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DETERMINING THE ACCURACY OF ITEM PARAMETER  

STANDARD ERROR OF ESTIMATES IN BILOG-MG 3 

 

Michael D. Toland, Ph.D. 

University of Nebraska, 2008 

 

Advisor: Rafael J. De Ayala 

This study was conducted to determine the accuracy of item parameter standard 

error of estimates (SEEs) produced by BILOG-MG 3 by examining their performance 

under a variety of conditions. The Factors manipulated in this study were type of 

underlying difficulty (b) distribution, type of underlying discrimination (a) distribution, 

type of underlying lower asymptote (c) distribution, test length (I), type of underlying 

latent trait (θ) distribution, sample size (J), and the number of quadrature points. 

Results showed that the accuracy of the estimated SEb under the 1PL, 2PL, and 

3PL models depended on the magnitude of the b parameter being estimated. Under the 

1PL model, the accuracy of the estimated SEb was related to the underlying b and θ 

distributions as well as I. The 2PL model results showed that the accuracy of the 

estimated SEb was related to I, but no other factors in this study had an impact on the 

accuracy of estimation of SEb under this model. For the 3PL model, results showed that 

the accuracy of the estimated SEb tended to be impacted by I, while certain combinations 

of J, I, underlying b distribution, and underlying a distribution had consistently uniform 

accuracy of estimation of SEb across the range of b parameters studied. 



When considering the accuracy of the estimated SEa, the 2PL and 3PL model 

results showed that the accuracy depended upon the magnitude of the a parameter being 

estimated, while an increase in I increased the accuracy of the estimated SEa under the 

2PL and 3PL models. Moreover, 2PL and 3PL model results showed the accuracy of the 

estimated SEa was related to the underlying item a, b, and θ distributions as well as J and 

I, when the entire range of a parameters was considered. 

The accuracy of the estimated SEc under the 3PL model was independent of the 

magnitude of the item c parameter being estimated and unaffected by any combination of 

factors studied. The implications and limitations of these results are discussed. 
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 Chapter One 

Introduction 

A common method for estimating a population mean in statistics is to draw a 

random sample and compute the sample mean. However, a sample mean will not provide 

a perfect estimate of a population mean. The sample mean will vary from sample to 

sample with each sample mean underestimating or overestimating the true population 

mean. Some sample means will fall close to the population mean, while other sample 

means will fall further away. In reality, the mean of all sample means will equal the 

population mean. That is, if a researcher repeatedly took samples of the same size and 

repeated this process an infinite amount of times, the mean of all the sample means would 

equal the population mean. By taking repeated samples and computing sample means a 

sampling distribution is produced. To describe the variability of the sampling distribution 

a standard deviation is computed. The standard deviation of the sampling distribution has 

a special name known as the standard error. The standard error refers to the variability of 

all means from sample to sample and provides a way to measure the average distance 

between a sample mean and a population mean. Thus, the standard error gives 

researchers an indication of how accurate their sample data represents their intended 

population (Agresti & Finlay, 1997). In general, the standard error plays a pivotal role in 

allowing researchers to compute confidence intervals and conduct statistical significance 

tests.  

Similarly, in testing there is variability in test scores, or ability estimates, along 

with variability for each item or question on a particular test or assessment. In particular, 
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tests developed using Item Response Theory (IRT) models give an ability estimate for 

each examinee along with a standard error of ability for each ability estimate. Also, each 

item on a test is described by one or more item parameters (e.g., difficulty, 

discrimination, etc.) and each item parameter has its own item parameter standard error 

of estimate (SEE). For instance, an item can be described by its item difficulty parameter 

estimate, with the item difficulty parameter estimate having its own item difficulty 

parameter SEE. In IRT, the SEE of an item parameter is a measure of the precision of an 

item parameter estimate (Thissen & Wainer, 1982), with a smaller SEE indicating greater 

precision. For tests developed using IRT methods the process of determining or 

estimating the parameters of items is known as item calibration. Item calibration provides 

a reference for interpreting items and test results. Item calibration is accomplished by 

administering a test of J items to I examinees. Then, statistical estimation procedures 

found in IRT are applied to item responses (e.g., 0, 1) to determine item parameter 

estimates and SEEs (Baker, 2001). 

More importantly, SEEs derived for test items are used in many practical 

applications involving IRT (Drasgow, 1989). One use of IRT item parameter SEEs is in 

the area of differential item functioning (DIF) (Lord, 1980; Oshima, Raju, & Nanda, 

2006; Smith, 1996; Wright & Stone, 1979). Testing for DIF allows researchers to 

investigate whether performance on any test item differs for certain groups of examinees 

(e.g., males-females). The main idea behind DIF is that if we match two different groups 

of examinees on a construct of interest, then the probability of endorsing an item should 

be the same for both groups of examinees. That is, DIF is present when equally able 
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examinees, from different groups, do not have the same probabilities of responding to an 

item (Hambleton, Swaminathan, & Rogers, 1991; Holland & Wainer, 1993; Lord, 1980). 

For example if we match males and females on statistics ability, then the probability of 

responding correctly to an item should be the same for males and females. However, if 

we find males with the same statistics ability as females had a greater probability of 

responding correctly to an item than females, then the item would be identified as 

functioning differently across gender. This means the statistics item is not only measuring 

statistics ability, but also measuring a second unrelated factor known as gender. 

Item parameter SEEs are utilized by researchers testing for item parameter drift 

(IPD) (Veerkamp & Glas, 2000). An item exhibits IPD when the characteristic(s) or 

parameter(s) describing an item have changed after several administrations of a particular 

item. In other words, IPD is the differential change in item parameters over subsequent 

test administrations (Goldstein, 1983; Veerkamp & Glas, 2000; Wells, Subkoviak, & 

Serlin, 2002). Essentially, exposed items may become easier and less discriminating after 

multiple administrations. Checking for IPD is especially important in testing because 

items become exposed to numerous examinees after time. This means items are at risk of 

being administered to examinees at more than desirable levels (Veerkamp & Glas, 2000). 

One consequence of IPD is that prior item parameter estimates for drifting items may no 

longer accurately characterize items, with the end result being ability estimates based on 

items showing IPD that no longer measure the intended construct (Wells et al., 2002). 

Interestingly, testing for IPD has much in common with DIF methods in that both make a 

distinction between groups of examinees. When testing for IPD a distinction is made 
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between a calibration phase and a computerized adaptive testing (CAT) phase to 

determine if item parameters have changed between the calibration and CAT phase. CAT 

is a way of administering a test, usually via a computer, where items are chosen that are 

maximally informative for each examinee. Among other items with acceptable 

discriminating power, an item is typically chosen for administration so an examinee has 

about a 50 percent probability of answering an item correctly. In CAT, a new temporary 

estimate of examinee ability is estimated after each subsequently administered item, and 

then another item is administered based on the temporary ability estimate. To summarize, 

the CAT sequence starts with an item of average difficulty in the population from which 

the examinee is selected. Then, depending on how the examinee responds to that item, a 

second easier or more difficult item is administered. This process continues until an 

examinee’s ability estimate is within some predetermined level of measurement error 

around the ability estimate (du Toit, 2003; Meijer & Nering, 1999; van der Linden & 

Glas, 2000; Wainer et al., 1990). 

 Researchers’ examining the effect mode of administration (e.g., CAT versus 

paper administration) has on item parameter estimates use item parameter SEEs (e.g., see 

Stone & Lunz, 1994). To test for a mode effect the difference between the item parameter 

estimates from the two modes is divided by the pooled standard error from the two 

modes, which creates a standardized difference score, which is then compared to some 

criterion (e.g., |2|). A mode effect is concluded when an item’s test statistic exceeds this 

criterion. 
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In test development there are various criteria for determining whether or not an 

item should be retained in a test; one criterion for not retaining an item is when an item’s 

difficulty SEE is equal to or greater than a predetermined value. For example, El-Korashy 

(1995) considered excluding items, along with other criteria (i.e., item infit statistics, 

distribution of items along the ability continuum, and item content), that had item 

difficulty SEEs exceeding one standard deviation of the item difficulty estimates. In other 

words, items were retained if their item difficulty SEE was less than one. The advantage 

of this approach, in conjunction with other criteria, is that it reduces the likelihood that a 

poorly estimated item is retained within a test. El-Korashy (1995) was the only study 

found to have considered the size of an item’s parameter SEE for inclusion in a test. 

 As described above, some IRT applications depend on item parameter SEEs, and 

obtaining accurate item parameter SEEs is a critical concern. However, procedures that 

use these estimates may arrive at erroneous conclusions (e.g., Type-I error, Type-II 

error), if the item parameter SEEs are inaccurate (Lord, 1980; Wang & Chen, 2005). 

Consequently, a small number of simulation studies have considered the accuracy of item 

parameter SEEs. For instance, recent research by Wang and Chen (2005) found the 

accuracy of item parameter SEEs produced by the WINSTEPS program (Linacre, 2001) 

for the Rasch model (Rasch, 1960) and the rating scale model to be accurate under 

varying test lengths and examinee sample sizes. In Wang and Chen (2005), accuracy was 

defined by the ratio of the average parameter estimate standard error variance (i.e., the 

average of the item difficulty parameter SEEs) over sampling variance of the item 

parameter estimates (i.e., the variance of the difficulty parameter estimates). However, 
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their study and only one other like it (see Drasgow, 1989) have been limited by the IRT 

estimation program and IRT model(s) considered. More details about these two studies 

and their results will be discussed in Chapter Two. 

Given the array of IRT applications that are utilizing item parameter SEEs and 

limited research, there is an apparent need to examine the accuracy of standard errors 

(SEs) produced for item parameter estimates. One reason to examine the accuracy of item 

parameter SEEs is that not all test developers utilize the same item parameter estimation 

program. For instance, previous research has not looked at the accuracy of SEs of item 

parameter estimates produced by the IRT program BILOG-MG 3 (Zimowski, Muraki, 

Mislevy, & Bock, 2003), which happens to be one of the most popular IRT programs for 

dichotomously scored items (e.g., correct-incorrect, agree-disagree). Also, examining the 

accuracy of item parameter SEEs would reduce any uncertainty researchers have about 

statistics or procedures that are dependent upon item parameter SEEs. The goal of this 

study was to add to the literature by extending our understanding of the accuracy of item 

parameter SEEs; specifically, those produced by the IRT program BILOG-MG 3. 

Potentially, results from this study are useful in providing researchers with the means to 

make a decision about the accuracy of item parameter SEEs produced by BILOG-MG 3 

which may be otherwise unknown. 
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Chapter Two 

A Review of the Literature 

This chapter provides a review of the literature on IRT item parameter SEEs. 

Included in this review is an overview of IRT and three models used for analyzing 

dichotomously scored items. A detailed discussion of IRT techniques that use item 

parameter SEEs and previous research on item parameter SEEs are discussed as well. 

This is followed by a description of the item parameter estimation procedure used in 

BILOG-MG 3 and an outline of previous research involving BILOG. Then this chapter 

concludes with a description of the purpose of the present study. 

Overview of IRT 

IRT is a modern test theory approach or family of probabilistic models that 

expresses the relationship between item characteristics (e.g., difficulty, discrimination, 

etc.) and ability characteristics to the probability of endorsing an item or getting an item 

correct. As the name suggests, IRT models ability or test performance at the item level 

rather than at the test level. In the realm of IRT there are numerous mathematical models 

that can be used to estimate person or ability parameters (e.g., depression, anxiety, 

aptitude) and item parameters (Hambleton et al., 1991; van der Linden & Hambleton, 

1997). Specifically, IRT models have been developed for item responses scored either 

dichotomously (i.e., have two response categories, for example right-wrong, yes-no, true-

false, agree-disagree) or polytomously (i.e., several response categories are possible, for 

example Likert-type items) (Hambleton & Jones, 1993; Harvey & Hammer, 1999). 
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IRT models have traditionally been used by testing programs for test 

development, CAT, test equating, item analysis, and the development of item banks. 

Testing programs that use IRT have an interest in IRT because it does not have the 

limitations of Classical Test Theory (CTT). Unlike CTT, IRT provides item and test 

characteristics that are not dependent upon the ability level of examinees responding to 

items and ability estimates are not item or test dependent. This means item parameter 

estimates stay the same regardless of the group tested (sample-free item parameters) and 

examinee parameter estimates stay the same regardless of the characteristics of the test 

administered (test-free ability parameters). This special characteristic of IRT models is 

known as the invariance property and is considered the cornerstone of IRT (Embretson & 

Reise, 2000; Hambleton et al., 1991; Lord, 1980). 

In addition to the invariance property a set of assumptions are made when 

specifying IRT models. The first major assumption relates to appropriate dimensionality. 

This means the correct number of underlying trait estimates or abilities is being used to 

explain person estimates or person performance. For the IRT models considered in this 

study a single ability is assumed to account for person performance. In other words, a 

single ability is measured by the set of items on a test and is often referred to as the 

assumption of unidimensionality. To sum up, the unidimensionality assumption means 

we are measuring a single ability and by measuring a single ability we can order our 

examinees on a meaningful continuum (Embretson & Reise, 2000; Hambleton et al. 

1991; Lord, 1980). 
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Another assumption related to undimensionality is the assumption of local 

independence. Local independence means the response to any item is independent to a 

response made to any other item, while controlling for ability level or person 

performance. Simply put, the only factor impacting an examinee’s responses to a set of 

test items are the abilities specified in the IRT model. Therefore, the local independence 

assumption makes it possible to use the multiplication rule to multiply each individual 

item probability (i.e., the probability of a correct or incorrect response to an item) to 

determine the probability that a given response pattern would occur, conditional on a 

specific examinee’s ability level (Embretson & Reise, 2000; Hambleton et al., 1991; 

Lord, 1980). 

Besides unidimensionality and local independence an assumption is made about 

functional form. The functional form assumption states that the data follow the function 

specified by the IRT model. Stated differently, the functional form assumption means the 

relationship between ability and the probability of a correct response to a particular item 

can be explained by the IRT model under consideration (Embretson & Reise, 2000; 

Hambleton et al., 1991; Lord, 1980). 

IRT Models for Dichotomous Responses 

Although there are a number of different IRT models, this study focused on IRT 

models for dichotomous responses. The three most well known IRT models for 

dichotomous responses are the one-parameter logistic (1PL) (Rasch, 1960) model, the 

two-parameter logistic (2PL) (Birnbaum, 1968) model, and three-parameter logistic 

(3PL) (Birnbaum, 1968) model. Note that the 1PL model is sometimes referred to as the 



10 

Rasch model (Rasch, 1960) and the 2PL and 3PL models were formally called the 

Birnbaum models (Lord, 1980). The models are so called because of the number of item 

parameters each model contains. The 3PL model is the most general model and can be 

described by the mathematical expression (Lord, 1980) 

       

 . (1) 

 

Here Pj(θi) is the probability that a randomly chosen examinee with ability value θi will 

answer item j correctly. The relationship between a correct item response and ability can 

be modeled using a logistic (S-shaped) function known as an item response function 

(IRF). This function specifies that as the level of the ability increases, the probability of a 

correct answer (or endorsement) on an item will increase. The values aj, bj, and cj are 

parameters characterizing item j, e is the mathematical constant 2.71828 …, and D is a 

scaling factor which transforms Pj(θi) onto the metric of the normal ogive when D = 

1.702 (Hambleton et al., 1991; Lord, 1980). When D is used the models are said to be in 

the normal metric with ability values typically ranging from -3 to +3 (Baker, 2001). 

The cj parameter indicates the probability that an examinee lacking in ability (e.g., 

θ = -∞) or with very low ability will respond correctly to an item. This parameter is 

called the pseudo-chance level parameter and corresponds to the lower asymptote of the 

IRF. Theoretically, this parameter can range from 0 to 1. In practice, cj can take on values 

that are different than the value that would result from random guessing on a multiple 

choice test (du Toit, 2003; Embretson & Reise, 2000; Hambleton et al., 1991). 
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The parameter bj is a location parameter and determines the location of the IRF on 

the ability continuum. The parameter bj is called the item difficulty parameter and is also 

referred to as the item threshold. Items with smaller values of bj are easier; those with 

larger values of bj are more difficult (du Toit, 2003). When the ability values of a group 

of examinees are transformed to have a mean of 0 and standard deviation of 1, the values 

of bj varies typically from -3 to +3 (Baker, 2001). When cj = 0, bj corresponds to the point 

(of inflection) on the ability continuum where the probability of a correct response is 

0.50. However, when cj > 0, bj corresponds to the point on the ability continuum where 

the probability of a correct response is halfway between cj and 1.0 (i.e., (1 + cj)/2) rather 

than 0.50. It is important to note that in IRT models, item difficulties may be directly 

compared to ability levels since they are on the same metric (Baker, 2001; du Toit, 2003). 

 The parameter aj is the item discriminating power and is called the item 

discrimination parameter. This parameter is proportional to the slope of the IRF at the 

point bj on the ability continuum (du Toit, 2003; Lord, 1980). Items with higher aj values 

are useful for differentiating examinees into different ability levels in the vicinity of the 

item difficulty than items with smaller aj values. Theoretically, aj can range from -∞ to 

+∞, but the usual range for aj is between 0 and 2 (Baker, 2001; Hambleton et al., 1991). 

