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Temperature dependence of the training effect in a Co/CoO exchange-bias layer
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Lincoln, Nebraska 68588-0111, USA
�Received 16 February 2005; revised manuscript received 5 April 2005; published 3 August 2005�

The temperature dependence of the training effect is studied in a Co/CoO exchange-bias bilayer and a
phenomenological theory is presented. After field cooling the sample to below its blocking temperature, the
absolute value of the exchange-bias field decreases when cycling the heterostructure through consecutive
hysteresis loops. This decrease is known as the training effect and is studied in the temperature range 5�T
�120 K. An implicit sequence, which has been recently derived using the Landau-Khalatnikov approach of
relaxation, fits the respective data set for each individual temperature. The underlying discretized dynamic
equation involves an expansion of the free energy in powers of the interface magnetization of the antiferro-
magnetic pinning layer. The particular structure of the free energy with a leading fourth-order term is derived
in a mean-field approach. The explicit temperature dependence of the leading expansion coefficient explains
the temperature dependence of the training effect. The analytic approach is confirmed by the result of a best fit,
which condenses the data from more than 50 measured hysteresis loops.

DOI: 10.1103/PhysRevB.72.054408 PACS number�s�: 75.60.�d, 75.70.�i, 75.70.Cn

Nonequilibrium systems provide some of the most chal-
lenging problems of modern statistical mechanics.1,2 Relax-
ation processes and driven systems represent the major
branches of nonequilibrium phenomena. Their complexity
becomes apparent when comparing the complete character-
ization of an equilibrium steady state with its corresponding
dynamical problem. The former is determined by the few
variables that span the state space while temporal derivatives
and gradients are inherent to the full dynamical problem.
This paper considers the training of the exchange-bias �EB�
effect in the framework of relaxation phenomena. An ana-
lytic theory is presented and certain model properties of this
nonequilibrium problem of statistical physics are stressed.

EB can take place in magnetic heterostructures where an-
tiferromagnetic �AF� and ferromagnetic �FM� thin films are
in close proximity.3 It is induced by field cooling the hetero-
system to below the blocking temperature, TB, where EB sets
in. Usually TB�TN holds, where TN is the Néel temperature
of the AF pinning layer. The lateral length scale of the AF
order is one of the crucial control parameters of EB.4–6

The most striking feature accompanying the EB effect is a
shift of the FM hysteresis loop along the magnetic-field axis
by the amount �0HEB. The absolute value of this EB field
decreases monotonically when cycling the heterostructure
through consecutive hysteresis loops. This training effect is
quantified by the �0HEB versus n dependence, where n labels
the number of loops cycled after initializing the EB via field-
cooling. A more appropriate, although not common, term for
this gradual degradation of the EB field might be aging in-
stead of training. The strength of this effect depends on the
magnetic properties of the AF pinning layer of the
heterostructure.3,7–10 There is a general qualitative consensus
that the training effect reflects the deviation of the AF spin
structure from its equilibrium configuration. The gradual de-
crease of �0HEB with increasing loop index is a macroscopic
fingerprint of configurational rearrangements of the spin
structure towards equilibrium. The latter can be literally vi-
sualized in the case of Monte Carlo simulations showing the

evolution of the AF domain state for consecutively cycled
hysteresis loops. Qualitatively similar results have been
found for the domain state model where the random field
domains of a diluted AF pinning layer carry metastable net
interface magnetization11 and for a defect-free spin-flop
model where EB at a compensated interface originates from
spin-flop transitions in the grains of a polycrystalline AF
pinning layer with randomly oriented uniaxial anisotropies.12

Moreover, a relaxational approach towards the training effect
is supported by the observation of thermally activated tem-
poral relaxation of the EB on laboratory time scales.13,14

Recently, based on T=0 considerations, Hoffmann
pointed out that multiaxial magnetic anisotropy gives rise to
a multivalley energy landscape which in turn explains the
pronounced training effect between the first and second hys-
teresis loop of various systems and its absence for uniaxial
anisotropic pinning layers.15 It is a challenging task to find
analytic descriptions of the training effect in view of the
variety of models which still compete to elucidate the micro-
scopic origin of the stationary exchange-bias effect.16–20 The
recent Stoner-Wohlfarth-type considerations are convincing,
but limited to an explanation of ��0HEB�n=1�−�0HEB�n
=2���0 or zero in the case of multi- or uniaxial anisotropy.
This suggests that a complete description of the training ef-
fect is a thermodynamic problem. In addition, the absence of
a well established microscopic theory of the EB effect favors
a phenomenological approach which is independent of the
microscopic details.

