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Lattice Dynamics of a Rigid-Ion Model for Gadolinium ~ o l ~ b d a t e *  

L. L. Boyert and J. R. Hardy 
Behlen Laboratory of Physics, University of Nebraska, Lincoln, Nebraska 68508 

(Received 11 December 1972) 

Results of lattice-dynamical calculations are presented which support the view that the ferroelectric 
phase transition in gadolinium molybdate (GMO) arises from the softening and ultimate instability of a 
doubly degenerate zone-edge mode of the high-temperature paraelectric phase. We have used a rigid-ion 
model in which the short-range force constants are obtained from a detailed knowledge of the crystal 
structure together with the conditions imposed by the requirement that the crystal must be in static 
equilibrium under the combined influence of both Coulomb and short-range forces. Our results show 
that this type of approach is very useful when one is dealing with complex structures such as GMO, 
which has thirty-four ions per unit cell in the paraelectric phase. In view of the simplicity of our 
model we are able to obtain a surprisingly good correlation with experimental results. In particular, our 
calculated zone-center frequencies reproduce the basic features of the observed Raman spectrum. 
Dispersion curves are presented which show a pronounced softening of two phonon branches which 
become doubly degenerate at the M point. This result is in agreement with the results obtained by 
inelastic neutron scattering. The displacements associated with the soft M-point modes correlate with 
the difference in the structures of the high- and low-temperature phases determined by x-ray diffraction. 
This provides further evidence that the ferroelectric domains in GMO are to be interpreted as 
"frozen-in" soft zone-boundary modes of the paraelectric phase. 

I. INTRODUCTION 

Gadolinium molybdate [Gd2(~o04) ,  o r  GMO] was 
found to undergo a ferroelectr ic  transition at 159 "C 
by Borchardt and Bierstedt. ' Subsequent studies 
of this transition by a number of workers have 
shown that i t  possesses some very unusual prop- 
ert ies .  Particularly remarkable i s  the essential 
absence of any dielectric anomaly. The clamped 
dielectric constant shows no temperature depen- 
dence while the f r ee  crystal  exhibits only a small  
peak at the transition temperature. At the same 
t ime,  there is a large anomalous elastic behavior 
which occurs for  temperatures T <  159 "C. How- 
ever ,  this anomaly, a s  does the peak in the f r ee  
dielectric constant, vanishes suddenly when T 2 
159 "C. 

Detailed x-ray analyses of the structure of ferro-  
electr ic  (f. e. ) phase of GMO have been performed 
by Keve et al .  ' and Jeitschko, while Jeitschko 
has  also made similar  studies on the paraelectric 
(p, e. ) phase. The transition is accompanied by a 
structural  change from ~ T 2 , m  with two formula 
units per  unit cell for  p. e .  GMO, to Pba2 with four 
formula units per unit cell for  f .  e .  GMO. 

The fundamentally new aspect of this transition 
is that the instability in the p. e .  phase results  from 
a softening of a doubly degenerate phonon mode a t  
the zone boundary. This was suggested indepen- 
dently by Pytte, ' Levanyuk and Sannikov,' and 
Aizu, ' who observed that such a soft M-point mode 
would account for  the observed doubling of the unit 
cell. Subsequent neutron-scattering measurements 
of Axe et a l .  and Dorner et a l .  l' have shown that 

this i s  indeed the case.  In the lat ter  paper, l' dy- 
namical s tructure analysis was used to examine 
the relative magnitudes of those eigenvector com- 
ponents which a r e  not fixed by symmetry alone. l2 

In this way a linear combination of eigenvectors 
for  the degenerate M-point modes was determined 
and it was found that the associated displacements 
could describe the differences between the struc- 
tures  of the two phases. 

These authors were also able to explain the ap- 
pearance of polarization in t e r m s  of an order  pa- 
rameter  which i s  proportional to the soft-mode 
amplitude and which i s  anharmonically coupled to 
the macroscopic strain.  Since the crystal  is pi- 
ezoelectric, this in turn produces a spontaneous 
polarization. 