Constraining cj = 0 for all items results in the 2PL model while constraining both 

cj = 0 and aj = 1 for all items results in the 1PL model or more specifically the Rasch 

model. To summarize, the 3PL model allows each item to differ in terms of their 

difficulty, discrimination, and pseudo-chance level parameters. The 2PL model is the 

same as the 3PL model except it assumes all items have a pseudo-chance level parameter 
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set equal to zero. The 1PL model allows for items to differ in terms of their difficulty 

parameter, but all items on an instrument are assumed to have a common discrimination 

parameter along with a lower asymptote set to zero. In general, the 3PL model can be 

considered a more general form of the 2PL and 1PL (Rasch) models where the other two 

models can be considered models nested within the 3PL model (Hambleton et al., 1991). 

Five hypothetical IRFs are shown in Figure 1. Item 1 represents an item with 

parameters b = 0, a = 2, and c = 0; item 2 represents an item with parameters b = 1, a = 2, 

and c = 0; item 3 represents an item with parameters b = 1, a = 1, and c = 0; item 4 

represents an item with parameters b = 0.5, a = 1, and c = 0.2; item 5 represents an item 

with parameters b = 1, a = 0.75, and c = 0.1. Items 1 and 2 are two sample IRFs that 

conform to the 1PL model. Notice how items 1 and 2 only differ by their location on the 

ability continuum. When comparing item 2 to item 3 one can see that they have the same 

difficulty parameter (b = 1), but the IRFs for these two items cross. This means each item 

has different discriminating power. Together, the IRFs for items 1 through 3 exhibit items 

that would conform to the 2PL model. The IRFs for items 4 and 5 exhibit two items that 

vary in location on the ability continuum, level of discrimination power, and lower 

asymptotes. Collectively, all five items demonstrate items that conform to the 3PL model. 

 

 

 

 

 



13 

 

 

 

 

 

 

 

 

 

Figure 1. Item response functions for five hypothetical items. The vertical axis represents 

the probability of a correct response, while the horizontal axis represents the underlying 

construct continuum. 

 

Applications of IRT Item Parameter SEEs 

 As highlighted in Chapter One there are various procedures that utilize item 

parameter SEEs in the area of DIF and IPD for dichotomous IRT models. Some of these 

procedures include Lord’s Chi-square test (Lord, 1980, p. 219-223; see also Hambleton et 

al., 1991, p. 110-112), the separate calibration t-test approach (Wright & Stone, 1979; 

Smith, 1996), the item parameter replication (IPR) procedure (Oshima et al., 2006), and 

the cumulative sum (CUSUM) procedure (Veerkamp & Glas, 2000). The first three 

procedures are used for finding DIF items, while the CUSUM procedure is used for 

detecting IPD items. 
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Lord’s Chi-square test involves computing separate calibrations for each group. 

Using the separate item calibrations along with item parameter SEEs the test statistic is 

constructed and is defined as (Lord, 1980) 

 

 . (2) 

 

Here  is the difficulty of item j in the calibration based on group 1,  is the difficulty 

of item j in the calibration based on group 2, is the item difficulty SEE for , and 

is the item difficulty SEE for . Since only one parameter is being compared, bj, 

the degrees of freedom for this test would be 1. Thus, a researcher would compare the test 

statistic to a Chi-square critical value with 1 degree of freedom to consider whether or not 

to reject the null hypothesis bj1 = bj2. Consequently, another test statistic could be 

computed to test the null hypothesis aj1 = aj2, however, it is preferable to test both 

hypotheses simultaneously.  

The test statistic is more formally defined as (Lord, 1980) 

 

  ,  (3) 

 

where , , and  is the inverse matrix, sometimes called 

the reciprocal matrix, of the variance-covariance matrix of the differences between 

parameter estimates. Since parameter estimates for group one are independent of 
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parameter estimates for group two, the variance-covariance matrix can be written as 

(Hambleton et al., 1991) , where is the variance-covariance matrix for 

the parameters in group one, and similarly for . Note that the diagonal elements of 

the variance-covariance matrix represent item parameter variance estimates and the 

square-root of each diagonal estimate is the standard error of the item parameter estimate. 

The test statistic is asymptotically distributed with k degrees of freedom and in the case 

of the 2PL model k would equal 2 for the two item parameters being compared (Lord, 

1980). 

The separate calibration t-test approach (Wright & Stone, 1979) computes 

separate calibrations for the same items based on the groups of interest. Given the pairs of 

item calibrations and the accompanying item parameter SEEs, a t-test is constructed and 

is defined as (Wright & Stone, 1979) 

 

 , (4) 

 

where , , and are defined as before. Typically, the t-test is compared to a 

criterion of ± 2 and if it falls above or below this criterion DIF is indicated for an item. 

Some recent applications or simulation studies involving the separate calibrations t-test 

can be found in Smith (1996), Smith and Suh (2003), and Arnould (2006). Note that this 

test statistic has also been utilized by researchers examining the effect of mode of 
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administration (e.g., CAT versus paper administration) on item parameter estimates (see 

Stone & Lunz, 1994). 

 The item parameter replication (IPR) method developed by Oshima et al. (2006) 

uses a Monte Carlo technique involving nine major steps for testing noncompensatory 

DIF (NCDIF) within the differential functioning of items and tests (DFIT) framework 

(see Raju, van der Linden, & Fleer, 1995). Note that NCDIF assumes all other items on 

the test except the item being examined have no DIF, which is the same assumption most 

other IRT based DIF indices assume (e.g., Lord’s Chi-square test). Thus, other DIF tests 

may be considered comparable in the sense that both provide similar information about 

DIF (Oshima et al., 2006; Raju et al., 1995). The following steps for the IPR method 

come from Oshima et al. (2006). 

In the IPR procedure the first step is to compute the item parameter estimates 

from the focal group (e.g., females), which are represented in a column vector called . 

In the case of the 3PL model,  would be a column vector consisting of  

for each item. In addition, an item parameter variance-covariance matrix, , is computed 

for each item. Using , the estimated item parameter intercorrelations can be derived 

and represented in a correlation matrix, . Assuming  is positive definite (i.e., all 

eigenvalues of the  are positive),  can be expressed as the product of a triangular 

matrix, , and its transpose, . In the context of a 3PL model,  can be expressed as 

(Oshima et al., 2006) 
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. (5) 

 

Second, let k = 3 for the 3PL model. Now, let  and  each represent a column 

vector with k elements, with each k element drawn at random from N ~ (0,1). Third, 

create two new Z column vectors such that  and . Fourth, 

transform each Z column vector into a Y vector where  and 

. Here, is a diagonal matrix consisting of diagonal elements 

(variances) from  and off diagonal elements consisting of zeros. It is important to note 

that  is a diagonal matrix consisting of item parameter SEEs in the main diagonal of 

the matrix. Fifth, column vectors  and  now represent item parameter estimates 

from two populations (e.g., females and males) with identical item parameters. In other 

words,  and  represent expectations under the null hypothesis or no NCDIF 

hypothesis. Thus, an NCDIFj index can be created from  and , along with estimates 

of θ for the focal group (e.g., females). As discussed in Raju et al. (1995) the NCDIF 
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index is defined as NCDIFj = , where is the probability of 

a correct response for examinee i at a given θ using item parameter estimates from the 

focal group, while  is the probability of a correct response for examinee i at a 

given θ using item parameter estimates from the reference group. For example, if DIF 

were being tested between females and males, NCDIFj would represent the difference in 

probability scores on item j for the same examinee, first treated as a member of the 

female group, and then treated as member of the male group. The sixth step is to replicate 

steps 1 through 5 a large number of times (e.g., 10,000). The seventh step is to rank order 

the replications from the previous step to find the desired percentile ranks (e.g., 95th) and 

establish the cutoff value for the desired alpha level (e.g., 0.05). The next step is to 

compare the initial DIF value obtained for item j to the cutoff value established in the 

seventh step. The final step is to repeat this process for all items on a test, hence 

potentially resulting in a different cutoff criterion for each item (Oshima et al., 2006). 

The CUSUM procedure (Veerkamp & Glas, 2000) allows a researcher to conduct 

a one-tailed hypothesis test to determine whether an item has become easier after each 

subsequent CAT administration relative to the initial item estimation phase. So, at each 

CAT administration when the items are re-estimated, the sum of the standardized 

difference between the difficulty parameters is added to the sum of the previous time 

periods. The function used in the CUSUM procedure is (Veerkamp & Glas, 2000)  

 

 (6) 
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where Sj(k) is the cumulative sum for item j at CAT administration k or re-estimation 

point k,  is the initial estimation of the item difficulty,  is the re-estimate of the item 

difficulty at time k,  is the difficulty standard error estimate based on the initial 

estimation,  is the re-estimate of the difficulty standard error at time k, and d is the 

smallest amount of IPD worth noting or effect size. The CUSUM procedure or chart 

starts with Sj(0) = 0, and the null hypothesis is rejected once Sj(k) > h, where h is some 

constant threshold value. Note that the procedure described above is limited to the 1PL 

model, but a CUSUM procedure is available for the 3PL model (see Veerkamp & Glas, 

2000, DeMars, 2004). 

Research Examining Item Parameter SEEs 

Research on SEs of IRT item parameters for dichotomous responses can be 

separated into two categories: (a) papers looking at analytic based SEs or its consistency 

with empirical SEs derived from a single data set, and (b) simulation studies looking at 

the accuracy of SEs from item parameter estimates. Research on analytically derived item 

parameter SEs for the 1PL, 2PL, and 3PL models began with Thissen and Wainer (1982). 

Then, Li and Lissitz (2004) took their method one step further by examining the 

consistency between analytic based SEs and empirical SEs. Simulation based research 

examining the accuracy of item parameter SEs can be traced back to work done by 

Drasgow (1989) and Wang and Chen (2005). 

Analytic standard errors. In Thissen and Wainer’s (1982) paper they showed how 

to compute analytic/asymptotic SEs for any set of item parameters and sample size, with 
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no data required (i.e., examinees’ responses are not necessary), for three commonly used 

IRT models for dichotomous responses (i.e., 1PL, 2PL, and 3PL models). To use the 

analytic method three key assumptions are made: (a) the IRT model is appropriate for the 

data, (b) the examinee’s underlying ability distribution is known, and (c) the maximum 

likelihood estimation method is chosen for item calibration. However, the first two 

assumptions are unrealistic. Thus, analytic item parameter SEs can be treated as lower 

limits or a best case scenario for actual item parameter SEs. In addition to the formulas 

used for deriving item parameter SEs, the paper provides tables and figures that can aid in 

the determination of the number of examinees needed to yield a desired precision in item 

parameter estimates. From the tables and figures provided some general conclusions can 

be drawn about item parameter SEs for the three IRT models when maximum likelihood 

estimation is used. One, item difficulty SEs become larger as more extreme difficulty 

parameters (e.g., b = -3 or b = 3) are estimated under the 1PL, 2PL and 3PL models. 

Two, the 2PL model is adequate in the range -2 ≤ b ≤ 2, but SEs become larger at the 

extremes. Three, the 3PL model provides the worst estimate of item parameter SEs 

relative to the 1PL and 2PL, but difficulty standard errors are adequate only in the middle 

of the test (e.g., -1 ≤ b ≤ 1). Four, item difficulty SEs for very easy items grow 

exponentially large under the 3PL model. Five, as sample size goes up, the size of the 

item difficulty SE goes down in size for each of the IRT models considered in this paper. 

However, if the c parameter cannot be assumed to be homogeneous for all items, the 

previous statement does not necessarily hold true unless extremely large samples can be 

used. 
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To expand upon Thissen and Wainer’s (1982) research, Li and Lissitz (2004) 

examined the consistency between the analytically expected asymptotic standard errors 

(AEA-SEs) of maximum likelihood and empirically determined standard errors of 

marginal maximum likelihood estimates (MMLE)/Bayesian item estimates (EMB-SEs), 

which is a replication based approach, for three IRT models (2PL, 3PL, and generalized 

partial credit model). Specifically, Li and Lissitiz (2004) treated the item parameters from 

the Algebra End-of-Course Assessment (Educational Testing Service, 1998) as the true 

population parameters, which consisted of 24 multiple-choice items, eight short-response 

dichotomously-scored items, and 10 constructed response items (3 three-category items, 

3 four-category items, and 4 five-category items). Using this test as their population (N = 

6,426) the authors sampled 1,290 examinees’ responses for the 42-item length test and 

repeated this process for a total of 50 data replications. To calculate the EMB-SEs the 

following steps were taken: (a) generate a test dataset; (b) simultaneously fit the three 

models to the item responses and calibrate item parameter estimates using the 

MMLE/Bayesian estimation method found in PARSCALE (Muraki & Bock, 1996); (c) 

transform the estimated item parameters to the metric of the true item parameters; (d) 

repeat the previous steps 50 times; and (e) calculate the BIAS and root mean squared error 

(RMSE) for each item parameter estimate. In this study BIAS and RMSE were defined as 

 

   (7) 
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and 

,  (8) 

 

where  was the true parameter for item j, was the estimated item parameter for item 

j, and r represented the data replication number. From these calculations EMB-SE 

estimate for an item was defined as  

 

 .  (9) 

 

Using the same set of 42 item parameter estimates, the estimated posterior distribution of 

abilities reported in the PARSCALE output to define the latent distribution of abilities, 

and a sample size of 1,290, the AEA-SEs were calculated. To test for the precision of 

SEEs between the two methods dependent samples t-tests were performed. In addition, 

Pearson correlation coefficients were calculated between the two measures along with 

correlations between BIAS and AEA-SE, and BIAS and EMB-SE. 

Overall, results indicated that the AEA and EMB methods produced very similar 

SEEs of item parameters for the three IRT models examined, except the correlations of 

SEEs between these two approaches was slightly lower under the 3PL model. 

Specifically, correlations between the AEA-SEs and EMB-SEs under the 3PL model 

were 0.90, 0.89, and 0.91 for the parameters a, b, and c, while correlations between these 

two approaches under the 2PL model were 0.97 for both a and b parameters and 0.97, 
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0.93, 0.94, 0.99, and 0.99 for the a parameter and category parameters bj2, bj3, bj4, and bj5 

under the generalized partial credit model. 

  Simulation studies. As stated previously, two simulation studies have looked at 

the accuracy of IRT item parameter SEEs for dichotomous models. Drasgow’s (1989) 

simulation study investigated the accuracy of one approach to estimating item parameters 

and standard errors of MMLE for the 2PL model. The factors manipulated in this 

simulation study were test length (5, 10, 15, and 25) and number of examinees (200, 300, 

500, and 1,000). The item parameters used in this simulation study consisted mostly of 

difficulty parameters around -1.5 with discrimination parameters ranging from 0.40 to 

1.80. Note that the item difficulty distribution did not match the mean of the θ 

distribution. Item responses were generated according to the 2PL model. Drasgow (1989) 

used 10 data replications for each of the four levels of number of examinees and four test 

lengths to generate independent response vectors. A computer program was written by 

Drasgow (1989) to estimate item parameters and their corresponding SEEs for the 2PL 

model. To assess the accuracy of SEEs by the MMLE method, estimated standard errors 

were compared to observed standard errors. Observed standard error was defined as 

 

  ,  (10) 

 

where  is the difficulty parameter estimate for item j in the rth replication and  is the 

mean difficulty parameter estimate over replications. The same formula used for the 
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difficulty parameter was also used for the discrimination parameter by substituting a for b 

in the formula. Consequently, item parameter estimates from Drasgow’s computer 

program and item parameter estimates from the LOGIST computer program (Wingersky, 

Barton, & Lord, 1982) were used in the above formulas to compute observed standard 

errors. Note that the LOGIST computer program was used to provide a frame of 

reference and that the program was modified so that LOGIST estimates were as close as 

possible to providing joint maximum likelihood estimates (JMLE). However, JMLEs 

were only provided for the 15- and 25-item tests. Estimated standard errors were defined 

as the square roots of the average (over replications) sampling variances obtained from 

the Fletcher-Powell weight matrix for MMLEs, while estimated standard errors for the 

JMLEs were computed by taking the square roots of the average sampling variances 

obtained from formulas given by Lord (1980, p. 191) for JMLE. Estimation accuracy was 

evaluated at the item level across replications and not averaged across all items.  

Overall, results showed that estimated item parameter standard errors obtained 

from the Fletcher-Powell weight matrix for MMLEs were in close agreement with 

observed standard errors. Also, the estimated standard errors from the Fletcher-Powell 

weight matrix for MMLEs were much more accurate than those obtained from the JMLE 

method. Specifically, Drasgow (1989) concluded that when item parameters are typical 

of those found on attitude scales or moderately easy tests, as few as 200 examinees and 5 

items are needed for reasonably small item parameter standard errors under the 2PL 

model. Drasgow (1989) also added that larger item parameter SEEs are associated with 

large item parameters when using MMLE. 
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In a recent simulation study Wang and Chen (2005) examined the accuracy of 

item parameter estimates, item parameter SEEs, and item fit statistics produced by the 

JMLE method in the WINSTEPS program (Linacre, 2001) for the Rasch model and the 

rating scale model. In this study the researchers manipulated three independent variables: 

(a) IRT model (the Rasch model and the rating scale model), (b) test length, and (c) 

number of examinees (100, 200, 400, 600, 800, 1,000, 1,500, and 2,000). Test lengths for 

the Rasch model were set to 10, 20, 40, and 60 items, while test lengths for the rating 

scale model were set to 5, 10, and 20 items, with five response categories in each item. 

