Recovery of Lake McConaughy

Joanell Mueller

University of Nebraska-Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/archthesis

Part of the Architecture Commons

http://digitalcommons.unl.edu/archthesis/22

This Article is brought to you for free and open access by the Architecture Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses from the Architecture Program by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Recovery of Lake McConaughy
Recovery of Lake McConaughy
A Terminal Project
by Joanell Mueller

Mentor Jeffrey L. Day

College of Architecture
University of Nebraska

May 2006
This terminal project investigates the ephemeral qualities of site as a response to the interventions of humans harnessing nature. An environment untouched and/or unaffected by humans does not exist. This project examines that idea by recovering an environment by responding to the ephemeral qualities and exposing its true nature. It begins with the understanding that the site is both the venue and the medium for architectural design. Following concepts and procedures based in landscape theory, it conceives the site as a process, and through research and site analysis, design redefines the architectural notions of program and spatial/formal composition.

The ephemeral landscape of Lake McConaughy is the site for this project. This man-made lake generates a high level of activity in a rural area with existing uses that are either dependent on or improved by the conditions of the lake. Within the past year declining water levels (reaching historically low levels) have become a state-wide concern. Thorny political issues surrounding the possibility of the reservoir running dry include water rights for farmers, hydroelectricity from the nearby plant, environmental concerns and businesses dependent on the lake and tourism for survival.

For the schematic phase of this project, I have designed an open-ended program and a series of site interventions. The program is divided into four categories defined by activities dependent on the lake, those improved by the lake, peripheral to the lake, and independent of the lake. The site interventions (spatial prototypes) helped me develop a process for creating space that responds to both a loose program and the ephemeral site. Throughout the site these interventions create spaces that interpret the unique characteristics of the site including the ephemeral qualities, the public image of the man-made lake as a pristine landscape designated as a state park, and the blurring relationship between nature and “second nature”.

1
Within the framework of site as a process, the primary determinant of this project is the notion that a completed project is an open-ended project, adapting and transforming with an ever-changing environment. The ultimate goal specific to this case study is to meet the proposed objectives and design at a larger scale individual spaces that are adaptable to various activities, maintaining a high level of activity custom to the area, and interpret the ephemeral nature of the site creating awareness for users.

Project Objectives:

• To design an environment that responds to the ephemeral qualities of the site

• To activate the site by designing spaces that create opportunity for various programs

• To generate awareness of ambiguities between nature and second nature

Second nature is a term borrowed from William Cronon in Nature’s Metropolis. Essentially, first nature is a realm where species are affected mainly by their immediate habitat, where second nature is a realm of distant forces that put pressure on species and alter their landscape. Examples of this in relation to Lake McConaughy include the Jeffersonian Grid and the use and storage of water from the North Platte River.

Left: Dried boat ramp located at Spillway Bay, Lake McConaughy, 2005.
The ephemeral landscape of Lake McConaughy is the site for this terminal project. Lake McConaughy is a man-made lake that generates a high level of activity in a rural area. The surrounding services are determined by the desired activities of the users; however, their ability to function is dominated by the changing conditions of the lake. Within the past year the water levels at Lake McConaughy have become a state-wide issue. The lake has recently reached historically low levels, which suggest the possibility of going dry. Political issues surround such a possibility, including water rights for farmers, hydroelectricity for the nearby plant, environmental concerns, and businesses dependent on the lake and tourism for survival.

Lake McConaughy is located in western Nebraska and is predominately connected to the small town of Ogallala with a population near 5,000. Ogallala is approximately eight miles south of the lake and located along Interstate 80. The community is the main service provider and the most dependent on the lake for business. Other surrounding communities include Lewellen, Keystone, Arthur, Oshkosh, and Lemoyne. The closest largest metropolitan area is Denver, which is over 200 miles away.