The anharmonically induced strain due to a spe- 
cific soft mode depends upon the "direction" of the 
mode in the degenerate "plane" of the two soft- 
mode eigenvectors. From Eqs. (13) and ( I  l c )  of 
Ref. 11, the strain i s  proportional to g,,, sin24 + 
g,,,, cos24,  where 4 i s  a rotation in the degener- 
ate "plane" and g,, , and g,,, a r e  coefficients which 
describe the anharmonic coupling. If we replace 
4 by 4 +*  r t h i s  evidently changes the sign of the 
strain,  and thus, domains of opposite s t ra in  (polar- 
ization) in the f .  e. phase must correspond to orthog- 
onal eigenvectors of the degenerate soft modes in 
the p. e. phase. This point was f i r s t  discussed by 
Axe et aE. lo However, the subsequent discussion 
in Ref. 11 i s  somewhat obscure on this  point since 
it appears that setting 4 = 0 and fitting Jei tschko's  
data for one polarization do not allow for  switching. 

We have also found that this type of ch dependence 
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in the strain (polarization) i s  necessary to account 
fo r  the observed differences between the f .  e. and 
p. e .  structures. Furthermore, we conclude that 
a s  the transition occurs the crystal "selects" a 
particular set  of orthogonal eigenvectors from the 
degenerate "plane" and the displacements asso- 
ciated with these special eigenvectors a r e  "frozen" 
into the structure. Again, this i s  not immediately 
clear from the discussion in Ref. 11 because of the 
assumption that + = 0. However, i f  the form of the 
free energy given by Eq. (14) of Ref. 11 i s  retained 
then the coefficients of the fourth- and sixth-order 
terms a re  functions of + such that they a r e  invari- 
ant if $J i s  replaced by (4 + i n). A particular set 
of orthogonal eigenvectors for which the associated 
displacements become one of the four observed 
ferroelectric domains i s  given by + = $,, where 
+, i s  the value of $J (at the transition temperature) 
fo r  which the f ree  energy i s  a minimum. The four 
domain structures thus correspond to +,, qi, + 4 n, 
$Jm + n,  and +, + n. For + = 4, o r  qi, + n the do- 
mains have polarity (strain) + p e ( + ~ , )  and the $, 
+ $n and qi, + i n  domains have polarity (strain) 
- Pe(-u,). These possibilities account for the un- 
usual switching mechanism in GMO and lead one to 
consider the possibility of domain walls between 
regions of like polarity. l3  

Our calculations a re  based on a rigid-ion model 
in which short-range interactions between the gado- 
linium ions and their seven nearest-neighbor oxy- 
gen ions a r e  included and similar interactions be- 
tween the molybdenum ions and their four nearest- 
neighbor oxygen ions a r e  also taken into account. 
Our approach requires a detailed knowledge of the 
crystal structure. Given this and the magnitudes 
of the ionic charges, we obtain certain equilibrium 
conditions, which specify the f irst  derivatives of 
the short-range potentials. Three other param- 
e ters  (two of which are  second derivatives of the 
short-range potentials and the third of which mea- 
sures  the ionicity of the molybdate group) a r e  ob- 
tained by a partial fitting to the observed Rarnan 
spectra. 

In Sec. I1 we give a detailed account of the model 
we have used and present an overall comparison 
of the observed Raman spectra with theoretical 
predictions. In Sec. I11 phonon dispersion curves 
a re  presented which show a pronounced softening of 
the two modes that become degenerate at the M 
point. We then list and discuss the eigenvectors 
and the associated displacements of these soft 
modes and relate them to the structural differences 
between the f .  e .  and p. e.  phases. 

11. RIGID-ION MODEL FOR PARAELECTRIC GMO 

We regard p. e .  GMO to be an array of point 
charges of magnitudes z,,e, zMoe, and zoe, for the 
gadoliniums, molybdenums, and oxygens, respec- 

tively, where e i s  the absolute magnitude of the 
electronic charge. These a re  located at the si tes 
determined by Jeitschko. In Table I we list coor- 
dinates for  all 34 ions in the unit cell along with the 
ion label used by Jeitschko and define another la- 
bel k ,  where k = l , 2 ,  . . . ,34. We take z,, = + 3 and 
z, = - 2 - 4z0, and allow zo  to be an adjustable pa- 
rameter.  We then assume that the ions a re  held 
apart by various central short-range forces which 
act between the molybdenum ions and their four 
nearest-neighbor oxygen ions, and between the gad- 
olinium ions and their seven nearest-neighbor oxy- 
gen ions. 

