4-2016

COMPUTATIONAL MODELING INTERVENTION: USING DYNAMICAL MODELS TO TEACH COMPLEX BIOLOGICAL PROCESSES

Audrey J. Crowther
University of Nebraska - Lincoln, audrey.crowther@huskers.unl.edu

Tomáš Helikar
University of Nebraska-Lincoln, thelikar2@unl.edu

Nicholas Galt
University of Nebraska-Lincoln, ngalt2@unl.edu

Joseph Dauer
University of Nebraska-Lincoln

Heather Berganr
University of Nebraska-Lincoln

Follow the author's additional works at: http://digitalcommons.unl.edu/ucarereresearch

Part of the Bioinformatics Commons, Biology Commons, Educational Methods Commons, and the Science and Mathematics Education Commons

Crowther, Audrey J.; Helikar, Tomáš; Galt, Nicholas; Dauer, Joseph; Berganr, Heather; and Kowal, Bryan, "COMPUTATIONAL MODELING INTERVENTION: USING DYNAMICAL MODELS TO TEACH COMPLEX BIOLOGICAL PROCESSES" (2016). UCARE Research Products. 18.
http://digitalcommons.unl.edu/ucarereresearch/18

This Poster is brought to you for free and open access by the UCARE: Undergraduate Creative Activities & Research Experiences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UCARE Research Products by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Authors
Audrey J. Crowther, Tomáš Helíkar, Nicholas Galt, Joseph Dauer, Heather Bergan, and Bryan Kowal
COMPUTATIONAL MODELING INTERVENTION:
USING DYNAMICAL MODELS TO TEACH COMPLEX BIOLOGICAL PROCESSES
Audrey Crowther, Tomáš Helikar, Nicholas Galt, Joseph Dauer, Heather Berganr, Bryan Kowal

Introduction
This study utilizes the interactive modeling program, Cell Collective, to simulate biochemical and biological pathways typically seen in college-level science courses. These models offer an alternative method for students trying to grasp complicated biological pathways. Rather than memorizing static, 2-dimensional diagrams from textbooks and lecture slides, students are able to visualize the interconnectedness of pathways by constructing, simulating and interacting directly with them. The goal for these models is to make the molecular mechanisms presented in class easier for students to comprehend by adding an interactive and dynamic aspect to learning.

Available Courses
Cell Collective offers a wide array of published, highly comprehensive models that can be implemented in introductory biology, immunology, and cancer biology courses (Figure 2).

Research Objectives
The purpose of this research is to determine how our computational modeling intervention (CMI) can be implemented in the classroom to engage students and effectively help students understand complex biological processes. In order to determine this, we need to ask the following:

• Does the CMI impact classroom assessment results?
• Is the CMI practical/accessible for students without a computer science background?
• What aspects of the CMI are better teaching tools than traditional teaching methods?

Further, this study will investigate how to accurately measure the difference in teaching effectiveness between the CMI and traditional methods. This will require cross-examining personal experience surveys with assessment results. How to compare these two aspects is a vital step in analyzing the data and drawing conclusions as to the effectiveness of computational modeling with Cell Collective in a classroom setting.

Modules in Progress
• Positive and Negative Feedback Loops
• Cell Cycle Regulation

Preliminary Data
During the Spring semester of 2016, the Positive and Negative Feedback Loops module (Figure 3), was piloted in a classroom setting. Students gave the following feedback:

• Students found the module enjoyable
• Students believed they had a better understanding of positive and negative feedback loops after completing this module
• Module was lengthy

Future Endeavors
• Finalization grading rubric for better data analysis.
• Pilot Cell Cycle Regulation module.
• Finalize Positive and Negative Feedback Loops module for implementation in LIFE 120 classes.
• Add more models and learning modules to Cell Collective.
• Create new and engaging ways for students to interact with Cell Collective models.

Acknowledgements
Special thanks to Dr. Nick Galt, who was an invaluable asset in creating and editing these modules. Thank you to my advisor, Dr. Tomas Helikar, who gave me this research opportunity. Thanks to Dr. Joseph Dauer and Heather Berganr who aided in editing my modules.

Figure 1. Cell Collective Modeling Program Home Page
www.cellcollective.org

Figure 2. Models Available Through Cell Collective

Figure 3. Positive and Negative Feedback Loops Module: A. MAPK Pathway; B. Simulation of MAPK in Cell Collective

The University of Nebraska–Lincoln is an equal opportunity educator and employer.