During the summer tourist levels are recorded to skyrocket over one million visitors annually. That number is on a steep incline due to low water levels. Several businesses surrounding the lake and some surrounding communities have closed due to lack of business. The predominant built environments around the lake include Martin Bay, Kingsley Bay, Admiral's Cove, Van's Lakeview and Marina Landing. Typically features found in these areas are dried up boat ramps. The boat ramps physically make the ideal water level and symbolize the dependence of the built environment on the lake and it water level.

Due to the nature of the lake being artificial, the water levels are maintained by man; however, during harsh conditions, such as the present drought,
nature takes control illustrating the constant battle between man and nature. Typically, the lake is viewed as a picturesque natural environment. It is designated as a state recreational park by the state of Nebraska and maintained by the Nebraska Game and Parks Commission. With this title the site protected under certain jurisdiction; however when critical examined an irony arises. The artificial landscape is protected by the state so it can be maintained as a pristine nature landscape.

The lake was initially created for irrigation purposes for central Nebraska farmers and to fuel a hydroelectricity plant. Kingsley Dam, one of the largest earth dams in the world, was built between 1936 and 1941 as part of the New Deal project. The dam is 162 feet tall, 3.1 miles long and 1,100 feet wide at its base. Lake McConaughy is the largest reservoir in Nebraska with 35,700 surface acres and 100 miles of shore line creating the nickname Big Mac. At full storage the lake is over 20 miles long, 4 miles wide and 142 feet deep at the dam. At present time the lake is recorded to be less than 12 miles long and only 25 percent full.

Kingsley Dam, the Kingsley Hydroelectricity Plant, and the Morning Glory, a mammoth structure used to let water of the lake, are the main visual icons of the lake. In addition, Nebraska Game and Parks and Central Nebraska Public Power & Irrigation District headquarters are located at this site.

Central Nebraska Public Power and Irrigation District (CNPPID) are the official owners of the reservoir. As known as Central, it was created in 1933 as part of a political subdivision of the State of Nebraska organized under public power and irrigation district laws. It is responsible for delivering irrigation water to more than 113,000 acres on the south side of the Platte River between North Platte and Minden and providing supplemental water from Lake McConaughy, its main storage reservoir, to irrigation projects serving more than 110,000 acres along the North Platte and Platte Rivers.

Continued in this section are images illustrating present conditions found through the site. It continues with diagrams representing characteristics and information relevant to the specific site and its existing conditions, and concludes with a couple analytical diagrams initializing site analysis.
Recovery of Lake McConaughy

Background

Dried up boat ramp at Spillway Bay

Hydro plant located on Lake Ogallala north side of Kingsley Dam

Dried up bay with typical growth pattern of indigenous plants. Kingsley Dam along with Outlet Tower and Morning Glory in background.

East side of Kingsley Dam facing Lake Ogallala
Recovery of Lake McConaughy

Street signs in Lemoyne

Admiral's Cove lodging

Houseboat stranded at Admiral's Cove,

Structure located along main road in Lemoyne
Exposed foundation of the original Lemoyne decommissioned due to building of Kingsley Dam.

Precast concrete Tetrahedral (known as 'jacks' by locals), are primarily used to hold the face of the dam, but can be found scattered throughout the site taking on various uses, i.e. seating, designate parking, control areas of access, etc.

Image exhibits erosion of surrounding environment and an altered perception of scale.

Detailed image of limestone indigenous to the area.
Recovery of Lake McConaughy

Tractors at Van’s Lake View used to launch and retract boats due to dried up boat ramps.

Cement “billboard” located at Martin Bay advertising the park’s motto. At average water level (3245 ft above sea level) the structure is surrounded by water.

Dilapidated housing located along Highway 91 north of Lake McConaughy.