If the static lattice is in equilibrium, then the 

TABLE I. Positions of the ions in the p. e. (183 "C) 
phase as determined by Jeitschko. The coordinates are 
given with respect to the primitive axes of the p. e. phase 
and are in units of 10 A. The origin is shifted by half a 
lattice vector along the x axis from that used by 
Jeitschko. 

Jeitschko's 
k x Y z ion designation 

1 -0.23108 0.23108 -0.27996 
2 0.23108 - 0.23108 - 0.27996 
3 0.13857 0.13857 0.27996 Gd (1) 

4 - 0.13857 - 0.13857 0.27996 

5 -0.21689 0.21689 0.38087 
6 0.21689 -0.21689 0.38087 Mo(l) 
7 0.15276 0.15276 -0.38087 
8 -0.15276 -0.15276 -0.38087 

9 0.36965 0.0 0.0 
10  0.0 0.36965 0.0 MO(3) 

11 -0.22534 0.22534 -0.51269 
12 0.22534 -0.22534 -0.51269 
1 3  0.14431 0.14431 0.51269 0 (1) 

14  -0.14431 -0.14431 0.51269 

15 0.09530 - 0.09530 0.33173 
16 -0.09530 0.09530 0.33173 
17 -0.27435 - 0.27435 -0.33173 0 (3) 

18  0.27435 0.27435 - 0.33173 

1 9  0.20412 -0.00126 -0.31957 
20 -0.20412 0.00126 - 0.31957 
21 - 0.36839 - 0.16553 0.31957 
22 0.36839 0.16553 0.3195'7 o(5) 
23 - 0.00126 0.20412 - 0.31957 
24 0.00126 - 0.20412 - 0.31957 
25 0.16553 0.36839 0.31957 
26 -0.16553 -0.36839 0.31957 

27 0.23266 0.02905 0.10190 
28 -0.23266 -0.02905 0.10190 
29 0.34060 - 0.13699 - 0.10190 
30 -0.34060 0.13699 -0.10190 
31 0.02905 0.23266 0.10190 0 (9) 

32 - 0.02905 - 0.23266 0.10190 
33 -0.13699 0.34060 -0.10190 
34 0.13699 -0.34060 -0.10190 
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net force on any sublattice must be zero, and the 
macroscopic s t r e s s  due to the short-range forces 
must cancel that produced by the Coulomb forces 
which tend to collapse the structure. To set the 
crystal in static equilibrium the short-range forces 
must be chosen to satisfy these constraints. Ex- 
plicit expressions for these static equilibrium con- 
ditions a r e  given by Boyer and ~ a r d ~ "  for a gener- 
al rigid-ion crystal. For  our model of p. e. GMO 
we have eight force constants to be determined 
from these conditions. These a r e  the f irst  deriva- 
tives of the short-range interatomic potential be- 
tween the following ion pai rs  (we used Jeitschko' s 
notation; see Table I): ~ o ( 3 ) - O ( 9 ) ;  ~ o ( 1 ) - O ( 5 ) ;  
~ o ( 1 ) - O ( 1 ) ;  Mo(1)-O(3); Gd(1)-O(9); Gd(l )-O(l); 
Gd(1)-O(5); and Gd(1)-O(3). 

Unfortunately, this procedure gives 16 linearly 
independent equilibrium conditions from which 
these eight force constants have to be determined; 
14 a re  obtained from the sublattice equilibrium 
conditions and two from the requirements that the 
macroscopic s t r e s ses  be zero. Of the 14 sublat- 
tice equilibrium conditions, two are  provided by 
Gd(l), two by ~ o ( l ) ,  two by 0(1) ,  two by 0(3) ,  
three by 0(5),  and three by O(9). 