Under the Rasch model item difficulties were generated from N(0,1). Item difficulties 

under the rating scale model were set at -1, -0.5, 0, 0.5 and 1 for the 5-item test and 

repeated twice for the 10-item test and repeated four times for the 20-item test. Note that 

the mean ability was set equal to the mean item difficulty for both models. For the rating 

scale model the researchers focused on 5-point scales only. Therefore, the four 

intersection or step parameters were set at -2, -0.7, 0.7, and 2 logits. All simulees (i.e., 

ability estimates) were generated from N(0,1), with 500 replications made under each 

condition. All simulated data sets were calibrated using WINSTEPS with default options. 

To assess the accuracy of item parameter SEEs a ratio of the average error variance 

estimate over the sampling variance was computed for each item. The average error 

variance was defined as 

 

,  (11) 
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where  was the standard error of estimate of parameter  in the rth replication, 

while the sampling variance was defined as 

 

,  (12) 

 

where  was the mean of the estimates over replications. Two overall conclusions 

regarding item parameter SEEs were drawn from this simulation study. One, WINSTEPS 

did not substantially underestimate or overestimate the item difficulty parameter SEEs 

under the Rasch model for any of the 32 conditions. Two, results under the rating scale 

model indicated that item parameter SEEs of the overall difficulties and intersection/step 

parameters were underestimated by about 10 to 40 percent. 

Estimation of Item Parameters and Standard Errors in BILOG-MG 3 

The estimation of item parameters in BILOG-MG 3 uses an approach efficient for 

short and long tests called MMLE (Bock & Aitken, 1981; Harwell & Baker, 1991; 

Harwell, Baker, & Zwarts, 1988; Mislevy, 1986), which was developed by Bock and 

Aitkin (1981) and extended by Mislevy (1986) to include prior probability distributions 

for both ability and item parameters. In general, BILOG-MG 3 is a program for multiple 

group analysis of dichotomously scored data with the 1PL, 2PL, and 3PL models. 

The approach used in BILOG-MG 3 for estimating item parameters and standard 

errors is described in the following sections. In order to understand the estimation process 

used in BILOG-MG 3 some underlying processes and terminology must be explained. 
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Prior ability distribution.  To estimate item parameters in BILOG-MG 3 an 

approach is invoked where examinees represent a random sample from an assumed prior 

population ability distribution g(θ|τ), where τ is the vector containing the parameters, µθ 

and σθ, of the examinee population ability distribution. In this approach ability is 

removed from the estimation process and item parameters are estimated in the marginal 

distribution. In essence, estimation of item parameters is not dependent upon estimation 

of each examinee’s ability estimate, but is dependent on the ability distribution specified 

a priori. The specification of the prior ability distribution is based on a researcher’s 

knowledge of the distribution of ability for the test and examinees of interest. By 

invoking this approach an assumption is made that the prior ability distribution is the 

same for all examinees (Baker & Kim, 2004; du Toit, 2003). The prior ability distribution 

is important in the item estimation process because an incorrect specification could 

potentially lead to inaccurate item parameter estimates and standard errors (i.e., the true 

ability distribution does not match the prior ability distribution). Note that BILOG-MG 3 

also provides the option of concurrently estimating the population ability distribution 

along with the item parameters instead of specifying a fixed prior ability distribution (du 

Toit, 2003). The basic idea behind this latter approach is that once the test has been 

administered observational data is collected (i.e., examinees responses to each item that 

are scored 0, 1) on each examinee and based on these data the prior distribution is 

modified to incorporate observational data about each examinee. The modified 

distribution is now called the posterior distribution (Harwell et al., 1988). 
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Gaussian quadrature. Before going on, it is important to point out that the MMLE 

procedure used in IRT applications for estimating item parameters is usually presented in 

integral form, however, integration is difficult to evaluate by a computer (Harwell & 

Baker, 1991). As a result, the MMLE method used in BILOG-MG 3 for estimating item 

parameters makes use of numerical integration (quadrature), which is better known as 

Gaussian quadrature, for approximating the integral (Baker & Kim, 2004). In BILOG-

MG 3, a simple histogram technique is used to make Gaussian quadrature work. As 

described above, this is done by making the assumption that examinees are randomly 

sampled from some continuous ability distribution in the population. Typically, a 

standard normal prior ability distribution, g(θ|τ),  is assumed with q equally spaced 

standard-normal histograms used over the ability range -4 to +4 (Harwell & Baker, 

1991). This means the continuous ability distribution can be approximated by using a 

discrete ability distribution consisting of q histograms over this range and can be more 

closely approximated by including more histograms. Each histogram will have a 

midpoint, which is known as a quadrature point (node), Xq (q = 1, 2, …, Q). Each 

quadrature point will have an associated weight, A(Xq), that reflects the height of the 

function (i.e., probability of occurrence), g(θ|τ), around Xq. The quadrature weight is 

found by multiplying the width of each rectangular histogram by its height. That is, the 

probability density at Xq multiplied by (Xq – Xq+1 ) gives A(Xq) (Baker & Kim, 2004; 

Harwell & Baker, 1991; Harwell et al., 1988). 

Artificial data. The use of Gaussian quadrature entails item parameters that are 

not estimated directly from the individual examinee data but rather from artificial data at 
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each of the q quadrature points. The artificial data at each quadrature point consists of the 

expected (conditional) number of examinees,  , and the expected (conditional) number 

of correct responses, , responding to item j at each quadrature point (Xq) (Baker & 

Harwell, 2004). Here  and  are defined as (Baker & Kim, 2004) 

 

  (13) 

 

and 

 

 , (14) 

 

where 

 

  (15) 

 

which is the quadrature form of the likelihood of Yi conditional on θi = Xq and the 

item parameters 
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 comes from the IRT model (e.g., 3PL) using Xq instead of θi and 

 

i = 1, …, I (where I equals the number of examinees) 

j = 1, …, J (where J equals the number of items) 

yji is the response (i.e., 0, 1) to item j by examinee i  

q = 1, 2, …, Q (recall Q equals the number of quadrature points) 

Yi is a vector of item responses of the ith examinee to the J items 

ε is a vector of item parameters 

τ is the vector containing the parameters of the examinee population ability 

distribution. 

Concretely, Equation 13 is the expectation (probability) of each examinee having 

an ability Xq for all values of Xq. Then the  are found by summing these probabilities 

separately for each Xq. In sum, a separate expected number of correct responses and 

number of examinees responding to item j is computed at each quadrature point. These 

artificial data are then used in BILOG-MG 3 to estimate item parameters (Baker & Kim, 

2004; Harwell & Baker, 1991). 

The MMLE estimation equations in BILOG-MG 3. The MMLE estimation 

equations, written in Gaussian quadrature form, for item parameters used in BILOG-MG 

3 for the 3PL model are (Baker & Kim, 2004) 

 

  (16) 
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  (17) 

 

  (18) 

 

where  

 αj = initial value for item j discrimination parameter 

bj = initial value for item j difficulty parameter 

cj = initial value for item j pseudo-chance level parameter 

 wjq =  

defined also (Baker & Kim, 2004) 

 

 . (19) 

 

To solve Equations 16 through 18 they are each set equal to 0 and the item 

parameter estimates for a single item are estimated simultaneously by the Fisher scoring-

for-parameters method within the context of an EM algorithm (Baker & Kim, 2004; du 

Toit, 2003; Mislevy, 1986). However, Equations 16 through 18 do not contain the 

Bayesian components pertaining to the prior distributions imposed on the item 

parameters as implemented in BILOG-MG 3 (Baker & Kim, 2004). Before elaborating 
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on the full item parameter estimation equations used in BILOG-MG 3, the prior 

component used in BILOG-MG 3 and their function in the estimation process will be 

discussed in the following sections.  

Priors used in estimating item parameters in BILOG-MG 3.  In BILOG-MG 3 a 

prior component is imposed on each item parameter during the estimation of item 

parameters. The term prior comes from Bayesian statistics, often referred to as the prior 

probability distribution, and provides information about a variable in the absence of data. 

Essentially, Bayesian statistics is based on the idea that each parameter of interest has its 

own distribution, whereas most typically view parameters as fixed characteristics of the 

population. The function of the prior distribution in Bayesian statistical inference is for a 

researcher to specify their assumption about the distribution of the parameter(s) of 

interest (Baker & Kim, 2004). 

In the IRT literature, many authors have advocated that priors be used in 

estimating item parameters so reasonable or identifiable parameter estimates may be 

found (Harwell & Baker, 1991; Mislevy, 1986; Swamminathan & Gifford, 1985). As a 

result, prior distributions and their hyper parameters (e.g., µ and σ of the distribution) are 

utilized in BILOG-MG 3 in estimating item parameters along with their respective 

standard errors (Baker & Kim, 2004). By imposing prior distributions on the items 

BILOG-MG 3 is utilizing a Bayesian approach and the MMLE approach in BILOG-MG 

3 is then referred to by others as the marginalized Bayesian item parameter estimation 

procedure (Baker & Kim, 2004; Harwell & Baker, 1991). However, it is easier to 

consider the marginalized Bayesian model as an extension of MMLE (Baker & Kim, 
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2004). To keep things simple, only the prior distributions imposed on the item parameters 

in BILOG-MG 3 are discussed. 

In BILOG-MG 3 the default prior discrimination (a) distribution is believed to be 

lognormal over the range 0 to ∞ (Baker & Kim, 2004). As Mislevy (1986) describes, the 

rationale for this prior distribution is that most IRT applications have aj that are greater 

than 0, suggesting a positively skewed distribution like the lognormal distribution. 

Accordingly, BILOG-MG 3 implements the transformation αj = log aj to produce a 

normal distribution for each αj with probability density function that is proportional to 

 with default µα = 0 and σα = 0.5, which result in µa = 1.13 and σa = 0.6 

(Mislevy, 1986; du Toit, 2003). As will become more apparent in the next section, this 

convenient transformation is employed because it keeps the metric of the discrimination 

parameter the same in both components of the model estimation equation (Harwell & 

Baker, 1991, p. 384), which consists of a likelihood component, refer to Equations 16 

through 18, and a prior component (Baker & Kim, 2004). 

Since αj is normally distributed, the prior component used in the item 

discrimination equation in BILOG-MG 3 is  (Baker & Kim, 2004; 

see Mislevy, 1986, for details on how this prior component is derived). To keep in line 

with the marginalized Bayesian model utilized in BILOG-MG 3, this prior component is 

appended to the likelihood component to produce the two components of the 

marginalized Bayesian item parameter estimation equation (Baker & Kim, 2004). 

Similarly for the bs, a normal prior distribution can be requested with µb = 0 and 

σb = 2 (Zimowski et al., 2003). This prior distribution is selected because the distribution 
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of bs in IRT applications typically follow a normal distribution and vary between -4 to +4 

(Harwell & Baker, 1991). By inspection of the prior component used for the item 

discrimination parameter, the prior component for the difficulty parameter is 

 (Baker & Kim, 2004). 

For the cs a prior Beta distribution is assumed with parameters ALPHA = 5 and 

BETA = 17. These parameters are defined as ALPHA = mp + 1 and BETA = mp + 1, 

where p is the mean of the Beta distribution and m is an a priori weight of 20 

observations of respondents who are marking randomly (Zimowski et al., 2003). The use 

of a Beta prior distribution for the c parameters pertains to interpreting p as the mean 

probability of a correct response for an examinee with low ability. In this case p = 1/k, 

where k is the number of response options. By default k is 5 in BILOG-MG 3, so p = .2. 

The central idea behind ALPHA and BETA values is to find values that give a desired p 

value (Baker & Kim, 2004; Harwell & Baker, 1991). The prior component utilized in 

BILOG-MG 3 for estimating the pseudo-chance level parameter is 

 (Baker & Kim, 2004; see Mislevy, 1986 for 

details on how this prior component is derived). 

The function of priors on item parameters in BILOG-MG 3. Prior components on 

the item parameters are utilized so parameter estimates can be constrained from taking on 

deviant (unreasonable) values in some data sets (Baker & Kim, 2004). Therefore, if a 

prior component for a parameter provides useful information, then the appending term 

should affect the item parameter estimation process. The role of a prior distribution in the 

item estimation process for an item parameter depends on how much the item parameter 
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estimate “shrinks” towards the mean of the item parameter prior distribution and the size 

of the item parameter prior distribution variance (Novick & Jackson, 1974). Essentially, 

the closer the item parameter estimate is to its prior distribution mean, the less the prior 

distribution affects the item parameter estimate, assuming other things are equal. The 

prior distribution variance also influences the amount of contribution a prior distribution 

has because a smaller standard deviation can make the prior component have a larger 

impact on item parameter estimation (Baker & Kim, 2004; Harwell & Baker, 1991). 

It is important to mention that the choice of priors does not have a strong impact 

on item parameter estimates when N is large, but for smaller sample sizes priors play an 

important role and item parameter estimates will tend to drift toward the mean of the 

prior distribution (Rupp, 2003, pg. 376). As a result, users often use the default prior 

distribution values provided in BILOG-MG 3 (Harwell & Baker, 1991; Rupp, 2003) and 

the default priors provide reasonable estimates that work well across a variety of 

disciplines (Harwell & Janosky, 1991; Rupp, 2003). However, Mislevy and Stocking 

(1989) suggest users should understand the default values when using BILOG or in this 

case BILOG-MG 3.  

Item parameter estimation equations in BILOG-MG 3. The marginalized 

Bayesian item parameter estimation equations, written in Gaussian quadrature form, are 

(Baker & Kim, 2004) 

 

  (20) 
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  (21) 

 

 . (22) 

 

 The first part of Equations 20 through 22 each consist of the marginalized 

likelihood component for each item parameter in Gaussian quadrature form, while the 

latter part of each equation appends the prior component. The prior component allows us 

to examine the effect of a prior distribution on estimating an item parameter. Prior 

distributions are important because they supplement the information found in the sample 

data; as a result, if the prior distribution is informative, the second component (the prior 

component) should have an effect on the item parameter estimation process (Baker & 

Kim, 2004). 

The Fisher scoring-for-parameters method. To solve Equations 20 through 22 

they are each set equal to 0 and the item parameter estimates for a single item are 

estimated simultaneously by the Fisher scoring-for-parameters method within the context 

of an EM algorithm (Baker & Kim, 2004; Mislevy, 1986). Because item parameter 

estimates for a particular item do not depend on the parameters of other items, the 

estimation process continues one item at a time (Baker & Kim, 2004). 

The Fisher scoring equations to be solved iteratively are (Baker & Kim, 2004) 
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  (23)  

 

where 

t = 1 .. T  

 

  (24) 

 

  (25) 

 

  (26) 

 

  (27) 

 

  (28) 
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 . (29) 

 

The iterative solution of Equation 23 is known as the Fisher-scoring method for 

item parameters (Baker & Kim, 2004). The matrix in equation 23 is known as the Fisher-

scoring information matrix. By taking the inverse of the information matrix the variance-

covariance matrix of item parameter estimates is derived and the square-root of the main 

diagonals of this matrix produce the asymptotic standard errors of the item parameter 

estimates (Baker & Kim, 2004). 

Summary of the BILOG-MG 3 approach for estimating item parameters and 

standard errors. To solve the item parameter estimation equations (i.e., Equations 20 

through 22) the so-called EM algorithm and Fisher-scoring methods are used (du Toit, 

2003). “In general, the EM algorithm is an iterative procedure for finding maximum 

likelihood estimates of parameters of probability models in the presence of unobserved 

random variables” (Baker & Kim, 2004, p. 169). The E stands for expectation and M 

stands for maximization. Conceptually, the (iterative) method of obtaining item 

parameter estimates begins with provisional estimates of the item parameters and 

successfully updating it through a series of E steps and M cycles until our item parameter 

equations are all essentially 0 or close enough to zero based on a convergence criterion 

(Baker & Kim, 2004). More concretely, the method of estimating item parameters in 

BILOG-MG 3 can be summarized in three steps (Baker & Kim, 2004, p. 171; Harwell et 

al., 1988, p. 255): 
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1. The E-step: 

a) Use Equation 15 and provisional values of the item parameter estimates to 

compute the likelihood that each examinee’s vector of item responses to the J 

items at each of the q quadrature points. 

b) Use Equation 15 and the quadrature weights A(Xq) at each of the q quadrature 

points to calculate the posterior probability that the ability of the ith examinee 

is Xq. 

b) Calculate  and  for each item at each of the q ability (quadrature) points. 

