September 1985

REMOVAL OF NESTING STARLINGS WITH DRC-1339

Douglas I. Hall
U.S. Fish and Wildlife Service

Follow this and additional works at: http://digitalcommons.unl.edu/ewdcc2
Part of the Environmental Health and Protection Commons

http://digitalcommons.unl.edu/ewdcc2/22
REMOVAL OF NESTING STARLINGS WITH DRC-1339
by Douglas I. Hall*

ABSTRACT
DRC-1339-treated crickets (Gryllus sp.) were utilized in an attempt to re-
move starlings (Sturnus vulgaris) nesting and rearing young in the aircraft
hangars at the Little Rock Air Center, Little Rock, Pulaski County, Arkansas.
Bait ratio of 1 treated to 5 untreated crickets was used. They were placed
under airport night lights where forag-
ing birds naturally gathered to feed on
insects attracted to these lights. Ad-
ult starlings consumed the crickets as
well as fed them to their young. Leth-
al control was achieved on both age
classes of bird. Field test results
show promise for the development of a
management tool to remove unwanted
birds rearing young in and around man-
made structures.

INTRODUCTION
With the introduction of the Euro-
pean starling into New York in the
1890's (Pearson 1917) and subsequent
rapid range expansion, this pest spe-
cies has been responsible for a myriad
of problems detrimental to man. Star-
lings have conflicted with agricultural
crop and livestock production, helped
spread disease and parasites to man and
domestic animals, created a nuisance
through noise, filth and odor in rural
and urban roosting concentrations, com-
peted with native species for food and
nesting sites and have been responsible
for the loss of human life and property
in bird-aircraft conflicts.

In the Spring of 1983, starlings
were nesting and rearing young in the
aircraft hangars at the Little Rock Air
Center, Little Rock, Pulaski County,
Arkansas. The birds were destroying
the styrofoam and fiberglass insulation
in the hangars as well as creating pro-
blems from the daily build-up of corrosive
bird droppings on the airplanes.

*Wildlife Biologist - U.S. Fish and
Wildlife Service, Wildl. Asst. Office,
P.O. Box 570, Stuttgart, AR 72160.

Additionally, the concentration of
birds at the facility constituted an
airstrike potential. Unsuccessful at-
ttempts to solve the problem led to a
request for assistance from the U.S.
Fish and Wildlife Service, Wildlife As-
sistance Office, Stuttgart, Arkansas.

Field observations verified that
starlings had indeed invaded the hangar
system. Pyrotechnics, or any other
scaring apparatus would not have been
effective in this case as many young
had already hatched and the rearing-
nesting instinct would be too strong to
overcome. Thus, it seemed that the on-
ly short-term viable solution was to
eliminate as many starlings as possible
with lethal methods. Physical barriers
were recommended as a permanent solu-
tion to prevent a recurrence of the
problem.

The use of a .22 caliber rifle with
No. 12 rat shot was also recommended
for killing as many adult starlings as
possible. Shooting took place during
the daytime, but should also have been
done with a headlight at night. Suc-
cess was marginal.

During the evaluation, I observed
that the fledgling diet supplied by the
parents appeared to be predominately
insect material, an important protein
source for young birds. June beetles
(Phyllophaga sp.) comprised a large
portion of this prey food. These in-
sects were attracted to night lights,
and during the daytime, many dead in-
sects were available for foraging ad-
ult starlings under the lights of the
facility.

To capitalize on this adaptive feed-
ning behavior of the starlings, I treat-
ed insects with 98% active ingredient
DRC-1339 (3-chloro-p-toluidine hydro-
chloride) and placed them on the con-
crete and grassy areas under the night
lights. Adults, as well as the young
birds, would thus be consuming treated
insects.

I wish to thank the personnel at the
Little Rock Air Center for their parti-
cipation in testing a new control tech-
nique for starlings at their facility.

METHODS
Crickets were chosen as a bait be-
cause they could be easily obtained from a local fishing bait supply store. DRC-1339 was the selected toxicant because it is a good, species-specific, poison, has a low toxicity to mammals and has a reduced secondary hazard to scavengers (Decino et. al. 1966). Pre-baiting under the night lights was accomplished with untreated, dead crickets. Crickets were prepared for treatment by placing them in hot water. Following death, they were removed from the water and treated with 1 gm of DRC-1339 dissolved in 10 ml of warm water and 5 ml of Rhoplex AC-33 solution (Rhom and Haas Chemical Co.). This was a sufficient amount of chemical to treat 175 crickets with a 5.7 mg dose per cricket. The acute oral LD50 for starlings is 3.8 mg/kg (Decino et. al. 1966).

The use of the Rhoplex AC-33 solution was modified after Simpson and Palmer (1970), to serve as a sticker to assure that a lethal dosage would adhere to the crickets. Warm water facilitates more rapid dissolution of the toxicant.

Following application of the poison, the treated crickets were placed in a shallow metal container and allowed to air-dry in the sun for three hours.

A bait ratio of approximately 1 treated to 5 untreated crickets was placed under the night lights early in the mornings since these areas comprised the earliest feeding sites for the birds.

RESULTS

Starlings readily consumed the bait. Sick and dead birds were found around the complex. Within approximately two weeks, the nesting problem in the hangars was eliminated (Harris, H.M., personal communication, June 26, 1983, Little Rock Air Center, Little Rock, AR). Although starlings normally rear at least two clutches per season (Kes-sell 1957), no further nesting attempts were noted in 1983.

The only non-target species observed eating the crickets were house sparrows (*Passer domesticus*). Unlike the dead starlings found in the typical DRC-1339 death posture described by Decino et. al. (1966), no dead sparrows were located. The LD50 of DRC-1339 is 320-448 mg/kg for this species.

Although high levels of DRC-1339 were utilized, no bait aversion was noted. All dead starlings that were located were retrieved and discarded. No secondary poisoning was observed.

DISCUSSION

The most cost-effective, permanent solution for controlling the problem of birds nesting and roosting in hangars is the utilization of physical bird barriers. Because this was not a viable alternative in 1983 at the Air Center, and because the starlings were midway through their first nesting period, the use of poison-treated insects as a means of lethal control was an excellent alternative. DRC-1339 was used under the supervision of a U.S. Fish and Wildlife Service biologist. No Federal or Arkansas State law prohibits the killing of starlings.

Population reduction of starlings at the Air Center occurred. The technique required a minimum of manpower and material costs were less than $10.00. The use of treated crickets is a good short-term solution that can be implemented where funds are limited and other control measures have not been utilized.

However, it should be emphasized that this technique was only used after damage had already been allowed to occur. The following two nesting seasons (1984 and 1985), the Air Center experienced additional problems. Approximately $3,000.00, excluding labor costs, has been spent on repairing damage and installing visual and auditory scaring devices to minimize the nesting problem (Hyde, M. personal communication June 19, 1985, Little Rock Air Center, Little Rock, AR). Until such time that physical exclusions can be installed to prevent nesting and roosting in the hangars, the problem will not be resolved. Lethal control with DRC-1339 throughout the year with treated insects, grain and/or french-fried potatoes (Johnson and Glahn 1983) may be an acceptable alternative.

This field test shows promise using
DRC-1339-treated insects as a management tool for removing unwanted starlings rearing young in and around man-made structures. Treated insect baiting capitalizes on the food preferences and needs of the young birds by providing a high protein food source. In this case, the baiting was extremely cost-effective and poisoning of non-target species was not observed. It is hoped that more testing and refinement of this technique may lead to a broader use of DRC-1339 in bird problem management.

LITERATURE CITED

