 19.8\% isotopic abundance; the B to C ratio is the same as in orthoboracene; the cross section for neutron capture by \(^{10}\)B is 2125 barns (that of a neutron with 1 Å wavelength); and the detected charge pulses include all electron–hole pairs that could result from neutron capture by \(^{10}\)B. The neutron detection efficiency determined from the data in Fig. 3 is \(\sim 5 \times 10^{-5}\), for the correlation between reactor power and nominal incident neutron flux indicated. From additional experiments at a beam port of a second TRIGA reactor (Kansas State University), made with more accurate measures of neutron capture reactions, the highly energetic Li and He ions are close to 180\(^\circ\) apart. The range of each ion is \(\sim 1\) mm in solid materials, comparable with our measurement at a beam port of a second TRIGA reactor 5 cm from the diode. In addition, the constancy of spectral shapes in Fig. 2 over such a wide range of detection rates implies that the spectral features do not contain radiation-generated “pulse pile-up” artifacts, that could arise if the arrival rate of these pulses were too high.

Neutron-generated pulses of up to a few tens of mV were measured at the output of the preamplifier as a result of the \(1\) pF charge-to-voltage conversion response of the preamplifier, implying that \(\sim 2 \times 10^5\) electron–hole pairs created following the \(^{10}\)B\((n,\alpha)\)\(^{7}\)Li reaction were collected in some cases.

Total neutron detection rates (Fig. 3) were calculated by integrating the pulse height spectra over all pulse heights above channel 500 (Fig. 2), after subtracting the pulse height spectrum obtained at zero reactor power. From \(-0.4\) to at least 55\% reactor power, these detection rates scale linearly with power and hence with neutron flux incident on the detection area.
tron flux and with a lower noise \(\sim 12\) cm diode to preamplifier connection, the efficiency was found to be at least \(\sim 24\%\) of ideal, or \(\sim 3.2 \times 10^{-4}\). The difference between measured and ideal efficiencies is primarily attributable to uncertainty in the neutron flux calibration and in the energy distribution of the neutrons (and so in the effective capture cross section). Undercounting because of incomplete collection of the energy of products of the \(^{10}\text{B}(n,\alpha)^{7}\text{Li}\) reactions, as discussed herein, has a slight effect, that will further be reduced by changes that improve capture efficiency and reduce electronic system noise (now equivalent to \(< 10^4\) electrons).

We find the B–C/n-Si diodes are quite radiation hard: even a thermal neutron fluence of \(\sim 1 \times 10^{15} \text{ n cm}^{-2}\) caused \(< 5\) times increase in leakage currents measured after irradiation; and no significant additional increase was observed during exposure to the high radiation field within the reactor.

Given that diodes can be made with B–C layers 50 to 100 \(\mu\text{m}\) thick and with depletion layers several \(\mu\text{m}\) thick,\(^7\) the single (thermal) neutron detection efficiencies are conservatively expected to reach \(80\%\) in future devices made with 100 \(\mu\text{m}\) thick B–C layers containing the \(^{10}\text{B}\) enrichment (\(> 80\%\)) expected from available enriched carboranes. Such devices should simultaneously have low \(\gamma\)-ray detection efficiency—under 1% or 0.01% for all \(\gamma\)-ray energies above 100 keV or 500 keV, respectively—but high neutron detection efficiencies, assured by the use of \(^{10}\text{B}\) as the dominant atomic species. The enormous effective gain we determined for neutron capture by \(^{10}\text{B}\) in the B–C semiconducting layer of the detector at only 18 V bias is essentially noise free and is comparable with the gain of intensifiers and photomultipliers used in scintillation-based detectors and imagers, but is attained without their bulk, mass, or power requirements.

Efficient, thin B–C diodes could provide high-resolution neutron time-of-flight measurements. Used with B–C based high-temperature electronics,\(^7,10\) the B–C based neutron detection systems are expected to be particularly applicable in harsh environments since the B–C/n-Si diodes are radiation hard and conventional \(\text{B}_2\text{C}\) is a mechanically hard, refractory ceramic. The B–C devices may even be fabricated on metal substrates to form successful diodes and transistors\(^2\) and fabricated to provide position resolution, in principle, below a few \(\mu\text{m}\).\(^8\) The latter suggests the possibility, too, of array detectors and imagers. These, and detectors that use charge division, could provide position sensors for scattering experiments.

In summary, we have clearly demonstrated the single-neutron detection potential of a class of neutron detectors based on semiconducting boron–carbon semiconductors (near \(\text{B}_2\text{C}\)). Isotopically enriched in \(^{10}\text{B}\), these have the potential to simultaneously exceed the limits of other B-rich semiconductor detectors, including B–P, and to avoid the limitations of currently recognized detectors.

This work was supported by the Nebraska Research Initiative and the University of Nebraska. The authors are grateful to the Veterans Administration Medical Center, Omaha, and to M. Whaley, Kansas State University, for generous access to the TRIGA reactors.