The values of the Coulomb forces F , ( k )  obtained 
using z,= - 1.25 a re  listed in Table II. The rea- 
son for  using this value for the oxygen charge i s  
discussed below. From the values in Table 11 it 
is clear that the Coulomb forces on the oxygens a re  
considerably larger than those on the Gd(1) and 
~ o ( 1 )  ions. The force on the Mo(3) ions i s  automat- 
ically zero. (This i s  because these ions are  at the 
origin of the 5 operation. ) Thus, we only require 
that the short-range forces cancel, o r  approxi- 
mately cancel, the Coulomb forces on the oxygen 
ions. We also neglect the conditions for zero mac- 
roscopic s t r e s s  and assume the existence of what- 
ever applied s t r e s s  i s  necessary to maintain the 
experimentally determined lattice constants. 

From our restrictions on the range of the short- 

TABLE 11. Coulomb force Fa&) on the ions of the p.e. 
phase with zo = - 1.25. The components are directed 
along the primitive axes of the p.e. phase, and are given 
in units such that the charge of the electron and the length 
10 b are both unity. 

Coulomb force ?? &) 
Ion Fs F~ Fz 

1 7.007 -7.007 8.404 
5 -7.284 7.284 1.020 
9 0.0 0.0 0.0 
11 2.746 -2.746 -49.489 
15 30.596 - 30.596 11.600 
19 -19.383 43.969 - 24.723 
27 50.956 2.706 -18.187 

range interactions, we find that the 0(1) ,  0(5) ,  and 
O(9) ions each experience two short-range forces. 
For the O(3) ions there are  three short-range 
forces, two due to Gd(1) ions, and one due to a 
Mo(1). However, the two Gd bonds are  equivalent 
and all three bonds lie in the same plane. Further- 
more, the Coulomb forces on the O(1) and O(3) ions 
lie exactly in the plane of the short-range forces 
and therefore these can be determined so a s  to can- 
cel these Coulomb forces on the oxygens exactly. 
The Coulomb forces on the O(5) and O(9) ions l ie,  
to a good approximation, in the plane of the short- 
range forces. (The component normal to the plane 
is - 3-4% of the total force in each case.  ) Thus, 
we determine the short-range forces acting on these 
ions by requiring that they cancel the components 
of the Coulomb force lying in the plane of the short- 
range forces. 

The resultant short-range forces are  listed in 
Table In ,  along with the associated bond lengths, 
and a r e  plotted a s  a function of bond length in Fig. 
1. 

To perform lattice dynamical calculations we 
also need the second derivatives of the short-range 
potentials. We have chosen these second deriva- 
tives to be the same for all the Mo-0 interactions ($zo) and also fo r  the Gd-0 interactions (+&'d). 
The values taken for @$ and +& appear in Fig. 1 
as  the slopes of the plots of 4' against bond length. 
Clearly, @;A and $4: can have a fairly wide range of 
values and still be within the limits one would ex- 
pect from Fig. 1. The final values chosen for @:: 
and 0;; were determined by fitting to Raman data. 
The value of the ionic charge, z0  = - 1. 25, was also 
chosen in this manner. The masses of the ions a re  
mod= 157.0, m,,= 96.0,  and m o =  16.0,  in atomic 
mass units. 

In the foregoing material we have described how 
we obtain all the parameters necessary to construct 
the dynamical matrix of p. e. GMO; namely, the 
charges of the ions, the masses of the ions, their 
precise locations, and the values of the f irst  and 
second derivatives of all short-range potentials. 
General expressions fo r  the dynamical matrix of a 
rigid-ion lattice15 have been programmed for the 
computer so that we can treat  any structure within 
the limits of the rigid-ion model given the neces- 
sary input parameters such as  those listed above. 
This program was used in our lattice dynamical 
calculations for p. e .  GMO. The eigenvalues were 
obtained using a subroutine based on the House- 
holder method, which we find is - 10 t imes more 
efficient than the Jacobi method. '' 

In Table IV we list the frequencies of the normal 
modes of zero wave vector with the macroscopic 
electric field contributions omitted. The non- 
acoustic portion of this spectrum of frequencies 
is plotted a s  a histogram and compared with a se- 
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TABLE 111. First derivatives of the short-range in- 

teratomic potential and the associated bond lengths. 

