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Characterization of the native Cr 2O3 oxide surface of CrO 2

Ruihua Cheng, B. Xu, C. N. Borca, A. Sokolov, C. -S. Yang, L. Yuan, S. -H. Liou,
B. Doudin, and P. A. Dowbena)

Department of Physics and Astronomy and the Center for Materials Research and Analysis (CMRA),
Behlen Laboratory of Physics, University of Nebraska–Lincoln Lincoln, Nebraska 68588-0111

~Received 5 July 2001; accepted for publication 29 August 2001!

Using photoemission and inverse photoemission, we have been able to characterize the Cr2O3 oxide
surface of CrO2 thin films. The Cr2O3 surface oxide exhibits a band gap of about 3 eV, although the
bulk CrO2 is conducting. The thickness of this insulating Cr2O3 layer is twice the photoelectron
escape depth which is about 2 nm thick. The effective Cr2O3 surface layer Debye temperature,
describing motion normal to the surface, is about 370 K. From a comparison of CrO2 films grown
by different techniques, with different Cr2O3 content, evidence is provided that the CrO2 may
polarize the Cr2O3. © 2001 American Institute of Physics.@DOI: 10.1063/1.1416474#

Among the predicted half-metallic ferromagnets~metal-
lic for one spin direction while insulating for the other spin
direction, i.e., 100% spin polarization!, CrO2 routinely ex-
hibits the highest polarization but among the lowest tunnel
magnetoresistance. With half-metallic character expected on
the basis of theory,1–6 very large tunneling magnetoresis-
tance~TMR! is expected7–9 ~ideally the TMR between two
half-metallic ferromagnets should be infinite!, but a much
smaller ~1%! magnetoresistance was found on CrO2 tunnel
junctions at 70 K.10 Evidence of 90% to 100% polarization
has been, however, observed in spin-polarized
photoemission,11 vacuum tunneling,12 and Andreev
scattering.13–15This work addresses the surface composition
and properties of CrO2 thin films, going beyond the simple
confirmation that the stable oxide surface of CrO2 is Cr2O3.

16

We investigated the surfaces of CrO2 films fabricated by
two different techniques. One class of films were fabricated
by laser initiated organometallic chemical vapor deposition
~OMCVD!,17 while the other type of films were made by rf
sputtering of CrO3 onto LaAlO3 substrates and annealing in a
high-pressure cell.18 Annealing in about 100 atm of oxygen
pressure at 390 °C leads to a stable CrO2 phase.

Prior to our studies, samples were cleaned by sputtering
and annealing to remove surface contamination. From the
outset, i.e., from the initial stages of surface preparation, the
core level binding energies indicated that the stable surfaces
were Cr2O3. X-ray photoemission spectroscopy~XPS! mea-
surements were obtained using the MgKa line radiation
~1253.6 eV! and the photoemission~UPS! measurements
were acquired about normal emission angle using the He I
line ~21.2 eV!. The inverse photoemission IPES spectra were
obtained by using variable energy electrons~from 5 to 19
eV! at normal incidence and a Geiger–Muller UV photode-
tector. The energy resolution was;450 meV in inverse pho-
toemission. For both photoemission and inverse photoemis-
sion, the Fermi level was established from tantalum in
electrical contact with the sample.

Figure 1 shows the room temperature normal emission

photoemission data of both the Cr 2p and O 1s core levels
for both sputter deposited and laser assisted OMCVD depos-
ited CrO2 thin film samples. The binding energy of Cr 2p3/2

core level for the laser assisted OMCVD deposited CrO2 thin
film samples is about 576.860.2 eV which generally corre-
sponds to the accepted binding energy for Cr2O3 oxide.19 The
Cr 2p3/2 for the sputtered samples are somewhat lower, at
about 576.360.3 eV. This suggests that the sputtered
samples are more dominated by the CrO2 oxide20 in the sur-
face region, though a shoulder at around 576.8 eV binding
energy indicates the presence of some Cr2O3. The presence
of both CrO2 and Cr2O3 oxide phases in the surface region of
the sputter deposited samples is more apparent in the oxygen
core level spectra.