West side of Kingsley Dam face Lake McConaughy. Rocks marked with red paint depict maximum water level along dam (3270 ft above sea level).
Meeting of North Platte River with Lake McConaughy at about half the length of the lake (water level 3216 ft above sea level)

Run away streams found throughout the site

View of North Platte River from Highway 62 bridge located west of Lake McConaughy

Sunset at Lake McConaughy October, 2005
Initial site plan of Lake McConaughy diagramming four categories of water levels:

- **Maximum:** 3270'
- **Average:** 3245'
- **Minimum:** 3200'
- **Bottom:** 3163'

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Average</th>
<th>Minimum</th>
<th>Bottom</th>
</tr>
</thead>
</table>

Recovery of Lake McConaughy
Initial areas of interest depict various environments and landscapes throughout the site.
Upon initial research, two sets of precedents were distinguished, lake precedents and concept precedents. Both were influential in design and theory of the project.

Lake precedents were chosen for their individual conditions and collectively for their demonstration of issues surrounding man-made reservoirs. Precedents included Lake Mead with Hoover Dam, Lake Powell with the Glen Canyon Dam, the Flaming Gorge Reservoir, and the Three Gorges Dam and reservoir. These precedents were examined comparatively by size of reservoir, size and type of dam, initial reasons for construction, annual recreational levels, secondary uses and services, and existing site conditions.

Concept precedents were chosen for their atypical use and understanding of site. Examples include the earthworks of Robert Smithson and Michael Heizer, Igualada Cemetery by Enric Miralles, and Tschumi’s Parc de la Villette. Studying and analyzing these works expanded an understanding for the preconceived notions of site, program, and landscape. Throughout the design process they continuously influenced and inspired the design and design process.

Precedent research was initialized by a four thousand mile plus road trip throughout the western United States. Starting at Lake McConaughy and traveling to destinations including the Smithson’s Spiral Jetty, the Salt Flats, San Francisco, Lake Mead and Hoover Dam, the Grand Canyon, several national parks and forests, Lake Powell and the Glen Canyon, the road trip was eye opening and the initial creative fuel for the project.
“Entropy is evolution in reverse.”
-Robert Smithson

“Program is viewed as the engine of a project, driving the logic of form and organization while responding to the changing demands of society.”
-Alex Wall

“A landscape is both venue (site) and material (medium) of artistic expression.”
-James Corner

“A landscape is a space deliberately created to speed up or slow down the process of nature...it represents man taking upon himself the role of time.”
-J.B. Jackson
Nature is in constant flux - - man-made environment in flux with indigenous elements.

-J. Mueller

"...is not equivalent to "land" or "environment", landscape is less a quantifiable object than it is an idea, a cultural way of seeing."

-James Corner

"Connecting the visual language of art and design to the physical language of the land and its use."

-LANDARTS 306090

"A great pleasure arose from seeing all those incoherent structures. This site gave evidence of a succession of man-made systems mixed in abandoned hopes."

-Robert Smithson
"Size determines an object, but scale determines art."
- Robert Smithson

"The term, RECOVERY, implies that something once lost, devalued, forgotten, or misplaced has been found again, retrieved, and bought forward with renewed vitality. Also, implied are repossession, taking control, and the regaining of health and normalcy, as in a rightful return."
- James Corner

"Looking into it is like looking into space"
- Tour of the Monuments of the Great American Void, CLUI

"The work is not put in a place, it is the place."
- Michael Heizer
The methodology for this project was self-evolving. In other words, no specific methodology was set upon the start of the project. It was a process of trial and error, not always being clear about what was successful or not until further analysis.

The project started with an initial stage of research. This research was primarily conducted in the summer of 2005, before the official start of the project in the fall semester. This research is presented in the pervious Background section. Areas of research included specific site information of Lake McConaughy, selected lake precedents, and concept precedents. This research was analyzed and illustrated through diagrams to provide and a collection of complete and working information to contribute to the next stage of program and conceptual design.

Early in the project, a challenge was found in the extreme proportions of the site. For example, to show 6 inches in the z axis of the site, a model of over 500 feet would have to be produced. In order to overcome this obstacle early models were built in abstract form and then evolved into scaled models with an exaggerated z axis.