A nonstationary EB effect indicates that the spin structure
of the AF/FM heterostructure deviates from its equilibrium
configuration. Recently, we derived the implicit sequence

�0�HEB�n + 1� − HEB�n�� = − ���0�HEB�n� − HEB
e ��3 �1�

from a dicretized Landau-Khalatnikov �LK� equation which
describes the relaxation of the AF interface magnetization in
an EB heterostructure towards the equilibrium value giving
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rise to the equilibrium EB field �0HEB
e .21 Note that � is the

essential temperature-dependent parameter, which we are go-
ing to derive subsequently.

Reference 21 points out that Eq. �1� approaches the em-
pirical but well established 1/�n dependence of �0HEB ver-
sus n in the limit n�1.22 Here we sketch an alternative proof
of this convergence using a first-order series expansion of
HEB�n+1�, which becomes a reasonable approximation for
n�1 with increasing accuracy for increasing n. Substituting
the Taylor series into Eq. �1� and integrating the resulting
first-order differential equation yields �0�HEB�n�−HEB

e �
=1/ ��2��n� for n�1. Note that Eq. �1� is more appropriate
in describing the training effect than the power law, because
the former is derived from a well-founded dynamic equation
and allows us to include the description of the first loop at
n=1. Equation �1� has been successfully applied to the train-
ing effect observed in Ref. 23 in NiO/Fe. It represents so far
the only analytic approach to the complete description of
�0HEB versus n for n�1.

Equation �1� originates from the LK first-order differential

equation 	ṠAF=−�
F /�SAF. Here 	 is a phenomenological
damping constant, 
F is the part of the free energy driving

the relaxation, and ṠAF is the derivative of SAF with respect to

time. The discretization of the equation is realized when ṠAF
is replaced by �SAF�n+1�−SAF�n�� /�, where � is a character-
istic time within the experimental time window of the mea-
surement of the loop. This discretization is in accordance
with the experimental fact that the crucial part of the relax-
ation is triggered by the hysteresis loop of the FM top layer
via exchange coupling with the AF pinning layer �see Figs.
1�c� and 1�d��. In this sense, the discrete nature of the modi-
fied LK equation is how the ferromagnet and its coupling JEB

with the antiferromagnet enter the theory. There is virtually
no relaxation during the time between two successive
hysteresis-loop runs since the heterostructure is weakly
pinned in a metastable spin configuration.21 It is this discrete
nature of the training effect which makes it unique for the
investigation of relaxation phenomena. Experiments on re-
laxation phenomena deal very often with problematic time
scales when typical short spin-flip times or ultraslow spin
glass dynamics are involved, for instance. In the case of the
training effect, the relaxation process is triggered by the re-
spective hysteresis loop and, hence, the time scale is to a
large extent controlled by the experimentalist.

The relation between the AF interface magnetization and
the EB field is given by the Meiklejohn-Bean expression
according to �0HEB=−JEB�SAFSFM� / �tFMMFM�, which de-
scribes explicitly the dependence of the EB field on a phe-
nomenological coupling JEB between the FM and AF inter-
face magnetization SFM and SAF, respectively, while tFM and
MFM are the thickness and the saturation magnetization of
the FM layer.24,25 In the LK approach, the rate of relaxation
is determined by the gradient of the free energy with respect
to the relaxing parameter. This force drives the system to-
ward equilibrium or a state which corresponds to a pro-
nounced local minimum of the free energy. LK dynamics
corresponds to overcritical damping, which is reasonable for
the training effect since the relaxation of the interface mag-
netization is slow in comparison with the microscopic spin
fluctuations.26 Based on the heuristic argument of large spa-
tial spin-spin correlations and, more importantly, the experi-
mental fact that no exponential decay of the EB field is found
in the limit n�1, we concluded recently that the leading
term of a free-energy expansion is of the order ��Sn�4, where
�Sn=SAF�n�−SAF

e and SAF
e =limn→
SAF�n� is the AF interface

magnetization in the limit of large n. As shown explicitly in
Ref. 21, Eq. �1� is a direct result of this structure of the free
energy. The parameter � which enters Eq. �1� is proportional
to the leading expansion coefficient of the free energy.21