The binding energy of O 1s core level for OMCVD
deposited sample is 531.160.2 eV and the spectrum for the
sputtered sample also shows the peak at 531.160.2 eV as
well as a significant shoulder around 529.560.2 eV. This
suggests that the surfaces of both samples contain Cr2O3, but
the Cr2O3 layer on the surface of sputtered films are thinner
than the case for the OMCVD films. This conclusion is sup-
ported by the angle-resolved XPS~ARXPS! data in Fig. 2.

We used ARXPS to characterize the thickness of the
Cr2O3 surface layer for the sputter deposited CrO2 films, as
has been undertaken for other oxide surfaces.21 The ratio of
the Cr2O3 intensity to the CrO2 intensity for each emission
angle was derived by decomposing every O 1s spectrum into
two peaks, corresponding to the Cr2O3 and CrO2 oxide
phases, respectively. This intensity ratio is shown in Fig. 2.
Since the Cr2O3 signal increases relative to the CrO2 signal at
the higher emission angles, it is clear that Cr2O3 dominates
the surface as the effective probing depth decreases with in-
creasing emission angle. We find that the thickness of Cr2O3

layer is about twice the oxygen core level photoelectron
mean free path, using a summation modeling analysis de-
scribed elsewhere.21 This corresponds to approximately 2 nm
thickness. Thus, while the x-ray diffraction data, shown as
the inset in Fig. 2, is dominated by significant CrO2 peaks,
there is a small amount of the Cr2O3 signal, which probably
has some contributions from the Cr2O3 surface of the sample.
For the OMCVD deposited films, the Cr2O3 surface oxide is
much thicker than the electron mean free path and therefore
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of Physics and Astronomy, 255 Behlen Laboratory of Physics, Univer-
sity of Nebraska, Lincoln, Nebraska 68588-0111; electronic mail:
pdowben@unl.edu

APPLIED PHYSICS LETTERS VOLUME 79, NUMBER 19 5 NOVEMBER 2001

31220003-6951/2001/79(19)/3122/3/$18.00 © 2001 American Institute of Physics
Downloaded 05 Sep 2006 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp



is much thicker than is the case for the sputter deposited
films.

The combined valence band photoemission~UPS! and
inverse photoemission data taken at room temperature is
shown in Fig. 3 for the sputter deposited film~curve B!. A
large band gap ofEg52.8 eV ~at room temperature! is evi-
dent between valence band and conductance band edges. The
gap is much bigger than 3 kT, which is a clear indication that
the surface of CrO2 is insulating, not conducting.

The transport measurements, at 1.52 K, showing the re-
sistance at low bias voltages in the sputter deposited film, are
shown in curve A of Fig. 3. At low temperatures, the resis-
tance between CrO2 grains in the bulk of the thin film shows
a dramatic increase only near zero bias. This, together with
the absence of significant surface photocharging down to 170
K, suggests that there are conduction paths through the sur-
face region and intergrain Cr2O3 layers. Thus, while there is
little evidence of conduction path or defects states within a
volt of the Fermi level, such states must exist, though per-
haps much less than 2%–3% of the Cr2O3 layers. This is
consistent with the evidence of Coulomb blockade18 that also
suggests that the Cr2O3 oxide surface of CrO2 crystallites is
imperfect and contains defects. For OMCVD samples, we do
not find any such conducting paths, but the Cr2O3 content is
higher in these latter films.

In Fig. 3, we lined up the chromium L3(2p3/2) edge
magnetic circular dichroism~MCD! signal, and O 1s x-ray
adsorption~XAS! spectra with the Fermi energy, based on
the chromium and oxygen XPS binding energies for an
OMCVD sample~characterized by significant Cr2O3 inclu-
sions in the CrO2.

17! The O 1sXAS edge spectrum~curve C
in Fig. 3! is consistent with a Cr2O3 phase22 dominant in the
surface region of the thin film material. The MCD results,
shown as plot D in Fig. 3, provide indications of magnetic
ordering in the unoccupied bands at the L3 chromium edge.
Nonetheless, at the onset in the MCD signal at the threshold,
the magnetic ordering of the states close to the Fermi level
appears to be dominated by spin minority~curve D in Fig. 3!,
which is inconsistent with the half-metallic character or even
high spin polarization predicted for CrO2.