During the fall semester, the idea of the project was continuously worked and reworked. The idea statement, this terminal project investigates the ephemeral qualities of site as a response to the interventions of humans harnessing nature, was not fully developed until the end of the semester. Before then (and even still to this day) the idea of ephemeral landscape and how designers address and/or not address it is up for debate. But through the examination of this project, a new understanding for site as a process and the redefined notions of program and spatial composition is developed. After the research phase, the conceptual and program phase are best illustrated through a series of site interventions produced through physical
The interventions were abstract in nature but did address typical environments found throughout Lake McConaughy. These locations were chosen through an extensive process of site analysis. Through this extensive process, a large site plan was developed and is the most iconic image of the project (the final version of the site plan is on page 60).

The second half of the project was dominated by the value of these specific interventions and their locations, along with clarifying the adopted term “open program”. The final production was a series of physical models made at an 1/8” = 1'-0” scale. The models maintained a diagrammatic style illustrating most clearly their spatial conditions, individually and collectively. Each intervention was labeled with a series of possible programs all while maintaining ephemeral qualities accomplished through modeling and diagramming.

Overall, the final methodology utilized for this project was very physical in terms of modeling. The use of working diagrams continuously presented information critical and analytically creating a process that was self evolving.
Recovery of Lake McConaughy

Methodology

Intervention 1: Influenced by Michael Heizer’s Double Negative

Intervention 2: Amphitheater

Intervention 3: Influenced by erosion and geology found throughout the area.

Intervention 4: Cave
Intervention 5: First modeling of "fingers" an extending of water back into bay during low water levels creating peninsulas

Intervention 6: Derived from the thought of flipping geologies on opposite sides of the lake

Intervention 7: First modeling of extending boat ramps creating axes across the site

Intervention 8: Influenced by a drawing by Robert Smithson addressing geology only north side of the lake
Second round of interventions start to address more specific site conditions

Intervention 9: First modeling of Lemoyne site suggesting an extended boat ramp creating a visual axis across the site connecting the old town of Lemoyne with its present location.

Intervention 10: First intervention addressing overlay of section grid

Intervention 11: Developed model of 'fingers' intervention
Third round of modeling identifies interventions to specific site locations. Models are scaled 1:1 in x and y axes and 10x’s in z axis due to proportions of the site.
Recovery of Lake McConaughy

<table>
<thead>
<tr>
<th>JANUARY</th>
<th>FEBRUARY</th>
<th>MARCH</th>
<th>APRIL</th>
<th>MAY</th>
<th>JUNE</th>
<th>JULY</th>
<th>AUGUST</th>
<th>SEPTEMBER</th>
<th>OCTOBER</th>
<th>NOVEMBER</th>
<th>DECEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPENDENT</td>
<td></td>
</tr>
<tr>
<td>BOATING</td>
<td></td>
</tr>
<tr>
<td>FISHING</td>
<td>HYDROPOWER</td>
<td></td>
</tr>
<tr>
<td>IRRIGATION</td>
<td>SWIMMING</td>
<td></td>
</tr>
<tr>
<td>IMPROVED</td>
<td></td>
</tr>
<tr>
<td>HOUSING</td>
<td>GAS STATION</td>
<td></td>
</tr>
<tr>
<td>CONVENIENCE STORE</td>
<td>RESTAURANT</td>
<td>SAFETY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAMPING</td>
<td>CAMPGROUNDS</td>
<td></td>
</tr>
<tr>
<td>BIRDWATCHING</td>
<td></td>
</tr>
<tr>
<td>PERIPHERAL</td>
<td></td>
</tr>
<tr>
<td>MULTI-USE BUILDING</td>
<td>CONVENTION CENTER</td>
<td>RETIREMENT COMMUNITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESORT</td>
<td>PLACE OF WORSHIP</td>
<td>MUSEUM</td>
<td>SHOPPING MALL</td>
<td>PARK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL DEVELOPMENT</td>
<td>MILITARY</td>
<td>INDUSTRIAL SITE</td>
<td>AMPHITHEATER</td>
<td>GOLF COURSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDEPENDENT</td>
<td></td>
</tr>
<tr>
<td>FARMING</td>
<td>RANCHING</td>
<td></td>
</tr>
<tr>
<td>HUNTING</td>
<td></td>
</tr>
</tbody>
</table>
Recovery of Lake McConaughy

Methodology

Top: Diagrams illustrating 'existing' water levels and 'manipulated' separated by maximum, average, minimum, and bottom.