2. The M-step: Solve the marginal Bayesian item parameter estimation Equations of 20 

through 22 treating the artificial data,  and , as the complete data (or as 

constants). Since Equations 20 through 22 are nonlinear in the parameters, a series of 

Fisher-scoring steps (iterations) (sometimes referred to as the Newton-Gauss method 

or Newton-Raphson procedure, Baker & Kim, 2004, p. 40; see also Harwell et al., 

1988), Equation 23, for parameters is used within the M-step of the EM algorithm to 

obtain the item parameter estimates (Baker & Kim, 2004) and SEEs. This means that 

within each Fisher-scoring iteration an adjustment (improvement) is made to the item 

parameter estimate. This continues until a minimum change in a parameter estimate 

between iterations is met or a convergence criterion is met (Baker & Kim, 2004). The 

BILOG-MG 3 default number of Newton-Gauss (Fisher-scoring) iterations during the 

M-step is set at T = 2 and the convergence criterion within the M-step is .01 (du Toit, 

2003). 
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3. Repeat steps 1 and 2 until the item parameter estimates are unchanged from the 

previous EM cycle or the item estimation process has converged at some criterion. If 

convergence has not occurred at the end of an EM cycle, the latest parameter estimate 

values are used as available starting values in the next E- and M-steps (Baker & Kim, 

2004). In BILOG-MG 3 the default maximum number of EM cycles is 20 with a .01 

convergence criterion for the entire EM cycle (du Toit, 2003). Upon attaining overall 

convergence the item parameter SEEs are found by inverting the information matrix in 

the final Fisher-scoring solution (Baker & Kim, 2004). 

 It is important to note that before each E-step of the item parameter estimation 

process in BILOG-MG 3, adjusted quadrature weights are computed and an 

undocumented algorithm is used to normalize the histogram so that the following 

constraints are met: , , and  (Harwell et 

al., 1988). It is also important to point out that a complete description of all internal 

workings of BILOG-MG 3 has not been documented in great detail. As such, the 

procedure discussed is based mostly in part on the BILOG-MG 3 manual (du Toit, 2003), 

Baker and Kim (2004), Harwell et al. (1988), and Harwell and Baker (1991). However, 

the Xq values remain the same throughout both the E-step and M-step of the estimation 

process (Baker & Kim, 2004). 

Variables that may influence item parameter SEEs in BILOG-MG 3. Because the 

estimation technique used in BILOG-MG 3 uses Gaussian quadrature methods, the 

number of quadrature points used in the estimation process, as seen in Equations 20 

through 22 and 24 through 28, may impact item parameter SEEs. Inspection of Equations 
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13 and 14 shows that the artificial data are taken over the number of examinees (I), while 

Equation 15 shows the likelihood is taken over the number of items (J). This means the 

number of items and examinees may each play a role in the item parameter SEEs. 

Additionally, inspection of Equations 20 through 22 and 24 through 25 show the values 

of the hyper parameters for the prior a, b, and c distributions may affect the item 

parameter SEEs. It can also be seen by inspection of Equations 24 through 28 that other 

parameter estimates for an item (e.g., cj) play a role in the estimation of item parameter 

standard errors for the same item parameter. It is important to point out that the number 

of iterations, T, utilized during the Fisher-scoring procedure, number of EM cycles, and 

convergence criterion for the entire EM cycle may each impact the estimation of item 

parameter standard errors. 

Previous Research Involving BILOG or BILOG-MG 

 Table 1 below provides a summary of research involving the program BILOG or 

BILOG-MG. As Table 1 shows numerous simulation studies have assessed the accuracy 

of item parameter estimates produced by BILOG. Most of the research involving BILOG 

has primarily focused on the accuracy of item parameter estimates produced by the 

MMLE procedure under the 2PL and/or 3PL model and how these estimates compare to 

those produced by other estimation programs under varying sample sizes and test lengths. 

Also, some of the articles have considered the impact a prior distribution on the a 

parameter (i.e., varying the variance of the a parameter prior distribution) would have on 

item parameter estimates. The results of all these articles provide a bright outlook on the 

performance of BILOG, as the generating item parameters were successfully recovered in 
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most articles. Unfortunately, none of these articles have considered the accuracy of 

standard errors of item parameters produced in BILOG or BILOG-MG.
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Table 1 

Summary of BILOG and BILOG-MG Articles 

Article Purpose of study Design Findings 
Yen, W. M. 
(1987)  

Compared BILOG and 
LOGIST CPU time, item 
parameter estimates, item 
characteristic functions (ICF), 
trait estimates, and true scores 
under the 3PL model. 

Program (BILOG and LOGIST) by test 
length (one 10-item test, four 20-item test, 
and four 40-item test) by θ distribution 
(normal and nonnormal distributions) for 
an N = 1,000 under the 3PL model. 

Results indicated that 
BILOG generally produced 
more accurate item 
parameter estimates. 
BILOG also produced more 
accurate ICF for the 10-item 
test, but both programs 
provided similar accuracy in 
ICF under the 20- and 40-
item tests. 

Baker, F. B. 
(1990) 

Examined the equating of 
BILOG results to an 
underlying metric for the 2PL 
model for three different 
datasets under seven varying 
specifications for the prior 
discrimination distribution. 

Three sets of item response data were 
generated for a 45-item test and 500 
simulees under the 2PL model. Dataset 1, 
2, and 3 had the following generating 
parameters (θµ = 0, σθ = 1, amin = 1, amax = 
2, b = 0, σb = .8), (θµ = -.5, σθ = 1.5, amin 
= .5, amax = 1.5, b = .5, σb = .8), and (θµ = 
.5, σθ = .75, amin = .3, amax = .7, b = -.5, σb 
= .8), respectively. Each dataset also had 
seven different specified item 
discrimination priors (no prior; default 
prior µ = 0, σ = .5, no Float option; 
default prior with Float option; prior µ = 
0, σ = .75, no Float option; prior µ = 0, σ 
= .75, with Float option; prior µ = 0, σ = 

The results indicated that 
item parameters were 
recovered accurately in 
BILOG. Also, the estimated 
mean difficulty and θ 
parameters were not 
impacted by the prior 
discrimination distribution 
characteristics. Moreover, 
the results showed that 
BILOG preserved the 
underlying θ distribution 
variance when it was small, 
but standardized the 
variance when the 



44 

.25, no Float option; prior µ = 0, σ = .25, 
with Float option. 

underlying θ distribution 
had a large variance. 

Lim, R. G., & 
Drasgow, F. 
(1990) 

Compared MMLE (with no 
prior distributions) and Bayes 
model estimation when 
assessing DIF under a 2PL 
model for two sample sizes in 
BILOG. 

Sample size (250 and 750) by estimation 
(MMLE with no priors or Bayes model 
estimation with priors) for a 20-item test 
under the 2PL model. 

Results for both estimation 
methods were similar for n 
= 750, but MMLE (with no 
priors) showed slightly less 
estimation error than Bayes 
model estimates for n = 250. 

Seong, T. J. 
(1990) 
 

Examined the impact type of 
prior θ distribution, underlying 
θ distribution, number of 
examinees, and number of 
quadrature points had on item 
and θ estimates in the MMLE 
procedure used in BILOG. 

Type of prior θ distribution (normal, 
positively-, and negatively-skewed) by 
underlying θ distribution (normal, 
positively-, and negatively-skewed) by 
number of examinees (100 and 1,000) by 
number of quadrature points (10 and 20) 
for a 45-item test under the Two-
parameter normal ogive IRT model. 

Results indicated item 
parameters were more 
accurately estimated when 
the two θ distributions 
matched and number of 
examinees was large. Also, 
the number of quadrature 
points improved the 
accuracy of item parameter 
estimates, but only when the 
two θ distributions matched 
and the number of 
examinees was large. 

Harwell, M. R., 
& Janosky, J. E. 
(1991) 

Examined the efficiency of 
BILOG to recover item 
parameters under varying prior 
variances for the a parameter, 
sample size, and test length for 
the 2PL model.  

Number of examinees (75, 100, 150, 250, 
500, and 1,000) by number of items (15 
and 25) by variance for the prior 
distributions of a (no prior, .752, .52, .252, 
and .12 in a lognormal metric) for the 2PL 
model. 

Results suggested that for 
samples of 250 or more the 
effect of prior variances is 
minimized, the prior 
variance plays a major role 
for smaller samples and 
shorter tests (i.e., 15 items) 
in the accuracy of the a 
parameter estimate. Thus, 
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researchers should not rely 
on the BILOG default prior 
variance of .52 for the a 
parameter under small 
samples (i.e., n < 250) and 
short tests (i.e., 15 items). 

Cohen, A. S., 
Kim, S., & 
Subkoviak, M. J. 
(1991)  

Compared the influence of 
prior distributions on the 
detection of DIF in BILOG 
and LOGIST for two DIF 
methods.  

Program (BILOG without priors, BILOG 
with priors and FLOAT option, BILOG 
with priors and without FLOAT option, 
and LOGIST) for 4 datasets (1,000 per 
group; 200 per group; 1,000 for group A 
and 200 for group B; 200 for group A and 
1,000 for group B) for a 50-item test 
under the 2PL model. 

Results indicated that item 
parameter estimates varied 
less when priors were used 
than when they were not 
used. Also, the 
identification of DIF was 
related to program and to 
some extent to type of 
dataset. 

Abdel-fattah, A. 
A. (1994) 

Examined the accuracy of item 
parameter estimation 
procedures for the 3PL model 
under varying sample sizes, 
test lengths, and underlying θ 
distributions. 

Estimation procedure (joint maximum 
likelihood in LOGIST, MMLE and 
marginal Bayesian procedures in BILOG) 
by sample size (250 and 1,000) by 
underlying θ distribution (normal, 
truncated normal, and Beta) by test length 
(20 and 60) for the 3PL model. 

Results indicated that the 
marginal Bayesian 
procedure in BILOG 
produced accurate item 
parameter estimates when 
the underlying θ distribution 
was normal or truncated 
normal, sample size was 
small, and test length was 
short. 

Patsula, L. N., & 
Gessaroli, M. E. 
(1995) 

Compared the effects test 
lengths and sample sizes have 
on the 3PL model item and 
ability parameter estimates 
obtained from BILOG and 
TESTGRAF. 

Test length (20 and 40 items) by sample 
size (100, 250, 500, and 1,000) by 
program (BILOG and TESTGRAF) under 
the 3PL model and assuming the 
underlying θ distribution was normal. 

Results indicated 
TESTGRAPH and BILOG 
provided about the same 
level of accuracy in item 
parameter estimates under 
most conditions. However, 



46 

TESTGRAF was more 
accurate than BILOG in 
estimating the c parameter 
at both test lengths. Also, 
both programs were more 
accurate as sample sizes 
increased, but TESTGRAF 
was more accurate in 
estimating a and c 
parameters at all sample 
sizes. 

Carlson, R. D. & 
Locklin, R. H. 
(1995) 

Compared BILOG and 
MicroCat item and ability 
parameter estimates, and item 
fit statistics for the 1PL 
(Rasch), 2PL and 3PL models. 

Program (BILOG and MicroCat) by type 
of IRT model (1PL, 2PL, and 3PL) by 
data matrix (complete and incomplete) for 
a 72-item mathematics test for an N = 
1,000. 

Both programs showed 
nearly identical results for b 
parameter estimates for both 
types of data matrices under 
the 1PL (Rasch) model. For 
the 2PL and 3PL models 
both programs showed close 
agreement for item 
parameter estimates using 
the incomplete data matrix, 
while strong, but weaker, 
agreement was found for the 
complete data matrix. 

Parshall, C. G., 
Kromrey, J. D., 
& Chason, W. 
M. (1996) 

Examined the impact sample 
size has on item parameter 
estimates for six IRT models in 
BILOG. 

Sample size (100, 250, 500, and 1,000) by 
IRT model (1PL, 2PL, 3PL, 3PL with a 
restricted prior a distribution, 2PL with a 
restricted prior a distribution, and 3PL 
with restricted prior a distribution and 
common c parameter) for a 40-item test 
with simulees’θs assumed to follow a 

Results indicated that using 
a more informative prior 
variance on the a parameter 
improved the fit and 
stability of parameter 
estimates relative to models 
with the same number of 
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standard normal distribution and 
generated under a 3PL model. 

parameters and no imposed 
a prior distribution, 
primarily for smaller 
samples. 

Parshall, C. G., 
Kromrey, J. D., 
Chason, W. M., 
& Yi, Q. (1997) 

Examined the impact sample 
size has on item parameter 
estimates for six IRT models in 
BILOG. 

Sample size (100, 250, 500, and 1,000) by 
IRT model (1PL, 2PL, 3PL, 2PL with a 
restricted prior a distribution, 3PL with a 
restricted prior a distribution, and 3PL 
with restricted prior a distribution and 
common c parameter) for an 80-item test 
with simulees’θs assumed to follow a 
standard normal distribution and 
generated under a 6 dimensional model. 

Results indicated that the 
additional constraints to the 
models (e.g., a 2PL with 
restricted prior a 
distribution) improved 
stability, but decreased both 
fit and accuracy, in 
comparison to the 
unconstrained models. 

Baker, F. B. 
(1998) 

Compared the item parameter 
recovery characteristics of a 
Gibb’s sampling approach to 
the estimation approach in 
BILOG for varying sample 
sizes, test lengths, and 
underlying θ distribution for 
the Two-parameter normal 
ogive model. 

Method (Gibb’s sampling and BILOG) by 
sample size (30, 60, 120, and 500) by test 
length (10, 20, 30, and 50) for two 
underlying θ distributions (standard 
normal and normal with µθ = .25 and σθ = 
.83) under the Two-parameter normal 
ogive model. 

Results showed that a test of 
50 items and 500 examinees 
yielded excellent item 
parameter recovery by 
BILOG. Also, BILOG’s 
ability to recover item 
parameters was superior to 
Gibb’s sampling approach 
under small samples and 
short tests. 

Ban, J-C., 
Hanson, B. A, 
Wang, T., Qing, 
Y., & Harris, D. 
J. (2001) 

Compared and evaluated five 
online pretest item calibration 
methods in computerized 
adaptive testing with respect to 
item parameter recovery under 
three sample sizes. 

Method (MMLE with one EM-cycle, 
MMLE with multiple EM-cycles (MEM), 
Stocking’s Method A, Stocking Method’s 
B, and BILOG/Prior method) by sample 
size (300, 1,000, and 3,000) for a 30-item 
fixed-length adaptive test. 

The MEM method provided 
the smallest total error in 
pretest item parameter 
calibrations under all 
sample size conditions, 
while the other methods 
produced results similar to 
MEM under the 3,000 
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sample size, but the 
BILOG/Prior method 
produced the largest total 
error in pretest item 
calibrations under the 300 
and 1,000 sample size 
conditions. 

Kirisci, L., Hsu, 
T., & Yu, L. 
(2001) 

Examined the effects of test 
dimensionality, underlying θ 
distribution, and IRT program 
on the accuracy of item and 
person parameter estimates 
under the 3PL model. 

Dimensionality (Unidimensionality and 
three-dimensional) by underlying θ 
distribution (normal, positively skewed, 
and platykurtic) by IRT program (BILOG, 
MULTILOG, and XCALIBRE). Data 
were generated using a multidimensional 
compensatory 3PL model for 1,000 
examinees on a 40-item test. 

Overall, BILOG produced 
the most accurate item 
parameter estimates and the 
effect of 
multidimensionality on the 
estimation of item 
parameters was minimal for 
BILOG. 

Sass, D. A., 
Schmitt, T. A., & 
Walker, C. M. 
(2004) 

Examined the effect skewed θ 
distributions, sample size, test 
length, and estimation method 
have on item and ability 
parameter estimates under the 
2PL model in BILOG-MG. 

Underlying θ distribution (standard 
normal, skew = 1, and skew = 2) by 
sample size (500 and 1,000) by test length 
(20 and 40 items) by six estimation 
methods under the 2PL model. 

Results indicated item 
parameter estimates were 
less precise under skewed 
distributions and differed a 
little under small sample 
sizes. However, results in 
general suggested item 
parameter estimates are 
relatively robust to skewed 
distributions. 
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Purpose Statement 

 Researchers using standard errors of item parameter estimates need to know if 

their test statistics using item parameter SEEs calibrated from IRT computer programs 

(e.g., BILOG-MG 3) are accurate. Existing research indicates item parameter SEEs for 

the Rasch (1PL) model and 2PL model are accurate under short test lengths (e.g., 5, 10, 

and 20 items; Drasgow, 1986, p. 85) and small to moderate sample sizes (i.e., 100 … 

2,000 examinees) when using JMLE as found in WINSTEPS. However, none of the 

aforementioned studies have examined the accuracy of item parameter SEEs produced in 

BILOG-MG 3. Further, none of the studies reviewed have considered the impact of 

different underlying item parameter distributions, underlying ability distributions, and 

number of quadrature points would have on estimated standard errors. The overarching 

goal of this study was to identify the effect of test length, sample size, number of 

quadrature points, underlying item parameter(s) distribution(s), and underlying θ 

distribution(s) on the accuracy of item parameter SEEs for the three IRT models found in 

BILOG-MG 3. A rationale for each variable and levels is presented in Chapter Three. 

Research Question and Hypotheses 

 The primary research question under consideration in this study was: Does the 

accuracy of item parameter SEEs produced in BILOG-MG 3 vary by underlying item 

parameter(s) distributions, underlying θ distribution, test length, sample size, and number 

of quadrature points under the 3PL, 2PL, and 1PL models? This research question was 

based on an inspection of the item parameter standard error estimation equations utilized 

in BILOG-MG 3 and from Hambleton et al. (1993), Li and Lissitz (2004, p. 91-95), and 

Thissen and Wainer (1982) who indicated that the shape of the underlying ability 
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distribution and sample size are factors affecting the size of standard errors of item 

parameter estimates. 