It is the major objective of this paper to derive the free
energy and the temperature dependence of its leading expan-
sion coefficient in a mean-field approximation. This result
allows us to understand the temperature dependence of the
training effect in terms of �=��T�. In the framework of the
fluctuation theory of phase transitions, it is a standard ap-
proach to expand the free energy with respect to the primary
order parameter � in the vicinity of the equilibrium order
parameter �e�0.27 This ansatz is in contrast to the usual
Landau expansion, which holds close to the critical tempera-
ture where �e	0. We follow here ideas similar to the fluc-
tuation approach in order to tackle the EB problem because
EB takes place at T�TB, where the pinning layer is in its AF
phase. The primary order parameter �= �m1−m2� /2 de-
scribes the AF order of the pinning layer, while the magne-
tization m= �m1+m2� /2 of the AF layer becomes a secondary
order parameter. Here, m1,2 are the normalized sublattice
magnetizations, which are assumed to possess Ising symme-
try for simplicity. Eliminating the primary order paramter
yields the free energy in terms of m while �SAF�m links this
expansion to the EB effect. At T�TN, the free energy has
pronounced minima at ±�e. The field-cooling process selects

FIG. 1. �Color online� �a� shows a Landau-type free energy
�solid line� of the AF pinning layer at T�TB and the harmonic
approximation �dashed line� in the vicinity of �e. �b� shows a sketch
of the temporal evolution of the AF interface magnetization with
increasing number n of cycles. �c� and �d� display sketches of the
spin structures of the AF/FM bilayer after the second �n=2� and
third �n=3� loop, respectively. Dashed vertical lines indicate AF
domain walls. Parallel spin pairs at the interface �horizontal solid
line� are highlighted by a gray background. The AF interface mag-
netization couples with the FM top layer via the exchange JEB.
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one dominant registration of the AF order parameter. Hence
it is reasonable to expand the free energy according to


F = ��T��� − �e�2, �2�

where ��T� is a temperature-dependent expansion coeffi-

cient. Terms of higher order are neglected. With �= b̃�e
2, Eq.

�2� is consistent with the Landau expansion 
F= ã�2 /2

+ b̃�4 /4 for T→TN. Figure 1�a� shows the Landau-type free
energy of the AF pinning layer below the blocking tempera-
ture and the idea of the harmonic approximation in the vi-
cinity of the equilibrium order parameter. In addition, Fig.
1�b� shows a sketch of the evolution of the AF interface
magnetization with increasing loop index n. There is virtu-
ally no relaxation between two successive hysteresis loops.
Relaxation is triggered by the hysteresis loop of the ferro-
magnet via the coupling with the AF pinning layer. This
triggering process gives rise to a steplike decrease of the AF
interface magnetization SAF. A microscopic view of the spin
structure of the bilayer is presented in Figs. 1�c� and 1�d�
after the second �n=2� and third �n=3� loop, respectively. It
points out that AF domains create a magnetic moment m
within the layer which in particular contributes to the AF
interface magnetization SAF. The latter is reduced by the con-
tribution of one domain wall when comparing the spin struc-
ture at n=3 with the spin structure at n=2. Mean-field theory
provides a relation between the primary and secondary order
parameters � and m.28 In zero applied and zero staggered
field there is no induced magnetization and, hence, we obtain
m=0 in equilibrium. The second implicit equation of the
self-consistent set of coupled mean-field equations reads28

� =

sinh
2��J + J��
kBT

�
cosh
2m�J� − J�

kBT
� + cosh
2��J + J��

kBT
� , �3�

where J and J� are related to the number of nearest and next
nearest neighbors z and z� and the nearest and next-nearest-

neighbor interactions J̃ and J̃� according to J=zJ̃ and J�

=zJ̃�. J̃�0 and J̃��0 describe AF nearest and next nearest

interaction, respectively, while J̃�0 and J̃��0 are FM inter-
actions.