Bottom: Seasonal water pattern from data collected in 2004.

"RIVER"

The river is the one constant through the entire site; however, the meeting of river to lake is unclear. By strictly shaping the meander, the connection is emphasized, and a clear edge is formed at low water levels providing opportunity for peripheral activities.
The original town of Lemoyne was decommissioned in 1929. It moved a mile north out of the river valley possessing an elevated view of its drowned site. During low water levels, traces of "Old Lemoyne" become visible.

The relationship between Lake Ogallala and Lake McConaughy is the most recent area of analysis. Water levels of "Lake Mc" constantly change while levels of Lake Ogallala remain moderately constant. Their relationship and the ability to control water (hydraulics, evaporation, etc.) are an integral part for the remainder of this project.
Recovery of Lake McConaughy

Methodology

“GATEWAY”

The Gateway acts as a passage from the dependent area to rest of the site. The form is visible except during maximum water levels (3270’), allowing lake to appear “untouched”. It frames the edge of the original river, emphasizing the form and connecting points through the site.

“FINGERS”

Manipulation of contours allows water to reach back of bays, activating boat ramps during low water levels. At high levels, lake appears most natural. As lake levels, constructed contours are visible, exposing man-made qualities.
The final design for this project was the primary focus of the spring semester. Upon comments from the Faculty Panel Review, the challenge of the project was to clearly demonstrate what and where interventions are taking place and the level of design contribution made to the site. The methodology as mention prior led itself to the final design of a series of physical models portraying specific interventions, their relationships with localized site conditions, overall site conditions, and the notion of an open program.

The models were at an $\frac{1}{8}'' = 1'-0''$ scale and diagrammatic in nature. The models were built using pink insulation foam and a CNC milling machine. After the topography was carved out, a sequence of plastering and sanding was performed only along the top surface to represent a surface and not an object. Then the models were finished using a combination of gray spray paint, the finished white plasters and/or brushed aluminum to represent materials and the level of intervention contributed. A painted gray surface represented existing conditions, a white surface was the result of an intervention, and brushed aluminum was an indigenous material.

Individually the models communicate specific site conditions whether it is being in the river bed or on top a hill overlooking the site. Collectively the models demonstrate the ability to effect an environment without physically touching it.

For the final presentation the models, along with appropriate graphic material (plans, images, sections, diagrams, etc.) were arranged across the gallery proportional to each other recreating for a moment Lake McConaughy. The display allowed viewers to physically place themselves within the design and site, interacting with the dynamic landscape.
康复的麦考恩湖

设计

左：区域图上叠加的横截面

顶部：河流平面图

底部：照片网格显示干预地点的现有条件

左：横截面图上叠加的河的区域

顶部：河平面图

底部：展示干预地点的现有状况的网格照片
SO3

Recovery of Lake McConaughy

Design

NO1
Recovery of Lake McConaughy

Top: Lemoyne Plan

Bottom: Photo grid displaying existing conditions of intervention sites.
Boat Ramp

Top: Fingers plan
Bottom: Photo grid displaying existing conditions of area.
Reviews

Reviews for this project were conducted in various formats. A mix of printed and digital media was used during presentations. Formal reviews were designated by the department including a program review, a first interim review, a faculty panel review, a second interim review and the final in the spring. The panel for these reviews was dominated by faculty. Outside of the required formal reviews, desk crits and informal pin-ups occurred regularly each week with project mentor, Jeff Day, and colleagues.