 As discussed in the review of literature, the following hypotheses were proposed:  

1. As sample size increases, smaller item parameter SEEs result (Li & Lissitz, 2004; 

Thissen & Wainer, 1982) and would consequently lead to more accurate SEEs. 

2. Since the number of quadrature points play a role in the estimation process (e.g., see 

Equations 15 through 20), it was expected that increasing the number of quadrature 

points would improve the accuracy of item parameter SEEs. 

3. As Harwell et al. (1988, p. 247) pointed out, the item parameter estimates for a 

particular item do not depend on estimates of other items because the estimation 

process estimates item parameters and standard errors independently of other items. 

However, previous research (see Kirisci et al., 2001; Sass, et al., 2004) has shown that 

increasing test length can improve item parameter estimates. Given this information, it 

was predicted that test length would not have an impact on the accuracy of item 

parameter SEEs. 

4. The item parameter SEEs would be more accurate when more of the underlying item 

parameter and ability distributions were similar to the prior item parameter and ability 

distributions specified in BILOG-MG 3, than when the underlying distributions and 

prior distributions were not similar. 
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Chapter Three 

Method 

Independent Variables 

The following seven independent variable factors were crossed in this study: type 

of underlying difficulty (b) distribution, type of underlying discrimination (a) 

distribution, type of underlying lower asymptote (c) distribution, test length, type of 

underlying latent trait (θ) distribution, sample size, and number of quadrature points. 

Underlying difficulty distribution. The underlying difficulty distribution was 

varied because it allowed an examination of the accuracy of the item parameter SEEs 

when the underlying difficulty distribution matched or did not match the prior underlying 

latent trait distribution assumed in BILOG-MG 3. A N(0,1) distribution was selected as 

one level for the underlying difficulty distribution because it matched the underlying 

latent trait distribution assumed in BILOG-MG 3 and is typical of a difficulty distribution 

seen in practice (Harwell & Baker, 1991, p. 378). A second level for the underlying 

difficulty distribution, U(-3,3), was selected because it did not match the underlying 

latent trait distribution assumed in BILOG-MG 3, the uniform distribution is typical for 

simulation studies (Kirisci et al., 2001), and -3 ≤ b ≤ 3 is the typical range of difficulty 

values seen in practice (Baker, 2001). 

Underlying discrimination distribution. The type of underlying discrimination 

distribution was varied because it was expected to better inform users on the accuracy of 

item parameter SEEs when the underlying discrimination distribution matched or did not 

match the prior discrimination distribution assumed in BILOG-MG 3. As mentioned in 

Chapter Two, the variance for a prior distribution plays a crucial role in parameter 
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estimation; prior distributions with larger variances are less informative than those with 

smaller variances (Harwell & Janosky, 1991). Thus, the first underlying discrimination 

(a) distribution was varied to follow a lognormal distribution with µα = 0 and σ2
α = .25,   

a ~ LN(0,.25), which resulted in µa = e0+.5(.25) = 1.13 and σ2
a = e2(0)+2(.25)-e2(0)+.25 = .36. 

Note that µα and σ2
α are the respective scale and shape parameters used to determine the 

form of the underlying distribution. This first type of underlying discrimination 

distribution was chosen because it mimicked the prior discrimination distribution 

assumed in BILOG-MG 3. The second type of underlying discrimination distribution,                    

a ~ LN(0,.36), was chosen to not match the prior discrimination distribution used in 

BILOG-MG 3 but to reflect an underlying discrimination distribution that was more 

realistic (i.e., had more variability). A common a = 1 for all items was also used because 

this restriction along with the additional restriction of c = 0 (described below) enabled 

one to examine the effect the aforementioned factors had under the 1PL model. 

Underlying lower asymptote distribution. The type of underlying lower asymptote 

distribution was varied because it informs users on the accuracy of item parameter SEEs 

when the underlying lower asymptote distribution matched or did not match the default 

prior lower asymptote distribution assumed in BILOG-MG 3. Three levels were chosen 

for the underlying lower asymptote distribution: c ~ BETA4(5,17,0,1) and another four 

parameter Beta distribution, c ~ BETA4(9,33,0,1), and fixed c = 0 for all items. In the four 

parameter Beta distribution the first two values represented the two shape parameters, α 

and β, while the last two values, l and u, represented the lower and upper limit of the 

distribution. The first distribution was chosen to match the default prior c distribution 

assumed in BILOG-MG 3. The second distribution reflected a four parameter Beta 
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distribution with less variability and a lower mean than the default Beta distribution, but 

maintained a realistic underlying c distribution that may be seen in practice. In addition, 

fixing c = 0 for all items was chosen because this restriction enabled us to examine the 

effect that the aforementioned factors had under the 2PL model. 

Test length. The test lengths examined in this study were: J = 50 and J = 10. A 

50-item test was chosen to represent a long test (i.e., more than 20 items; du Toit, 2003, 

p. 603) and was longer than the average test length based on a review of research which 

applied the 3PL model. A 10-item test was selected because it represented a short test 

(i.e., 11 to 20 items; du Toit, 2003, p. 603; 5 or 10 items; Drasgow, 1986, p. 85) and was 

shorter than the test lengths that might be seen when measuring some attitudinal 

constructs or student behaviors, where only a few items may be administered to an 

examinee. A survey of selected empirical studies (DeMars, 2003; El-Korashy, 1995; 

Obiekwa, 2001; Richichi, 1996, Wightman & De Champlain, 1994) that applied the 3PL 

model between 1980 and 2005 (selected from the Eric Education from First Search 

database using the keywords, subject phrases, or combinations such as Item Response 

Theory, Latent Trait Theory, Calibration) had a mean and median test length of 39 and 

34, respectively (SEmean = 6, SD = 17, n = 8). The test lengths for the calibrations 

conducted in these eight studies were 25, 25, 25, 25, 42, 47, 53, and 70. Note that some 

studies conducted calibrations for multiple samples. Mislevy and Stocking (1989) have 

suggested MMLE methods, as utilized in BILOG-MG 3, should produce dependable item 

parameter estimates, even for short tests reliant upon the accuracy of the (IRT) model. 

Moreover, Cohen et al. (1991) suggested that BILOG-MG should produce accurate item 

parameter estimates for short tests. 
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Underlying latent trait distribution. The type of underlying latent trait (θ) 

distribution was varied in this study because standard text books on IRT have noted that 

it has an impact on the SEE of item parameters (e.g., Embretson & Reise, 2000, p. 195; 

Hambleton & Swaminathan, 1985). It has also been shown that characteristics of the 

prior θ distribution affect item parameter estimates, and the correct specification of the 

prior θ distribution produce MMLE item parameter estimates that are consistent (Harwell 

et al., 1988). Thus, varying the θ distribution allowed us to consider the accuracy of item 

parameter SEEs when the prior latent trait distribution specified in BILOG-MG 3 

matched or did not match the underlying θ distribution. The two underlying θ 

distributions were selected so one mimicked the default features found in BILOG-MG 3 

and another corresponded to underlying θ distributions not assumed in BILOG-MG 3. To 

test this effect an underlying θ distribution that was N(0,1), which matched the default 

assumed in BILOG-MG 3, was compared to estimates produced from a positively-

skewed underlying θ distribution that did not match the BILOG-MG 3 default. The 

second level for the underlying θ distribution, a positively-skewed distribution, θ  ~ χ2(5) 

standardized to have a mean of -.5, was chosen because not all underlying latent trait 

distributions are normally distributed in educational applications of IRT (Seong, 1990). It 

is important to note that the positively-skewed distribution will be referred to as θ  ~ χ2 

for the remainder of the study. 

Sample size. Sample size was selected because it has been shown to have an 

important effect on the accuracy of item parameter estimation (see Seong, 1990) and the 

minimum sample size needed to provide accurate item parameter estimates was a primary 

concern during calibration. The two sample sizes investigated were: I = 500 and I = 
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4,000. Rupp (2003) recommended an I = 500 as a minimum guideline for reaching stable 

parameter estimates for tests consisting of 15 to 50 items for the 3PL model and Cohen et 

al. (1991) have suggested that BILOG-MG should produce accurate item parameter 

estimates for small samples; however, Cohen et al. (1991) did not define what they meant 

by small samples. Additionally, research has shown that samples of 500 are just below 

the minimum sample size recommended for the 3PL model (Hulin, Lissak, & Drasgow, 

1982). 

However, Thissen and Wainer (1982) suggest larger samples are needed to better 

estimate item parameters and reduce the magnitude of item parameter standard errors. 

Thus, I = 4,000 was selected to reflect a large sample size. This larger sample size is 

within the range of sample sizes that applied researchers use with the 3PL model. As 

described previously, a survey of selected studies which applied the 3PL model had a 

mean and median sample size of 4,647 and 263, respectively (SEmean = 4,337, SD = 

12,265, n = 8). The sample sizes for the calibrations conducted in these eight studies were 

230, 240, 247, 255, 270, 433, 500, and 35,000. 

Number of quadrature points. The number of quadrature points was varied to 

inform us on whether or not there is a gain in the accuracy of the estimation of item 

parameter SEEs beyond the number of quadrature points used as the default in BILOG-

MG 3. The default used in BILOG-MG 3 is 15 quadrature points. 60 quadrature points 

was also used during item parameter standard error estimation because more quadrature 

points provided a better approximation to a continuous distribution (i.e., fewer gaps in the 

distribution) and improved the accuracy of item parameter estimates (Seong, 1990). 
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Data Generation and Calibrations 

The first step in the data generation process was to generate population a, b, and c 

item parameters for the 50-item and 10-item length tests. Using SAS, a macro program 

was written to generate two sets of 50 b item parameters from a N(0,1) or U(-3,3) 

distribution, two sets of 50 a item parameters from a LN(0,.25) or LN(0,.36) distribution, 

and two sets of 50 c item parameters from a BETA4(5,17,0,1) or BETA4(9,33,0,1) 

distribution. Next, two sets of 10 b item parameters were generated from a N(0,1) or U(-

3,3) distribution, two sets of 10 a item parameters were generated from a LN(0,.25) or 

LN(0,.36) distribution, and two sets of 10 c item parameters were generated from a 

BETA4(5,17,0,1) or BETA4(9,33,0,1) distribution. All item a, b, and c parameters were 

randomly and independently generated. A detailed summary of the item parameter 

generating distributions and sampled parameters is found in Appendix A. A listing of the 

sampled item parameters for conditions with 50- and 10-item length tests are provided in 

Appendix B and C, respectively. 

Once item parameters for the various test lengths had been created, item response 

data was generated. A modified version of a SAS macro program written by Whittaker, 

Fitzpatrick, Williams, and Dodd (2003) was used to generate θ values for simulees from 

the appropriate underlying θ distribution and item responses for simulees based on the 

3PL model. Appendix D provides a modified version of the Whittaker et al. (2003) SAS 

macro program that was used to generate four of the conditions in this study. To generate 

the item responses, a simulee was randomly assigned an ability value from a given 

underlying θ distribution (N(0,1) or χ2). Using the defined item parameters for a specified 

test length and the simulee’s ability value, the probability of answering an item correct 



57 

was computed according to the 3PL model. This probability was compared to a random 

number sampled from a uniform distribution with domain (0,1). A simulee’s response 

was considered correct (1) when the probability exceeded or was equal to the random 

number; otherwise, the simulee’s response was scored incorrect (0). This process was 

repeated for every simulee and every item. 

 Then, all simulated datasets were calibrated with BILOG-MG 3. In running 

BILOG-MG 3 all default options were used except when manipulations to default 

features were needed for testing a particular independent variable in this study (i.e., 

changing the number of quadrature points). In addition, the default ridge constant of 

RIDGE = (2, 0.1, 0.01) was changed to RIDGE = (2, .01, 0.2) on the BILOG CALIB 

line, but this was only done for the 3PL model calibrations. This modification to the ridge 

constant was done to combat the excessively high number of nonconverging datasets 

exhibited during preliminary 3PL model calibrations, which occurred from the algorithm 

getting stuck and bouncing in the Newton phase. BILOG-MG 3 was selected given its 

frequent use within IRT. Furthermore, this recent version of BILOG-MG 3 has not been 

evaluated with the various combinations of the independent variables used in this study. 

Sample 1PL, 2PL, and 3PL model calibration input files for BILOG-MG 3 are provided 

in Appendices E, F, and G, respectively. 

To summarize, data for this study were simulated for two test lengths (50, 10), 

two sample sizes (500, 4,000), two underlying θ distributions (θ ~ N(0,1), θ  ~ χ2), two 

underlying difficulty (b) distributions, (b ~ N(0,1) or b ~ U(-3,3)), three underlying 

discrimination (a) distributions (a ~ LN(0,.25), a ~ LN(0,.36), a = 1), three underlying 

lower asymptote (c) distributions (c ~ BETA4(5,17,0,1), c ~ BETA4(9,33,0,1), c = 0), and 
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two number of quadrature points levels (15, 60). However, the conditions resulted in a 

partially factorial design because certain combinations of the manipulated independent 

variable conditions did not lend themselves to meaningful IRT models, and were 

subsequently ignored (i.e., generating item responses for a 2PL model when a = 1 and c 

varies). This simulation study had 128 conditions under the 3PL model, 64 conditions 

under the 2PL model, and 32 conditions under the 1PL model, for a total of 224 

conditions. Appendix H presents all the levels of the conditions simulated in this study. 

One thousand datasets were generated for each of the 224 conditions, with a pair of 

“unique” seeds (starting values to begin the random number generators) used for each 

condition. The first seed was used for the random number generator when selecting a 

simulee’s θ value, while the second seed was used for the random number generator 

when selecting a random uniform value to compare a simluee’s response probability 

against. 

Data Analysis 

After all BILOG-MG 3 runs had completed the convergence rates and 

percentages of omitted items were recorded. The next step was to examine the accuracy 

of the item parameter SEEs produced by BILOG-MG 3 by calculating the average 

estimate of bias (AEBias) and root mean square error (RMSE) for each item within each 

condition 

 

  (30) 

 

and 
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  (31) 

 

where 

j and r, respectively, denote items and replications, 

SE( ) is an item parameter’s standard error estimate in the rth replication, 

R is the number of replications (1,000 in this case), and 

 is defined as 

 

  (32) 

 

where 

  is an item parameter’s estimate in the rth replication, and 

  is the mean of the item parameter estimates over replications for parameter . 

 Note that 1,000 replications per condition was selected to provide more stable 

analysis of results and it is also greater than the number of replications typically found in 

parameter estimation studies. For conditions that did not achieve convergence R was less 

than 1,000, but this did not happen for many conditions as described in the results 

section. 

 AEBias measured the magnitude and direction of bias for a particular estimated 

item parameter standard error relative to the corresponding item parameter standard error, 
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as measured by SEemperical. RMSE measured the average unknown discrepancy between 

an item parameter standard error, as measured by SEemperical, and the corresponding 

estimated item parameter standard error. These two measures, AEBias and RMSE, 

represented the dependent variables in this study. Estimation accuracy was evaluated at 

the item level across replications and was not averaged across all items. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 

Chapter Four 

Results 

Convergence and Omitted Items 

 Convergence rates for the 3PL, 2PL, and 1PL models were 98.05%, 98.96%, and 

99.98%, respectively, with an overall convergence rate of 98.6%. Generally, for the 3PL 

model calibrations, nonconvergence was high (i.e., > 5%) for J of 50, I of 500, 

underlying θ  distributed N(0,1), and underlying b distributed U(-3,3) conditions. 

Nonconvergence was also high for 3PL conditions based on J of 10, I of 4,000, 

underlying θ  distributed χ2, b distributed U(-3,3), a distributed LN(0,.36), and c 

distributed Beta4(5,17,0,1); and those conditions also based on J of 10, I of 4,000, 

underlying θ  distributed χ2, b distributed U(-3,3), a distributed LN(0,.25), c distributed 

Beta4(5,17,0,1), and 60 quadrature points. For the 2PL model calibrations, 

nonconvergence was high for J of 10, I of 500, underlying θ  distributed χ2, and 

underlying b distributed U(-3,3) conditions. Also, under the 2PL model, nonconvergence 

was high for J of 10, I of 500, underlying θ  distributed χ2, b distributed U(-3,3), and a 

distributed LN(0,.36). Nonconvergence was not high for any particular condition under 

the 1PL model. A detailed summary of the percentage of nonconvergence within 

conditions for the 3PL, 2PL, and 1PL models, respectively, is provided in Appendices I, 

J, and K. 

Although nonconvergence was not a problem, a small number of replications 

within conditions did have one less item estimated during the calibration. An item was 

omitted from the BILOG-MG 3 calibration process when its item biserial correlation was 

less than the program’s criterion (i.e., biserial correlations less than -.15). Items were only 
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omitted from the 2PL and 3PL model calibrations. These omitted items generally came 

from a 50-item length test consisting of low discrimination values (i.e., a = .064 or a = 

.208 or a = .264) with the exception of one item having a discrimination value of 1.054, b 

= .177, and c = .231. Omitted items under the 10-item length test came from 3PL model 

calibrations and consisted of the more difficult items (i.e., b = 2.169 or b = 2.605) for this 

test length, but a and c parameters were not unreasonably low or high. A summary of 

items omitted by condition are provided in Appendix L. 