Note that this unusual sign convention of the exchange
constants has been introduced by Kincaid and Cohen in order
to deal with metamagnetic systems where AF and FM inter-
actions compete.28,29 In the framework of the mean-field ap-
proximation, the critical temperature depends on J and J�
according to TN= �J+J�� /kB while details of the lattice sym-
metry are neglected. Inspection of Eq. �3� shows that � is an
even function of m and, hence, a series expansion of � with
respect to m in the vicinity of the equilibrium value m=0
reads

� = ��0� +
1

2

�2�

�m2m2 + ¯ , �4�

where ��0�=�e. Substitution of the expansion �4� and �SAF

�m into Eq. �2� yields


F � 
�e� �2�

�m2

m=0

�2

��SAF�4. �5�

The proportionality between �SAF and m takes into account
that a residual interface magnetization SAF

e remains in the
limit of a large number, n, of cycles and m→0. The experi-
mental results on Co/CoO, which will be discussed subse-
quent to the general theoretical considerations, show that the
training effect at various constant temperatures 5�T
�120 K is successfully fitted by Eq. �1�, where � varies
systematically with temperature. The temperature depen-
dence of � is given in the framework of our above theory by
the leading coefficient of the proportionality �5� and reads

��T� � 
�e�T�� �2��m,T�
�m2 


m=0
�2

. �6�

Hence, an explicit expression �=��T� requires the calcula-
tion of ��2��m ,T� /�m2�m=0 and an approximation for �e�T�
which holds in a wide temperature range. The second deriva-
tive of � with respect to m is calculated via twofold implicit
differentiation of Eq. �3�. Taking into account that
��� /�m�m=0=0 in accordance with Eq. �4� yields
��2��m ,T� /�m2�m=0 as a function of �e. With this and pro-
portionality �6�, one obtains

��T� = C� �e�T�tanh
TN �e�T�
T

�
T�T�1 + cosh
2TN �e�T�

T
�
 − 2TN��

2

. �7�

Here C becomes a free fitting parameter which summarizes
various phenomenological parameters while �e�T� is given
by the solution of Eq. �3� for m=0. At T�TN, where �e�T�
→1, �e�T�	 tanh�TN /T� is the first-order approximation of
Eq. �3�. In the limit T→TN, where �e�T�→0, the equivalent
approximation reads �e�T�	�T /TN��3�TN−T� /TN, which
converges into the Landau-type approximation for T /TN
→1. Replacing � on the right side of Eq. �3� by the Landau
approximation yields

�e�T� 	 tanh�TN

T
�3�TN − T�/TN
 , �8�

which is a useful explicit second-order approximation of
�e�T� for all 0�T�TN. Combining Eqs. �7� and �8� provides
an explicit fitting function for the experimental values of �.
Taking into account that the “critical temperature” or more
precisely the temperature of vanishing EB is the blocking
temperature, TB, and, hence, replacing TN by the value TB
=186 K reported in Ref. 30, Eq. �7� becomes a one-
parametric fitting function.

The experimental data are obtained from an
Al2O3/Co/CoO heterostructure, which has been fabricated
by dc sputtering of Co on top of the cleaned a plane of a
single-crystal plate of Al2O3. Before sputtering, the chamber
was pumped down to a base pressure of 1.3�10−7 mbar.
Sputtering took place at an Ar pressure of 6.7�10−3 mbar
after presputtering the Co target for 10 min. The Co film was
deposited at a rate of 	0.2 nm/s for 
t=500 s.
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Figure 2 shows the results of the x-ray �−2� analyis of
the substrate �a�, and the total heterostructure before �b� and
after annealing �c�. The latter heat treatment took place under
vacuum condition of 2.7�10−7 mbar at T=1000 K for 
t
=4 h. The x-ray data are obtained with the help of a com-
mercial diffractometer �Rigaku D/Max-B� at Cu K� radiation
with a characteristic wavelenglth of �	0.1544 nm. Figure
2�a� shows the �−2� scan of the crystalline Al2O3 substrate.
The polished surface of the substrate platelet of d=0.5 mm
thickness corresponds to an a-plane cut in accordance with
the strong �h00� reflexes for h=2 and 4 and a weaker reflex
for h=3. Before annealing �Fig. 2�b��, there is no clear sig-
nature of the sputtered Co film. However, after annealing
�Fig. 2�c��, two additional peaks are observed which are as-
signed to �111� and �200� peaks of Co in a fcc structure. The
latter result can be compared with the structural analysis of
epitaxially grown Co on top of the a plane of an Al2O3 single
crystal.30 Here, neutron reflectometry shows a pronounced
Co fcc �111� peak, but no indication of a �200� peak. This
structural difference alters the properties of the magnetic an-
isotropy. In contrast to the strong planar anisotropy in the
epitaxially grown samples of Ref. 30, the sputtered samples
show virtually no in-plane anisotropy. The x-ray data in Fig.
2�c� show no signature of a CoO surface layer which, how-
ever, reveals its presence in the magnetic data via the EB
effect.