Left: Final review display (image courtesy of Alissa Piere).
Program Review

10.22.05 New Crit Space
Critics: Zeynep Kezer, Patricia Morgado, Jeff Day
Program Review Notes
Critics: Zeynep Kezer, Patricia Morgado, Jeff Day

Interim Review Notes
Critics: Zeynep Kezer, Patricia Morgado, Peter Hind, Jeff Day
Faculty Panel Review

12.12.05 Architecture Hall Gallery
Critics: Zeynep Kezer, Patricia Morgado, Mark Hoistad, Martin Despang

- **Evidence of effort and progress in achieving stated objectives and design statement:**

The main objective of the project is to reveal the nature of Lake McConaughy, NE, thorough design interventions.

 There is evidence of effort and progress in research (displayed on the boards) and design (presented in models), however, the faculty made the following observations:
 - The research displayed in the boards is of good quality. However, there is no evidence of other of large scale environmental design precedents that could be useful. The research seems to be narrowed down to dams and lakes.
 - There are several suggestions for a program for some intervention, but they are not presented as a unified agenda. Research has yet to propose what the intervention is.
 - The images and quotes selected to express the student’s direction demonstrate that the site will be treated with extreme sensibility. However, the image under the title of “program” seems to show the opposite of what the student intends. This is an example of an urban park, very different to the nature of the student’s project. The faculty advises the students to follow Robert Smithson in order to make a design proposition that responds sensibly to the landscape.

- **Evidence of design organization and development of conceptual ideas to a schematic design.**

 While the student’s research is clear to the faculty, the development of the schematic design is hard to measure. The student appears to have been exploring design alternatives to intervene the site. Due to lack of clarity of the presentation, these are difficult to understand in a blind review.

- **Legibility of project representation**

 The presentation of the student’s design contribution to the project is unclear. Questions such as the following arose:
 - What are the interventions?
 - How do the proposed spaces add to the experience of the lake?
 - How are the interventions experienced in June vs. Dec., or during a drought vs. flooding?

- **Positive points regarding directions and opportunities for project development**

 As stated above, the reviewers find evidence of effort. To achieve the student’s stated goals the faculty suggests the following recommendations:
 - The student should rephrase objectives: mentioning that the program is open-ended (without a definition of any program as mentioned above) may mislead to the understanding that the program will be what it will be.
 - The faculty understands it as a large scale interpretive center (not as a building but as a series of interventions in the landscape that allow the visitor to experience the landscape). The project should reveal the landscape while allowing inhabitation.
 - Considering that the intention of the project is to reveal the nature of the lake and the scale of the site, the student is recommended to propose a master plan that would define what the interventions are, their goals, and schematic design of each of the point in which the nature of the lake is revealed. With this delineated, the student can chose to address specific interventions.
 - It is important to note that to develop this master plan, the student should define who the lake is being revealed to, who is the user, and what are the expected ways she/he will interact with the revealed site.
Final Review

03.28.06 Architecture Hall Gallery
Critics: Patricia Morgado, Martin Despang, Ted Ertl, Jeff Day

Above Left: Mockup of final review board
Top Right: Looking East across final review presentation
Bottom Right: Looking West across final review presentation
Contemporary Landscape Architecture

Site Development

Land Art

Case Studies

Site Specific

I want to thank the faculty and staff at the College of Architecture for creating a supportive and stimulating environment and providing me with the tools to take on such a challenging project. I want to extended further gratitude to Zeynep Kazer for teaching me how to correctly read and write, Patricia Morgado for teaching me how to think and design in section, and Martin Despang for his eternal optimism and passion for design, as well as a collective thank you for participating in my reviews and continuously supporting this project.

In addition, I want to thank Jeff Day for mentoring this project. His creativity, guidance, and support facilitated in producing my most rewarding and enjoyable project to date.

And finally, a big thank you to all my family and friends who continuously supported me these past six years. It is without doubt that my success was made possible by your continuous and unending support and encouragement.

Thank you!