2–6 The recognition

FIG. 1. Upper panel shows the XPS core level photoemission of Cr 2p at
room temperature. Lower panel shows the O 1s photoemission data at room
temperature. The sample fabricated by OMCVD is shown as open circles
and the sample fabricated by sputtering is shown as closed circles.

FIG. 2. The room temperature XPS intensity ratio of Cr2O3 peak to CrO2

peak vs different emission angle for sputter deposited films. The x-ray dif-
fraction data of the sample is shown in the inset.

FIG. 3. A comparison of the density of states in the region of the Fermi level
from resistivity ~transport measurements! of the sputter deposited film at
1.52 K ~a!, the combined photoemission~UPS! and the inverse photoemis-
sion ~IPES! at room temperature for the sputter deposited films~b!, X-ray
adsorption at the O 1s level ~c! together with the Cr 2p3/2 edge MCD
spectra~d!, were both aligned using the core level binding energies for
CrO2. Spectra C and D were taken of the OMCVD deposited sample domi-
nated by significant amounts of Cr2O3 while the inverse photoemission and
resistivity data were taken from a sputter deposited sample. Spectra B–D
were taken at room temperature.
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that the surfaces of CrO2 films are Cr2O3 ~Ref. 16! does
much to explain the very low density of states near the Fermi
energy in the spin-polarized photoemission measurements,11

but fails to explain the high polarization asymmetry observed
in spin-polarized photoemission.11 Induced polarization of
the thin Cr2O3 surface layer, perhaps enhanced by defects, is
clearly necessary to explain values of polarization approach-
ing 90% to 100% reported in spin-polarized photoemission,11

that in hindsight may be dominated by a Cr2O3 surface layer.
While the x-ray diffraction results presented herein and
elsewhere23 suggest that the Cr2O3 surface layer is the anti-
ferromagnetic corundum structure, the gamma, or cubic spi-
nel structures of Cr2O3 that can show considerable stability
at the surface,24 can not be excluded as the dominant struc-
ture, and might more easily polarize the generally more
stable corundum structure. Such an explanation is consistent
with the results presented here.

The effective surface Debye temperature of the Cr2O3

surface layer can be evaluated by XPS and other surface
sensitive techniques such as low-energy electron diffraction
and reflection high-energy electron diffraction.25 In the ab-
sence of surface phase transition, it is assumed that the
emerging electron-beam intensity depends exponentially
upon the sample temperature and this dependence is appli-
cable to core level XPS at normal emission angle. The inten-
sity of the photoelectron peak can be written as

I 5I 0 exp@22W~T!#, with 2W5
3\2~Dk!2T

mkBuD
2 ,

whereW is the Debye–Waller factor,T is the sample tem-
perature,\(Dk) is the electron momentum transfer,m is the
mass of the scattering center, anduD is the effective surface
Debye temperature. The effective Debye temperature can be
evaluated from the slope of a plot of ln(I/I0) as a function of
sample temperature, as shown in Fig. 4. A linear background
was subtracted from each spectrum and normalization with
respect to the intensity at the lowest temperature (I 0). We
find that the effective Debye temperatureuD is about 370 K.
While typical of a metal, this effective Debye temperature is
rather low for an oxide insulator and might contribute to
strong temperature effects in Coulomb blockade.18

We have investigated CrO2 thin film surfaces by using
both x-ray photoemission and inverse photoemission. Our
data show a large band gap between valence and conduction

bands, which indicates that the surface of CrO2 film is insu-
lating, while the transport measurements show that bulk ma-
terial is conducting. We identify Cr2O3 as a stable oxide sur-
face on CrO2 films with an effective surface Debye
temperature of about 370 K for the Cr2O3 surface layer.
From ARXPS data, we found that the thickness of this insu-
lating Cr2O3 layer is two times the mean free path. The CrO2

‘‘bulk’’ may induce some polarization in the Cr2O3 surface
layer.
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