Figure 3 shows the ratio mr /ms of the remanent magnetic
moment mr and the saturation moment ms for various angles
0���2� between the applied planar magnetic field and a
fixed direction in the sample plane. Within the uncertainty
level of the scatter of the data, there is no systematic varia-
tion in mr /ms versus �, and, hence, there is no indication for
in-plane anisotropy. The solid line represents the best linear
fit to the data set and indicates small random scatter around

the constant value mr /ms=0.22. The inset of Fig. 3 shows a
typical magnetic hysteresis of the heterostructure measured
at room temperature with the help of an alternating gradient
force magnetometer. In accordance with the diamagnetic sus-
ceptibility of the Al2O3 substrate, a linear background has
been determined and subtracted for each curve before ana-
lyzing the mr to ms ratio.

In accordance with the absence of significant anisotropy
within the plane, low-temperature hysteresis loops are mea-
sured for a fixed but arbitrary direction of the magnetic field
in the sample plane. Superconducting quantum interference
magnetometry �Quantum Design MPMS XL-7� has been
used in order to measure the consecutively cycled magnetic
hysteresis loops. Each set of 6–10 consecutive loops is mea-
sured after field cooling the sample from T=320 K to the
target temperatures T=5, 25, 50, 65, 75, 80, 105, and 120 K
in the presence of an applied planar magnetic field of �0H
=0.3 T. The strength of this cooling field guaranties satura-
tion of the Co film at a minimal perturbation of the natural
AF CoO pinning layer. The training effect at fixed tempera-
ture is analyzed with the help of a best fit of Eq. �1�. Tech-
nical details of the nonlinear fitting procedure of the implicit
sequence to the �0HEB versus n data are described in Ref.
21.

Figure 4 exemplifies the training effect �0HEB versus n
for T=25 and 75 K �open circles and diamonds, respec-
tively� and the corresponding results of the best fits of Eq.
�1� �solid squares and triangles, respectively�. The data show
the well known enhanced training effect between the first
and the second loop as described in Ref. 15, for instance. The
two-parametrer fits yield � and �0HEB

e , which in turn are
used to calculate the theoretical data from the implicit se-
quence �1�. The inset of Fig. 4 shows �0HEB

e versus T, where
�0HEB

e is the extrapolation of �0HEB�n� for n→
. Inciden-
tally, we found a change of the sign of the EB field to posi-

FIG. 2. �−2� x-ray analysis of the Al2O3 substrate �a�, the
Al2O3/Co/CoO heterostructure as prepared �b�, and after annealing
for 4 h at T=1000 K �c�. All scans show the dominant �200� and
�400� peaks of the single-crystalline Al2O3 substrate and its weaker
�300� peak. There is no significant additional peak in the as-
prepared structure �b�. After annealing �c� two additional peaks are
observed and assigned as �111� and �200� peaks of fcc Co.

FIG. 3. Ratio mr /mS of the remanent and the saturation mag-
netic moment for various in-plane orientations 0���2� of the
magnetic field. Data are determined from hysteresis loops of
Al2O3/Co/CoO measured by alternating gradient force magnetom-
etry at room temperature. The inset shows a typical loop. Dashed
lines indicate the remanent and the saturation magnetic moment,
respectively.
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tive values at T=150 K very similar to the behavior observed
in Ref. 30. However, the tiny absolute value of the EB field
did not allow us to perform a reliable analysis of the training
effect. It is surprising that we could, however, measure and
analyze training effects for absolute values �0HEB�0.5 mT
�see Fig. 4, right axis�. Here it is crucial to apply the same
method of analysis for all hysteresis loops.