Gap Analysis 

After the removal of nonconverging datasets and items that were omitted from the 

BILOG-MG 3 calibration process a gap analysis was performed. A gap analysis was 

performed because upon inspection of plots showing RMSE as a function of parameter 

values it became noticeably clear that there were exceptionally large RMSE values (i.e.,  

> 1 but < 15), which tended to influence the overall trend presented in the plots. Notably, 

this gap in the plots trend only occurred under the 3PL model. As such, all 3PL model 

conditions were further scrutinized to identify which item(s) and replication(s) within 

each condition had potentially influential item difficulty parameter SEEs. This was done 

by inspecting plots of item difficulty parameter SEEs as a function of replications for 

each item within each condition. A particular item’s replication was considered for 

removal if the following two conditions were met. One, a particular item difficulty 

parameter SEE displayed a gap between its estimate and other item difficulty SEEs. Two, 

the same item replication difficulty SEE was twice the size of its difficulty parameter 

estimate. Consequently, all item replications within a condition displaying both a gap and 

having SEE twice the size of an item’s parameter estimate were removed from all future 
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analyses. Items removed from the gap analysis all came from data sets generated from the 

3PL model with I of 500 and, with the exception of one item, all items consisted of above 

average positive bs (i.e., b > 1.296), low to moderate as (i.e., .3 ≤ a ≤ 1.462), and low to 

high c parameters (i.e., .098 ≤ c ≤ .435). In addition, all b parameter estimates were at 

least b = 6.19 or greater and had b parameter SEE ranging from 13.27 to 450.63. A 

summary of the items removed from the gap analysis is provided in Appendix M. 

RMSE and Bias as a Function of Parameter Values 

RMSE standard error of difficulty results. Figure 2 contains plots of the 

relationship between the RMSE standard error of b (SEb) and the b parameter for 15 

quadrature points under the 1PL model conditions. The patterns under the 60 quadrature 

points 1PL model conditions can be inferred from these plots because they mimicked 

what was observed for 15 quadrature points. In general, the accuracy of estimation of SEb 

was not a function of b for conditions having an I of 4,000 or conditions based on 

underlying b and θ  distributed N(0,1) with an I of 500 (Figures 2a and 2c). For the 

remaining conditions based on I of 500 (Figures 2b and 2d), the accuracy of estimation of 

SEb was a function of b. Specifically, the RMSE SEb increased a little in magnitude for 

extreme bs (i.e., bs in both tails of the distribution) for conditions based on underlying b 

distributed U(-3,3) (Figure 2d) and conditions based on underlying θ  distributed χ2 and 

underlying b distributed N(0,1) (Figure 2b). 
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Plots of the relationship between the RMSE SEb and b parameters for 15 

quadrature points under the 10-item and 50-item 2PL model conditions are presented in 

Figure 3. The patterns observed under the 60 quadrature points 2PL model conditions can 

be inferred from these plots based on 15 quadrature points as varying the number of 

quadrature points did not impact the observed patterns. The patterns shown in Figures 3a 

and 3b, respectively, represent the typical pattern seen in conditions based on I of 500, J 

of 50, and underlying b distributed N(0,1) or U(-3,3). Figure 3c represents the trend seen 

in conditions based on underlying b distributed U(-3,3), J of 10, and I of 500. Figure 3d 

represents the RMSE SEb patterns seen in conditions based on J of 10, underlying b 

distributed N(0,1), with I of 500 conditions, and all I of 4,000 conditions. The accuracy of 

estimation of SEb was a function of b. For both test lengths, the accuracy of estimation of 

SEb increased as I increased (Figures 3a and 3b). Moreover, the accuracy of estimation of 

SEb tended to drop for larger bs, this trend was exaggerated in almost all of the I of 500 

conditions (Figures 3a, 3b, and 3c). 
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The relationship between the RMSE SEb and b parameters for 15 quadrature 

points under the 3PL model conditions are presented in Figures 4 and 5. The patterns 

observed under the 60 quadrature points 3PL model conditions were the same as those 

observed for 15 quadrature points conditions. Figure 4a shows the typical trend seen for 
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conditions based on J of 50, underlying b distributed U(-3,3), underlying a distributed 

LN(0,.25) and I of 500. Figure 4b represents conditions based on J of 50, underlying b 

distributed N(0,1), and underlying a distributed LN(0,.25) as well as conditions based on 

J of 50, underlying b distributed U(-3,3), underlying a distributed LN(0,.25), and I of 

4,000. Figure 4c is representative of the trend seen for conditions based on J of 50, 

underlying a distributed LN(0,.36) and I of 500, while Figure 4d represents the same 

conditions except I of 4,000. Figures 5a and 5c, respectively, represent the trends for 

conditions based on underlying b distributed N(0,1) and U(-3,3) with I of 500, while 

Figures 5b and 5d represent the trends for conditions based on underlying b distributed 

N(0,1) and U(-3,3) with I of 4,000. All of the plots show that the variability in RMSE SEb 

tended to vary across conditions and was often unsystematic. 

In general, the accuracy of estimation of SEb was not a function of bs for all 3PL 

model conditions, but it was for conditions based on J of 50, I of 500, underlying a 

distributed LN(0,.25), and underlying b distributed U(-3,3) (see Figure 4a). The accuracy 

of estimation of SEb was also a function of bs for conditions based on J of 10, I of 500, 

and underlying b distributed U(-3,3) (Figure 5c). In these previously mentioned 

conditions, the accuracy of estimation of SEb tended to diminish for larger bs, creating a 

“j” shape. For conditions based on J of 50, underlying a distributed LN(0,.25), and I of 

4,000 as well as those based on I of 500, J of 50, underlying b distributed N(0,1), and 

underlying a distributed LN(0,.25), RMSE SEb was consistently estimated across the 

range of bs (Figure 4b). This same pattern was also seen for the remaining J of 10 

conditions shown in Figures 5a, 5b, and 5d. In the remaining J of 50 conditions, RMSE 

SEb had no systematic scatter across the range of bs (See Figures 4c and 4d). 
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RMSE standard error of discrimination results. The relationship between the 

RMSE SEa and a parameters for 15 quadrature points under the 50-item and 10-item 2PL 

model conditions are presented in Figures 6 and 7, respectively. The results for the 60 

quadrature points 2PL model conditions can be inferred from these plots as they did not 

differ from those observed for the 15 quadrature points conditions. Figure 6a is typical of 

the trend observed in conditions based on I of 4,000 and J of 50, while Figure 6b 
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represents the trend observed for conditions based on J of 50, I of 500, and underlying a 

distributed LN(0,.25). Figures 6c and 6d are typical of the range of patterns observed in 

conditions based on J of 50, I of 500, and underlying a distributed LN(0,.36). Figure 7a is 

representative of the pattern seen in the conditions based on I of 4,000 and J of 10.  

However, Figure 7b is typical of the pattern seen in conditions based on I of 4,000, J of 

10, underlying θ distributed χ2, and underlying b distributed U(-3,3). It is important to 

note that the RMSE SEa for the largest a in Figure 7b was not as exaggerated when based 

on underlying a distributed LN(0,.25). The remaining conditions based on I of 500 and J 

of 10 have patterns falling somewhere between Figures 7c and 7d. In general, accuracy of 

estimation of SEa tended to improve for smaller as, but diminished for larger as. This 

trend was most evident in conditions based on I of 500 (Figures 6b, 6c, and 6d) and 

conditions based on I of 4,000, J of 10, underlying θ distributed χ2, and underlying b 

distributed U(-3,3) (Figures 7b, 7c, and 7d). For conditions based on I of 4,000, accurate 

estimates of SEa were observed across the range of item a parameters. However, this did 

not hold true for larger item a parameters in conditions based on I of 4,000, J of 10, 

underlying θ distributed χ2, and underlying b distributed U(-3,3). 

The relationship between the RMSE SEa and a parameters for 15 quadrature 

points under the 50-item 3PL model conditions are presented in Figures 8 and 9, while 

10-item 3PL model conditions are in Figure 10. The results for the 60 quadrature points 

2PL model conditions did not differ from the 15 quadrature points conditions; therefore 

they can be inferred from these plots. All I of 500 and J of 50 conditions had trends 

falling somewhere between Figures 8a and 8c, while all I of 4,000 and J of 50 conditions 

had trends falling somewhere between Figure 8b and 8d. However, Figures 9a and 9b are 
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exceptions to the trends presented in Figure 8. Figure 9a represents the trend observed for 

the condition based on J of 50, underlying b distributed N(0,1), underlying a distributed 

LN(0,.36), underlying c distributed Beta4(9,33,0,1), underlying θ distributed χ2, and I of 

500, while Figure 9b represents the same condition but with an I of 4,000. All I of 4,000 

and J of 10 conditions had trends falling somewhere between Figures 10a and 10c, while 

all I of 4,000 and J of 50 conditions had patterns falling somewhere between Figures 10b 

and 10d. In general, the RMSE SEa plots show the accuracy of estimation of SEa was a 

function of a, where by accuracy of estimation of SEa tended to diminish for larger as. 

This trend was the strongest in the conditions based on J of 50 and I of 500 (Figures 8a 

and 8c). For the conditions based on J of 50 and I of 4,000, (Figures 8b and 8d) this trend 

became more evident when fewer of the underlying a, c, and θ distributions were similar 

to the prior distributions used in BILOG-MG 3 and underlying b was distributed U(-3,3) 

(Figure 8d). This trend was also discernable in the J of 10 conditions (Figure 10), but this 

trend was only realized because one extreme a parameter (i.e., a > 2.5) in these 

conditions had a reduction in accuracy of SEa. For all conditions, the accuracy of 

estimation of SEa tended to improve as I increased (Figures 8a, 8b, 9a, 9b, 10a, and 10b). 
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RMSE standard error of lower asymptote results. Figure 11 captures the typical 

plots of the relationship between RMSE SEc and item c parameters, for all 15 quadrature 

points 3PL model conditions. Throughout the range of c parameters, RMSE SEc was 

relatively uniform for all conditions. Results for the 60 quadrature points 3PL model 
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conditions can be inferred from these plots because they did not differ from those 

observed for the 15 quadrature points conditions. 

 

Bias standard error of difficulty results. Figure 12 shows the relationship between 

Bias SEb and item b parameters for 15 quadrature points under the 50-item and 10-item 

1PL model conditions. Results for the 60 quadrature points 1PL model conditions can be 
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inferred from these plots as they did not differ from those observed for 15 quadrature 

points conditions. Figure 12a is typical of conditions based on I of 500 and underlying b 

and θ distributed N(0,1), while Figures 12b represents the Bias in estimation of SEb 

patterns seen in conditions based on I of 500, underlying b distributed N(0,1), and 

underlying θ distributed χ2. Figure 12c is typical of the pattern seen in conditions based 

on underlying b distributed U(-3,3) and I of 500, while Figure 12d shows the typical 

pattern seen in all I of 4,000 conditions. In general, the Bias in estimation of SEb was not 

a function of b for 1PL model conditions. The degree of Bias in estimation of SEb was 

minimal throughout the range of b parameters for all 1PL model conditions. However, a 

small negative Bias in estimation of SEb was seen for more extreme bs when I was 500 

but this excluded the conditions based on I of 500 and similar underlying b and θ 

distributions (Figures 12b and 12c).  

Figure 13 shows the relationship between Bias SEb and item b parameters for 15 

quadrature points under the 50-item and 10-item 2PL model conditions. Results for the 

60 quadrature points 2PL model conditions can be inferred from these plots because they 

did not differ from those observed for 15 quadrature points conditions. Figure 13a 

represents the typical pattern seen in all conditions based on I of 500, J of 50, and 

underlying b distributed N(0,1). Figures 13b and 13c represent the Bias in estimation of 

SEb patterns seen in conditions based on I of 500, underlying b distributed U(-3,3), and J 

of 50 and 10, respectively. Figure 13d is typical of the pattern exhibited in all I of 4,000 

conditions, and I of 500, J of 10, and underlying b distributed N(0,1) conditions. In 

general, Bias in estimation of SEb was not a function of b for any of the 2PL model 

conditions and the degree of Bias was minimal for all 2PL model conditions.  
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The least amount of Bias in estimation of SEb throughout the entire range of b parameters 

was observed for conditions based on I of 4,000, and I of 500 and underlying b 

distributed N(0,1) (see Figure 13a and 13d). 
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Figure 14 shows the relationship between Bias SEb and item b parameters for 15 

quadrature points under the 50-item and 10-item 3PL model conditions. Results for the 

60 quadrature points 3PL model conditions can be inferred from these plots as they did 

not differ from those presented from those observed for the 15 quadrature points 
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conditions. Figure 14a shows the typical trend seen for conditions based on J of 50, 

underlying b distributed U(-3,3), and underlying a distributed LN(0,.25), while Figure 

14b represents conditions based on J of 50, underlying b distributed N(0,1), and 

underlying a distributed LN(0,.25). Figure 14c represents conditions based on underlying 

a distributed LN(0,.36) and I of 500, while 14d represents the same conditions except I of 

4,000. Figures 15a and 15c, respectively, represent the trends for conditions based on 

underlying b distributed N(0,1) and U(-3,3) with I of 500, while Figures 15b and 15d 

represent the trends for conditions based on underlying b distributed N(0,1) and U(-3,3) 

with I of 4,000. 

In general, all 3PL model conditions showed the Bias of estimation of SEb was 

not a function of the b parameters studied (Figures 14 and 15). Also, a more positive Bias 

in estimation of SEb was observed across the range of b parameters studied, but some b 

parameters studied did show a small amount of negative Bias in estimation of SEb. 

Specifically, for the J of 50 conditions, the Bias SEb decreased for larger bs (Figure 14), 

but this was not as evident for the J of 10 conditions (Figure 15). Morover, Bias SEb 

decreased for conditions based on J of 50 when the underlying a was distributed 

LN(0,.25) (Figures 14a and 14b) relative to underlying a distributed LN(0,.36) (Figures 

14c and 14d). Although the patterns seen in Figures 14c and 14d are somewhat similar, 

the severity of Bias in estimation of SEb was exacerbated in the J of 50, N of 4,000, and 

underlying a distributed LN(0,.36) conditions (Figure 14d), which was contrary to 

expectations. A closer inspection of the larger Bias in estimation of SEb showed that the 

corresponding bs tended to consist of smaller item a parameters (i.e., those items circled 

in Figure 14d) relative to the other b parameters. It is also important to point out that a 
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higher nonconvergence rate occurred in the smaller sample size conditions (Figure 14c). 

Moreover, if the five items circled in Figure 14d were eliminated, the results showed that 

a larger sample size (i.e., I of 4,000) gave rise to less Bias in estimation of SEb for J of 50 

3PL model conditions, as would be expected. However, these five items suspended this 

general conclusion. For the 3PL model conditions based on J of 10, a little positive Bias 

was found in the estimation of SEb (Figure 15). 
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Bias standard error of discrimination results. The relationship between the Bias 

SEa and a parameters for 15 quadrature points under the 50-item and 10-item 2PL model 

conditions are presented in Figures 16 and 17, respectively. The results for the 60 

quadrature points 2PL model conditions can be inferred from these plots because they did 

not differ from those observed for the 15 quadrature points conditions. Figure 16a is 
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typical of the trend observed in all I of 4,000 conditions except for the conditions based 

on underlying θ distributed χ2, J of 10, and underlying b distributed U(-3,3). Figures 16b 

and 16c show the trends observed for conditions based on I of 500, J of 50, and 

underlying a distributed LN(0,.25) and LN(0,.36), respectively. Figure 17 shows the range 

of trends observed in conditions based on J of 10 and I of 500. Additionally, the 

conditions based on N of 4,000, underlying θ distributed χ2, J of 10, and underlying b 

distributed U(-3,3), fall somewhere between the trends shown in Figures 17c and 17d. In 

general, Bias of estimation of SEa tended to be larger for larger as, but improved for 

smaller as. This trend was most evident in conditions based on I of 500 (Figures 16b, 

16c, and 16d) and those based on I of 4,000, J of 10, underlying θ distributed χ2, and 

underlying b distributed U(-3,3) (Figures 17b, 17c, and 17d). 

The typical relationship observed between the Bias SEa and a parameters for 15 

quadrature points under the 50-item 3PL model conditions are presented in Figures 18 

and 19, while Figures 20 and 21 show the same relationships for 15 quadrature points 

under the 10-item 3PL model conditions. Since the number of quadrature points did not 

influence the patterns seen under any of the 3PL model conditions, results for the 60 

quadrature points conditions can be inferred from these plots. Figures 18a and 18c 

represent the range of trends observed in all J of 50 and I of 500 conditions. Figures 18b 

and 18d are characteristic of the trends observed throughout the J of 50 and I of 4,000 

conditions. It is important to note that Figures 19a and 19b depict slightly different trends 

than those observed in Figures 18c and 18d. Specifically, Figure 19a represents the trend 

observed for the condition based on J of 50, underlying b distributed N(0,1), underlying a 



86 

distributed LN(0,.36), underlying c distributed Beta4(9,33,0,1), underlying θ distributed 

χ2, and I of 500, while Figure 19b represents the same condition, but with an I of 4,000. 