A brief description of the procedure of analysis is there-
fore in order. A linear fit of the magnetization data at 0.51
��0H�0.6 T of the down branch of the loop has been used
to determine the linear background involved in the SQUID
measurements. Note that the background is temperature-
dependent and has been determined in a separate procedure
for each loop. After background subtraction, we determined
the coercive fields �0Hc1,2 from linear fits, involving data
points in a symmetric interval of width 
��0H�=30 mT in
the vicinity of the intercepts of the loop with the field axis.

Figure 5 summarizes the results obtained from subsequent
fitting procedures of Eq. �1� to all data sets �0HEB versus n
involving more than 50 hysteresis loops. Circles show the
resulting � versus T behavior, which quantifies the tempera-
ture dependence of the training effect. The line represents the
one parametric best fit of Eq. �7� to the data and is a strong
confirmation of the qualitative correctness of the theory out-
lined above. The resulting fitting parameter reads C=1.11
�1012 K4/ �mT�2. Its large value becomes reasonable, when
considering limT→TB

��T� /C=9/ �16TB
4�=4.7�10−10 K−4 for

TB=186 K. Note that large values of � refer to small abso-
lute training effects where the absolute strength of the train-
ing effect is quantified according to �0�HEB�n=const�
−HEB

e �. This becomes obvious when rearranging Eq. �1� into
�= ��0HEB�n�−�0HEB�n+1�� / ��0HEB�n�−�0HEB

e �3. A large
value of � requires a small denominator, which means small
deviations from the equilibrium EB field. In accordance with
this tendency, the absolute training effect has to become zero
above TB, where the EB effect is zero for all n. On the other
hand, small values of � correspond to large absolute training

effects which are, however, spread over a larger number of
cycles. The limiting value �=0 at T=0 requires a particular
discussion. Since �0HEB�n�−�0HEB

e remains finite for all n,
�=0 corresponds to a frozen system where �0HEB�n�
−�0HEB�n+1�=0. Due to the lack of thermal excitations, no
change of the EB field is thermally assisted and the system is
unable to reach the equilibrium value �0HEB

e on an experi-
mentally accessible scale of finite n. This tendency of flat-
tening of �0HEB vs n for decreasing temperature is suggested
already in Fig. 4 when comparing the curvature of �0HEB
versus n at T=75 and 25 K, respectively.

In summary, a phenomenological theory of the training
effect in exchange-bias heterostructures is presented. It pro-
vides an analytic description of its thermal evolution. The
theory is applied to the training effect in a magnetic Co/CoO
heterostructure. Individual training effects are measured by
consecutive cycling hysteresis loops at various constant tem-
peratures 5�T�120 K. The success of the thermodynamic
approach is a strong confirmation of a recently derived im-
plicit sequence, which allows us to describe �0HEB versus n
for n�1 in various systems. It is a future challenging task to
find a microscopic theory of the training effect. Even if it
turns out that there is no simple unique microscopic theory
for the EB effect, training might be a universal property. The
predictions made here and in the recent publication21 allow
for further experimental tests. For instance, the relation be-
tween the antiferromagnetic interface magnetization and the
EB field suggest that � increases with the square of the fer-
romagnetic layer thickness and decreases inversely propor-
tional to the square of the ferromagnetic interface magneti-
zation. Both parameters are experimentally accessible.
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FIG. 4. Training effect �0HEB versus n for T=25 �open circles�
and 75 K �diamonds� and the corresponding results of the best fits
of Eq. �1� �solid squares and triangles, respectively�. Note the dif-
ferent scales for T=25 and 75 K, assigned by arrows. Inset shows
the equilibrium EB field �0HEB

e versus T which results from fitting
of Eq. �1� to various data sets at 5�T�120 K.

FIG. 5. � vs T obtained from fitting procedures of Eq. �1� to
�0HEB vs n data for temperatures 5�T�120 K. The line is a one-
parameter best fit of Eq. �7� to � vs T.
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