 

Figure 20 represents the range of patterns seen in all conditions based on J of 10 and I of 

500, while Figure 21 depicts the range of trends observed for conditions based on J of 10 
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and I of 4,000. Figures 18 through 21 show estimation of SEa was a function of item a 

parameters. This pattern was clearly seen in conditions based on J of 50 and I of 500 

 

(Figures 18a and 18c). For the conditions based on J of 50 and I of 4,000, (Figures 18b 

and 18d) this trend became more evident when fewer of the underlying a, c, and θ 

distributions were similar to the prior distributions used in BILOG-MG 3 and underlying 
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b was distributed U(-3,3) (Figure 18d). This trend was also discernable in the J of 10 

conditions (Figure 20), but this trend was only detectable because one extreme a 

parameter (i.e., a > 2.5) in these conditions had an overestimated SEa. For all conditions,   

 

the accuracy of estimation of SEa improved as I increased (Figures 18a, 18b, 19a, 19b, 20 

and 21). In addition, Bias in estimation of SEa was generally overestimated, but some 
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conditions based on I of 4,000 (Figures 18b, 18d, 21b, and 21d) tended to underestimate 

the SEa for some smaller as and overestimate SEa for some larger as. 

 

Bias standard error of lower asymptote results. Figures 22a and 22b are 

characteristic of the relationship between Bias SEc and item c parameters, for all 50- and 

10-item 3PL model conditions, respectively. Results for the 60 quadrature points and 3PL 

model conditions can be inferred from these plots because they did not vary from those 

found for the 15 quadrature points conditions. Throughout the range of c parameters, Bias 

SEc was relatively uniform and close to zero, regardless of condition. 
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Chapter Five 

Discussion 

Currently, BILOG-MG 3 it is one of the most popular IRT programs used for 

calibrating item parameter estimates from dichotomously scored items. However, little 

attention has been given to the accuracy of item parameter SEEs produced by the 

program. The goal of this simulation study was to inform users of BILOG-MG 3 

regarding the accuracy of item parameter SEEs produced in the program. Therefore, a 

Monte Carlo simulation was conducted to allow a direct examination of the accuracy of 

estimation of the 1PL, 2PL, and 3PL models item parameter SEEs, under a variety of 

conditions. 

To recap, hypothesis one predicted that as sample size increased, item parameter 

SEEs would be more accurate. Hypothesis two predicted that increasing the number of 

quadrature points would improve the accuracy of item parameter SEEs. The third 

hypothesis was that test length would not have an impact on the accuracy of item 

parameter SEEs. The final hypothesis predicted that item parameter SEEs would be more 

accurate when more of the underlying item parameter and ability distributions were 

similar to the prior item parameter and ability distributions specified in BILOG-MG 3, 

than when the underlying distributions and prior distributions were not similar. 

Results from the RMSE and Bias plots showed the accuracy of the estimated SEb 

under the 1PL, 2PL, and 3PL models depended on the magnitude of the difficulty 

parameter being estimated for select conditions. Under the 1PL model, results were not 

consistent with the first hypothesis because the accuracy of the estimated SEb was related 

to I, underlying θ distribution, and underlying b distribution. Specifically, accurate 
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estimation of SEb (i.e., both RMSE < .05 and Bias < .1 for all bs) was found throughout 

the range of b parameters studied for I of 500, underlying b distributed N(0,1), and 

underlying θ distributed N(0,1) conditions or I of 4,000 conditions. For all other 1PL 

model conditions, accuracy of SEb tended to decrease for larger b parameters. As 

indicated above, neither increasing the number of quadrature points nor changing the test 

length had an influence on the accuracy of the estimated SEb under the 1PL model. Thus, 

results were consistent with hypothesis two, but were not consistent with hypothesis 

three. Also, the data was consistent with hypothesis four under the 1PL model because 

the accuracy of SEb improved when the underlying θ distribution was similar to the prior 

θ distribution specified in BILOG-MG 3, but only when I was 500. Taken as a whole, the 

1PL model results are consistent with those found by Wang and Chen (2005), who 

examined accuracy of SEb under the Rasch model by means of WINSTEPS. 

Consistent with the first hypothesis, results for the 2PL model showed the 

accuracy of the estimated SEb was related to I. For I of 4,000, consistent estimation of 

SEb was found throughout the range of difficulty parameters studied. When I was 500, 

accuracy of SEb decreased for larger b parameters. Consequently, no other variables in 

this study had an impact on the accuracy of the estimated SEb under the 2PL model. This 

means the results were consistent with hypothesis three, but the data was not consistent 

with either hypothesis two or four. 

For the 3PL model, results showed the overall accuracy of the estimated SEb 

tended to be impacted by I, which is consistent with hypothesis one. Results were not 

consistent with hypothesis two, in that no gain in accuracy of the estimated SEb was 
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found by increasing the number of quadrature points. Consistent with hypothesis three, 

results did not show a difference in accuracy of the estimated SEb between test lengths. 

However, RMSE and Bias SEb results showed certain combinations of J, I, underlying b 

distribution, and underlying a distribution had consistently uniform accuracy of the 

estimated SEb across the range of b parameters studied. These conditions were: (1) J of 

50, underlying b distributed N(0,1), and underlying a distributed LN(0,.25); (2) J of 50, I 

of 4,000, underlying b distributed U(-3,3), and underlying a distributed LN(0,.25); (3) J 

of 10, I of 500, and underlying b distributed N(0,1); and (4) J of 10 and I of 4,000. 

Results did show the accuracy of the estimated SEb improved when the underlying item 

parameters and ability distributions were similar, but only for J of 50 (i.e., compare 

Figures 4b to 4c and 4d). Thus, results are consistent with hypothesis four. For the 

remaining J of 50 conditions, an inconsistent estimation of SEb was found throughout the 

range of b parameters studied. 

When considering the accuracy of the estimated SEa, the RMSE and Bias plots 

under the 2PL and 3PL models showed that the accuracy depended upon the magnitude 

of the a parameter being estimated. For the 2PL model, results showed the accuracy of 

the estimated SEa was related to J, I, underlying θ distribution, underlying b distribution, 

and underlying a distribution when the entire range of a parameters was considered. It is 

important to note that when only small a parameters were considered (i.e., a < 1.4), a 

small advantage in accuracy of the estimated SEa was found when using I of 4,000 versus 

I of 500. When the full range of item a parameters were considered it was found that 

results were not consistent with hypothesis one, two, or three, but they were consistent 

with hypothesis four. Although the effect of the above mentioned variables on the 



96 

accuracy of SEa was small, it is still important to discuss. For instance, for J of 10 and I 

of 500 the accuracy of the estimated SEa improved throughout the range of a parameters 

studied as the underlying a and θ  distributions became more similar to the prior a and θ  

distributions identified in BILOG-MG 3. Results also showed consistent and accurate 

estimates of SEa throughout the range of a parameters studied for I of 4,000, but this did 

not hold for combinations of I of 4,000, J of 10, underlying θ distributed χ2, and 

underlying b distributed U(-3,3). In these conditions, large RMSE and Bias SEa values 

were found for the largest a parameter studied. In the remaining I of 500 conditions, 

accuracy of the estimated SEa also tended to diminish for larger a parameters. Moreover, 

the poorest estimation of SEa across the range of a parameters occurred for J of 10, I of 

500, underlying b distributed U(-3,3), and when the underlying a and θ distributions were 

different from the prior a and θ  distributions used in BILOG-MG 3. These results were 

consistent with hypothesis four. 

When the 3PL model was considered, results showed the accuracy of the 

estimated SEa was related to J, I, underlying b, a, and θ distributions. With the exception 

of two conditions (see Figure 10), RMSE and Bias SEa data showed that as the magnitude 

of the a parameter increased, the accuracy of the estimated SEa consistently decreased. 

Similar to the 2PL model results, an increase in sample size drove the accuracy of the 

estimated SEa under the 3PL model. This is consistent with hypothesis one. However, 

although small, results showed that when more of the underlying item parameter 

distributions were similar to the prior item distributions used in BILOG-MG 3, smaller 

RMSE and Bias SEa values were found across the range of item a parameters studied. 
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This finding was not consistent with hypothesis one and two, but was consistent with 

hypothesis three and four.  

The RMSE and Bias plots showed the accuracy of the estimated SEc under the 

3PL model was independent of the magnitude of the item c parameter being estimated. 

Furthermore, results from these plots showed the accuracy of SEc was consistently 

estimated across the range of c parameters studied for all conditions. Consequently, 

results were not consistent with hypothesis one, three, and four, but results were 

consistent with hypothesis three because J did not have an effect on the accuracy of the 

estimated SEc. 

These findings suggested some general conclusions, but they should be 

interpreted with caution because they assume the underlying item and ability distributions 

are known to the researchers. One, BILOG-MG 3 produced accurate estimates of SEb 

under the 1PL and 2PL models throughout the range of difficulty parameters studied for 

all conditions studied. This means users can have confidence in the accuracy of SEb from 

the 1PL and 2PL models for use in other applications. The problems associated with 

trying to get accurate estimates of SEb under all conditions studied for the 3PL model 

seemed to be challenging. For instance, users of BILOG-MG 3 can get reasonably 

accurate estimates of SEb for a 50-item test under the 3PL model when sample size is 

4,000 and all item a parameter estimates collectively have a distribution similar to that 

assumed by the default prior a distribution in BILOG-MG 3. BILOG-MG 3 produced 

reasonable estimates of SEb for a 10-item length test under the 3PL model, but this did 

not hold when the sample size was 500 and the estimated item b parameters followed a 

uniform distribution restricted to the range (-3,3). In addition, the accuracy of SEb across 
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the range of b parameters studied seemed to have a greater dispersion than that found 

under the 1PL and 2PL models. That is, the trends for the 1PL and 2PL models seemed to 

be smoother, under the 3PL model patterns were difficult to identify. Due to the poor 

estimation of the SEb under the 3PL, it is not recommended that they be used beyond 

descriptive purposes. 

 A second conclusion that can be drawn from this study is that users of BILOG-

MG 3 can get reasonably accurate estimates of SEa under the 2PL model for smaller item 

a parameters (i.e., a < 1.4), but items with larger a parameters tended to have poor SEa 

estimates under some study conditions. Unfortunately, under the 3PL model, accurate 

estimates of SEa throughout the range of a parameters studied tended to be limited to 50-

item tests calibrated with I of 4,000. So, users of the 3PL SEa should use them with 

caution.  

A third conclusion is that users can use BILOG-MG 3 to get reasonably accurate 

estimates of SEc throughout the range of c parameters studied under all of the situations 

examined in this study. However, the tendency was toward a small positive Bias. 

Generally speaking, a positive Bias in item parameter SEEs was seen across all models. 

Given the fixed factor design, generalizations beyond the conditions considered 

should be made with caution. For instance, this simulation study is limited to BILOG-

MG 3. Clearly, one would not generalize findings from this study to those using another 

IRT estimation program. Also, only a limited number of testing conditions were 

considered. For example, it is unknown how these item parameter SEE will perform with 

very long tests and smaller sample sizes. Equally, it is unknown how dimensionality or 

missing data will impact the accuracy of SEEs in BILOG-MG 3. Future research might 
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also explore how accurate SEEs from BILOG-MG 3 compare with other programs for 

dichotomously scored items. 

Another limitation to the study was that the default ridge constant of RIDGE = (2, 

0.1, 0.01) was changed to RIDGE = (2, 0.01, 0.2) on the BILOG CALIB line. Although 

this was only done for the 3PL model to offset an initially high level of nonconvergence 

rates, it is possible that the modification lead to the increase in variability of SEa and SEb 

estimates. Future research should explore this possibility by generating thousands of 

replications per condition and then removing nonconverged files to arrive at a conclusion. 

Then, and only then, we could rule out the modification to the ridge constant as an 

explanation for the inconsistency in accuracy of SEb and SEa produced under the 3PL 

model. 

 

 

 

 

 

 

 

 

 

 

 

 



100 

References 

Abdel-fattah, A. A. (1994, April). Comparing BILOG and LOGIST estimates for normal, 

truncated normal, and beta ability distributions. Paper presented at the annual 

meeting of the American Educational Research Association, New Orleans, LA. 

Agresti, A., & Finlay, B. (1997). Statistical methods for the social sciences (3rd ed.). 

Upper Saddle River, NJ: Prentice Hall. 

Arnould, C. (2006). Hand functioning in children with cerebral palsy. Unpublished 

Dissertation, Université catholique de Louvain, Brussels, Belgium. 

Baker, F. B. (1990). Some observations on the metric of PC-BILOG results. Applied 

Psychological Measurement, 14, 139-150. 

Baker, F. B. (1998). An investigation of the item parameter recovery of a Gibbs sampling 

procedure. Applied Psychological Measurement, 22, 153-169. 

Baker, F. B. (2001). The basics of item response theory (2nd ed.). College Park, MD: Eric 

Clearing House on Assessment and Evaluation. (ERIC Document Reproduction 

Service No. ED 458 219). 

Baker, F. B., & Kim, S. H. (2004). Item response theory: Parameter estimation 

techniques (2nd ed.). New York: Marcel Dekker, Inc. 

Ban, J-C., Hanson, B. A., Wang, T., Qing, Y., & Harris, D. J. (2001). A comparative 

study of on-line pretest item - calibration/scaling methods in computerized 

adaptive testing. Journal of Educational Measurement, 38, 191-212. 

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s 

ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test 

scores (pp. 397-472). Reading, MA: Addison-Wesley. 



101 

Bock, R. D., & Aitken, M. (1981). Marginal maximum likelihood estimation of item 

parameters: An application of an EM algorithm. Psychometrika, 46, 443-459. 

Carlson, R. D., & Locklin, R. H. (1995). Item response theory: Comparing BILOG and 

MicroCAT calibration for a mathematics ability test. (ERIC Document 

Reproduction Service No. ED 393 881) 

Cohen, A. S., Kim, S., & Subkoviak, M. J. (1991). Influence of prior distributions on 

detection of DIF. Journal of Educational Measurement, 28, 49-59. 

DeMars, C. E. (2003). Equating multiple forms of a competency test: An item response 

theory approach. (ERIC Document Reproduction Service No. ED480126). 

DeMars, C. E., (2004). Detection of item parameter drift over multiple test 

administrations. Applied Measurement in Education, 17, 265-300. 

Drasgow, F. (1989). An evaluation of marginal maximum likelihood estimation for the 

two-parameter logistic model. Applied Psychological Measurement, 13, 77-90. 

du Toit, M. (Ed.). (2003). IRT from SSI. BILOG-MG, MULTILOG, PARSCALE, 

TESTFACT. Lincolnwood, IL: Scientific Software International. 

Educational Testing Services. (1998). Algebra end-of-course examination report. 

Princeton, NJ. 

El-Korashy, A-F (1995). Applying the rasch model to the selection of items for a mental 

ability test. Educational and Psychological Measurement, 55(5), 753-763. 

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, 

NJ: Erlbaum. 

Goldstein, H. (1983). Measuring changes in educational attainment over time: Problems 

and possibilities. Journal of Educational Measurement, 20, 369-377. 



102 

Hambleton, R. K., & Jones, R. W. (1993). An NCME instructional module on 

comparison of classical test theory and item response theory and their applications 

to test development. Educational Measurement: Issues and Practice, 12, 253-262. 

Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and 

applications. Boston: Kluwer. 

Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item 

response theory. Newbury Park, CA: Sage. 

Harvey, R. J., & Hammer, A. L. (1999). Item response theory. The Counseling 

Psychologist, 27, 353-383. 

Harwell, M. R., & Baker, F. B. (1991). The use of prior distributions in marginalized 

Bayesian item parameter estimation: A didactic. Applied Psychological 

Measurement, 15, 375-389. 

Harwell, M. R., Baker, F. B., & Zwarts, M. (1988). Item parameter estimation via 

marginal maximum likelihood and an EM algorithm: A didactic. Journal of 

Educational Statistics, 13, 243-271. 

Harwell, M. R. & Janosky, J. E. (1991). An empirical study of the effects of small 

datasets and varying prior variances on item parameter estimation in BILOG. 

Applied Psychological Measurement, 15, 279-291. 

Holland, P. W., & Wainer, H. (1993). Differential item functioning. Hillsdale, 

NJ: Erlbaum. 

Hulin, C. L., Lissak, R. I., & Drasgow, F. (1982). Recovery of two- and three-parameter 

logistic item characteristic curves: A monte carlo study. Applied Psychological 

Measurement, 6, 249-260. 



103 

Kirisci, L., Hsu, T., & Yu, L. (2001). Robustness of item parameter estimation programs 

to assumptions of unidimensionality and normality. Applied Psychological 

Measurement, 25, 146-162. 

Li, Y. H., & Lissitz, R. W. (2004). Applications of the analytically derived asymptotic 

standard errors of item response theory item parameter estimates. Journal of 

Educational Measurement, 41, 85-117. 

Lim, R. G., & Drasgow, F. (1990). Evaluation of two methods for estimating item 

response theory parameters when assessing differential item functioning. Journal 

of Applied Psychology, 75, 164-174. 

Linacre, J. M. (2001). WINSTEPS Rasch measurement computer program (Version 3.31) 

[Computer software]. Chicago: Winsteps.com. 

Lord, F. M. (1980). Applications of item response theory to practical testing problems. 

Hillsdale, NJ: Erlbaum Associates. 

Meijer, R. R., & Nering, M. L. (1999). Computerized adaptive testing: Overview and 

introduction. Applied Psychological Measurement, 23, 187-194. 

Mislevey, R. J. (1986). Bayes model estimation in item response models. Psychometrika, 

51, 177-195. 

Mislevy, R. J. & Stocking, M. L. (1989). A consumer’s guide to LOGIST and BILOG. 

Applied Psychological Measurement, 13, 57-75. 

Muraki, E., & Bock, R. D. (1996). PARSCALE (Version 3) [Computer program]. 

Chicago: Scientific Software International. 

Novick, M., & Jackson, P. (1974). Statistical methods for educational and psychological 

research. New York: McGraw Hill. 



104 

Obiekwa, J. C. (2001). An item response theory analysis of Palmore's facts on aging quiz 

(FAQ) using the three parameter model. Paper presented at the annual meeting of 

the Association for Gerontology in Higher Education, San Jose, CA. 

Oshima, T. C., Raju, N. S., & Nanda, A. O. (2006). A new method for assessing the 

statistical significance in the differential functioning of items and tests (DFIT) 

framework. Journal of Educational Measurement, 43, 1-17. 

Parshall, C. G., Kromrey, J. D., & Chason, W. M. (1996, June). Comparison of 

alternative models for item parameter estimation with small samples. Paper 

presented at the Annual Meeting of the Psychometric Society, Banff, Alberta, 

Canada. 

Parshall, C. G., Kromrey, J. D., Chason, W. M., & Yi, Q. (1997, June). Evaluation of 

parameter estimation under modified IRT models and small samples. Paper 

presented at the Annual Meeting of the Psychometric Society, Gatlinburg, TN. 

Patsula, L. N., & Gessaroli, M. E. (1995, April). A comparison of item parameters 

estimates and ICCs produced with TESTGRAF and BILOG under different test 

lengths and sample sizes. Paper presented at the annual meeting of the American 

Educational Research Association, San Francisco, CA. 

Raju, N. S., van der Linden, W. J., & Fleer, P. F. (1995). An IRT-based internal measure 

of test bias with applications for differential item functioning. Applied 

Psychological Measurement, 19, 353-368. 

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. 

Chicago: University of Chicago Press. 



105 

Richichi, R. (1996, October). An item response theory analysis of multiple-choice items 

chosen at random from a publisher's test bank. Paper presented at the annual 

conference of the Northeastern Educational Research Association Conference, 

Ellenville, NY. 

Rupp, A. A. (2003). Item response modeling with BILOG-MG and MULTILOG for 

windows. International Journal of Testing, 3, 365-384. 

Sass, D. A., Schmitt, T. A., & Walker, C. M. (2004, April). An evaluation of BILOG-MG 

with skewed theta distributions using various estimation procedures: A simulation 

study. Poster presented at the National Council on Measurement in Education, 

San Diego, California. 

Seong, T. -J. (1990). Sensitivity of marginal maximum likelihood estimation of item and 

ability parameters to the characteristics of the prior ability distributions. Applied 

Psychological Measurement, 14, 299-311. 

Smith, R. M. (1996). A comparison of the Rasch separate calibration and between-fit 

methods of detecting item bias. Educational and Psychological Measurement, 56, 

403-418. 

Smith, R. M., & Suh, K. K. (2003). Rasch fit statistics as a test of item parameter 

estimates. Journal of Applied Measurement, 4, 153-163. 

Stone, G. E., & Lunz, M. E. (1994, April). Item calibration considerations: A comparison 

of item calibrations on written and computerized adaptive examinations. Paper 

presented at the annual meeting of the American Educational Research 

Association, New Orleans, LA. 



106 

Swamminathan, H., & Gifford, J. A. (1985). Bayesian estimation in the two-parameter 

logistic model. Psychometrika, 50, 349-364. 

Thissen, D. & Wainer, H. (1982). Some standard errors in item response theory. 

Psychometrika, 47, 397-412. 

van der Linden, W. J., & Hambleton (1997). Handbook of modern item response theory. 

New York: Springer-Verlag. 

van der Linden, W. J., & Glas, C. (Eds.). (2000). Computer-adaptive testing: Theory and 

practice. Boston: Kluwer. 

Veerkamp, W. J. J., & Glas, C. A. W. (2000). Detection of known items in adaptive 

testing with a statistical quality control method. Journal of Educational and 

Behavioral Statistics, 25, 373-389. 

Wainer, H., Dorans, N. J., Flaugher, R., Green, B. F., Mislevy, R. J., Steinberg, L., et al. 

(1990). Computerized adaptive testing: A primer. Hillsdale, NJ: Lawrence 

Erlbaum Associates. 

Wang, W. & Chen, C. (2005). Item parameter recovery, standard error estimates, and fit 

statistics of the WINSTEPS program. Educational and Psychological 

Measurement, 65, 376-404. 

Wells, C. S., Subkoviak, & Serlin, R. C. (2002). The effect of item parameter drift on 

examinee ability estimates. Applied Psychological Measurement, 26, 77-87. 

Whittaker, T. A., Fitzpatrick, S. J., Williams, N. J., & Dodd, B. G. (2003). Applied 

Psychological Measurement, 27, 299-300. 



107 

Wightman, L. E. & De Champlain, A. F. (1994). A comparison of the properties of IRT 

parameter estimates using two different calibration designs (ETS Research Rep. 

No. 64-19). Princeton, NJ: Educational Testing Service. 

Wingersky, M. S., Barton, M. A., & Lord, F. M. (1982). LOGIST user’s guide. Princeton 

NJ: Educational Testing Service. 

Wright, B. D. & Stone, M. (1979). Best test design. Chicago: MESA. 

Yen, W. M. (1987). A comparison of the efficiency and accuracy of BILOG and 

LOGIST. Psychometrika, 52, 275-291. 

Zimowski, M. F., Muraki, E., Mislevy, R. J., & Bock, R. D. (2003). BILOG-MG for 

Windows: Multiple-group IRT analysis and test maintenance for binary items 

(Version 3.0) [Computer software]. Chicago, IL: Scientific Software 

International. 

 



108 

Appendix A 

Descriptive Statistics of Statistical Distributions Used in Generating Item Parameters and Sampled Parameters 
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Appendix B 

Sampled Item Parameters for Conditions with 50-Item Length Test 
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Appendix C 

Sampled Item Parameters for Conditions with 10-Item Length Test  
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Appendix D 
 

Modified Version of the Whittaker et al. (2003) SAS Macro Program 
 
PROC PRINTTO NEW LOG = 'C:\MIKE1to4.LOG'; 
RUN; 
%MACRO DATAGEN(CN=, NE=, SEED=, SEEDUNI=); 
%DO REP = 1 %TO 1000; 
 %INCLUDE 'C:\Sim\IRTGEN.sas'; 
 %LET SEED=(&SEED + &REP);  
/*Specifies the seed number to be used when generating thetas */ 
 %LET SEEDUNI=(&SEEDUNI + &REP);  
/*Specifies the seed number for ranuniform used to compute 0/1s */ 
 DATA L3; 
  INFILE "C:\Sim\Par\TL50B1A1C1.TXT";  
/*change text file before running*/ 
   INPUT A B C; 
 %IRTGEN(MODEL=L3, DATA=L3, OUT=L3OUT, NI=50, NE=&NE)  
 DATA _NULL_;  
 SET WORK.L3OUT; 
 FILE "C:\Sim\C&CN.\In\C&CN.inR&REP..txt"; 
/*make sure folders are created*/ 
 PUT     @1  ID  4.0 
             @6  R1  1.0 @7  R2  1.0 @8  R3  1.0 @9  R4  1.0 @10 R5  1.0 
             @11 R6  1.0 @12 R7  1.0 @13 R8  1.0 @14 R9  1.0 @15 R10 1.0 
             @16 R11 1.0 @17 R12 1.0 @18 R13 1.0 @19 R14 1.0 @20 R15 1.0 
             @21 R16 1.0 @22 R17 1.0 @23 R18 1.0 @24 R19 1.0 @25 R20 1.0 
  @26 R21 1.0 @27 R22 1.0 @28 R23 1.0 @29 R24 1.0 @30 R25 1.0 
  @31 R26 1.0 @32 R27 1.0 @33 R28 1.0 @34 R29 1.0 @35 R30 1.0 
  @36 R31 1.0 @37 R32 1.0 @38 R33 1.0 @39 R34 1.0 @40 R35 1.0 
  @41 R36 1.0 @42 R37 1.0 @43 R38 1.0 @44 R39 1.0 @45 R40 1.0 
  @46 R41 1.0 @47 R42 1.0 @48 R43 1.0 @49 R44 1.0 @50 R45 1.0 
  @51 R46 1.0 @52 R47 1.0 @53 R48 1.0 @54 R49 1.0 @55 R50 1.0 
  ; 
 RUN; 
%END; 
%MEND DATAGEN; 
 
%DATAGEN(CN=1, NE=500,  SEED=577562, SEEDUNI=1362723) 
%DATAGEN(CN=2, NE=4000, SEED=296586, SEEDUNI=1882944) 
%DATAGEN(CN=3, NE=500,  SEED=596891, SEEDUNI=1706225) 
%DATAGEN(CN=4, NE=4000, SEED=167312, SEEDUNI=1551759) 
 
%LET MAXCAT=2; /* Maximum number of categories for any item */ 
%LET DIST='NORMAL'; /* Specifies distribution to be used when generating thetas */ 
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%MACRO IRTGEN(MODEL=, DATA=, OUT=, NI=, NE=); 
/***************MacroIRTGEN BEGINS***********/ 
%MACRO L3GEN; 
 EU=EXP(A*(THETA-B));  
/* The scaling factor D = 1 was incorporated into the IRT model*/ 
  P=C+((1-C)*(EU/(1+EU))); 
  IF P GE RANUNI(&SEEDUNI) THEN R(J)=1; 
  ELSE R(J)=0; 
%MEND L3GEN; 
 
%LET FLAG=0; 
%IF %LENGTH(&MODEL)=0 %THEN %DO; 
 %PUT; 
 %PUT *** ERROR ** YOU MUST SPECIFY A MODEL ***; 
 %PUT; 
 %LET FLAG=1; 
%END; 
%LET MODEL=%UPCASE(&MODEL); 
%IF    &MODEL=PC %THEN %LET MDL=PCGEN; 
%ELSE  %IF &MODEL=GPC %THEN %LET MDL=GPCGEN; 
%ELSE  %IF &MODEL=GR  %THEN %LET MDL=GRGEN; 
%ELSE  %IF &MODEL=RS  %THEN %LET MDL=RSGEN; 
%ELSE  %IF &MODEL=SI  %THEN %LET MDL=SIGEN; 
%ELSE  %IF &MODEL=L3  %THEN %LET MDL=L3GEN; 
%ELSE %DO; 
 %PUT; 
 %PUT *** ERROR IN MODEL SPECIFICATION: &MODEL ***; 
 %PUT; 
 %LET FLAG=1; 
%END; 
 %IF %LENGTH(&NI)=0 OR &NI=0 %THEN %DO; 
  %PUT; 
  %PUT *** ERROR ** YOU MUST SPECIFY NUMBER OF ITEMS; 
  %PUT; 
  %LET FLAG=1; 
 %END; 
%IF %LENGTH(&NE)=0 OR &NE=0 %THEN %DO; 
  %PUT; 
  %PUT *** ERROR ** YOU MUST SPECIFY NUMBER OF 
EXAMINEES ***; 
  %PUT; 
  %LET FLAG=1; 
 %END; 
%IF &FLAG=0 %THEN %DO; 
 %LET NCATSTR=; 
 %IF &MODEL=GR %THEN 
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  %LET NCATSTR=%STR(NACT=&MAXCAT-NMISS(OF CB1-
CB&MAXCAT)+1;); 
 %IF ((&MODEL=PC)|(&MODEL=GPC)) %THEN 
  %LET NCATSTR=%STR(NACT=&MAXCAT-NMISS(OF SD1-
SD&MAXCAT)+1;); 
 %IF ((&MODEL=RS)|(&MODEL=SI)) %THEN 
  %LET NCATSTR=%STR(NACT=&MAXCAT-NMISS(OF H1-
H&MAXCAT)+1;); 
 DATA THETA; *PRODUCES THETAS FOR ALL EXAMINEES; 
  KEEP THETA ID; 
  CALL STREAMINIT(&SEED); 
  DO I=1 TO &NE; 
   IF &DIST='UNIFORM' THEN 
   THETA=RAND(&DIST)*6-3; 
   ELSE THETA=RAND(&DIST); 
   ID = 0 + I; 
   OUTPUT; 
  END; 
 RUN; 
DATA &OUT; 
 KEEP ID THETA R1-R&NI; 
 ARRAY PP(*) P1-P&MAXCAT; ARRAY PS(*) PS1-PS&MAXCAT; 
 ARRAY DD(*) D1-D&MAXCAT; ARRAY ZZ(*) Z1-Z&MAXCAT; 
 ARRAY BB(*) CB1-CB&MAXCAT; ARRAY SP(*) SUMP1-
SUMP&MAXCAT; 
 ARRAY SD(*) SD0 SD1-SD&MAXCAT; ARRAY R(*) R1-R&NI; SD0=0; 
 ARRAY TH(*) H0 H1-H&MAXCAT; H0=0; 
 SET THETA; 
 CALL STREAMINIT(&SEEDUNI); 
 DO J=1 TO &NI; 
  SET &DATA POINT=J; 
   &NCATSTR 
    %&MDL; 
   END; 
  RUN; 
 %END; 
 
 %MEND IRTGEN; 
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Appendix E 
 

Sample 1PL Model Calibration Command File for BILOG-MG 3 
 
>GLOBAL DFNAME = 'C:\Sim\C193\In\C193inR1.txt', 
        NPARM = 1, 
        LOGISTIC, 
        SAVE; 
>SAVE PARM = 'C:\Sim\C193\Out\C193outR1.txt'; 
>LENGTH NITems = (50); 
>INPUT NTOtal = 50, 
        NALT =    5, 
        NIDchar = 4; 
>ITEMS ; 
>TEST1 TNAme = '', 
       INUmber = (1(1)50); 
(4A1, 1X, 50A1) 
>CALIB NQPt = 15, 
       CRIt = 0.01, 
       ACCel = 1.0, 
       Cycles = 1000, 
       Newton = 2, 
       Sprior, 
       Gprior; 
>SCORE ; 
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Appendix F 
 

Sample 2PL Model Calibration Command File for BILOG-MG 3 
 
>GLOBAL DFNAME = 'C:\Sim\C1\In\C1inR1.txt', 
        NPARM = 3, 
        LOGISTIC, 
        SAVE; 
>SAVE PARM = 'C:\Sim\C1\Out\C1outR1.txt'; 
>LENGTH NITems = (50); 
>INPUT NTOtal = 50, 
        NALT =    5, 
        NIDchar = 4; 
>ITEMS ; 
>TEST1 TNAme = '', 
       INUmber = (1(1)50); 
(4A1, 1X, 50A1) 
>CALIB NQPt = 15, 
       CRIt = 0.01, 
       ACCel = 1.0, 
       Cycles = 1000, 
       Newton = 2, 
       Sprior, 
       RIDGE=(2,0.01,0.2), 
       Gprior; 
>SCORE ; 
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Appendix G 
 

Sample 1PL Model Calibration Command File for BILOG-MG 3 
 
>GLOBAL DFNAME = 'C:\Sim\C1\In\C1inR1.txt', 
        NPARM = 3, 
        LOGISTIC, 
        SAVE; 
>SAVE PARM = 'C:\Sim\C1\Out\C1outR1.txt'; 
>LENGTH NITems = (50); 
>INPUT NTOtal = 50, 
        NALT =    5, 
        NIDchar = 4; 
>ITEMS ; 
>TEST1 TNAme = '', 
       INUmber = (1(1)50); 
(4A1, 1X, 50A1) 
>CALIB NQPt = 15, 
       CRIt = 0.01, 
       ACCel = 1.0, 
       Cycles = 1000, 
       Newton = 2, 
       Sprior, 
       RIDGE=(2,0.01,0.2), 
       Gprior; 
>SCORE ; 
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Appendix H  

Levels of Conditions Manipulated in the Simulation Study 
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Appendix I  

Percentage of Nonconvergence within Condition for the 3PL Model 
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Appendix J 

Percentage of Nonconvergence within Condition for the 2PL Model 
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Appendix K 

Percentage of Nonconvergence within Condition for the 1PL Model 
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Appendix L 

Summary of Items Omitted by Condition 
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Appendix M 

Gap Analysis Summary of Items Omitted for the 3PL Model (I = 500) 
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