@ ' 
(Same units as those Bond length 

Bond in Table 11) (-4 
Mo(3) - O(9) - 83.44 1.7319 
Mo(1) - O(5) - 80.09 1.7354 
Mo(1) - O(1) -63.55 1.7385 
Mo(1) - O(3) -53.09 1.7884 
Gd(1) - O(9) - 38.16 2.2924 
M u )  - o(1)  -13.92 2.3287 
Gd(1) - 0 6 )  -27.64 2.3476 
Gd(l) - O(3) -7.02 2.4341 

lected Raman spectrum1' in Fig. 2. The highest 
f requencies  depend strongly upon $&, thus the  
value of $2 w a s  chosen s o  that these coincided 
with the corresponding group of peaks in the Raman 
spectrum. The values of 4;; and zo were  chosen 
to fit the lower end of the frequency spectrum to 
the Raman spectrum. Specifically, the lowest f re -  
quency mode depends upon 4;: and zo in the follow- 
ing manner:  F o r  any reasonable z,, i. e., - 2 
< z o  < - 1 the lower l imit  of the frequency spectrum 
increases  with increasing $di, and approaches a 
limiting value which depends upon z,. We find that 
the l a rges t  limiting value is obtained using zo 
= - 1 . 2  5 .  F o r  th i s  value of z o  and a reasonable value 
of @A', (cf. Fig. 1 )  the lowest frequency is that 
shown in Table N and is close to the limiting value. 

F r o m  the resu l t s  given i n  Table IV i t  is c l e a r  
that o u r  lowest frequency modes a r e  too low, but 
over  a l l ,  the correspondence between theory and 

FIG. 1. Plot of the first derivatives of the short- 
range interatomic potentials @ '  as a function of bond 
length. @ '  is measured in  units such that the electronic 
charge and 10 A are unity. The slopes of the lines are  
given by @& and $&. 

FREQUENCY (cmb 

FIG. 2. Histogram of the frequency spectrum of the 
q'= 0 phonons of p. e. GMO compared with the x(yx)y 
Raman spectrum. 

experiment in  Fig. 2 is surpris ingly good, consid- 
er ing the simplicity of the model that we  have used. 
We believe that the probable cause  of o u r  inability 
to fit  the low-frequency end of the spectrum is that 
we have not included enough short-range interac-  
tions to put the c rys ta l  in  complete s tat ic  equilib- 
r ium. 

When the macroscopic electr ic  field contribution 
to the dynamical m a t r i x  is included cer ta in  of the 
degeneracies  shown i n  Table N a r e  lifted. The 
resultant splitting depends upon the direction of the 
wave vector .  However, th i s  modification does not 
affect the correlat ion shown in Fig. 2. In particu- 
l a r ,  we find that the lowest frequency mode is un- 
affected by the e lec t r ic  field contribution. 

The comparison in Fig. 2 is not the only one pos- 
sible. We could a l so  make comparisons with ex- 
perimental  s p e c t r a  obtained f o r  o ther  scat ter ing 

TABLE IV. List of eigenfrequencies of the dynamical 
matrix at zero wave vector without the macroscopic elec- 
tric field contribution. Frequencies are in cm". 

0.0 131.6 224.6 333.2 474.0 937.1 
0.0 131.6 236.4 344.7 474.0 941.1 
0.0 133.1 240.7 355.1 483.1 942.1 

20.5 134.2 240.7 355.1 484.2 944.7 
23.4 154.9 249.9 358.3 533.7 944.8 
23.4 154.9 278.6 359.7 559.8 944.9 
37.8 157.8 278.6 362.4 745.9 944.9 
56.5 157.9 280.3 362.4 754.9 957.6 
56.5 167.8 288.8 363.1 779.4 963.2 
65.2 172.2 288.8 397.3 779.4 966.8 
88.0 172.2 294.8 407.1 901.8 966.8 
96.0 186.2 295.9 407.1 901.8 972.6 
96.0 190.7 308.0 424.6 903.4 977.6 

111.1 190.8 309.9 424.6 927.6 984.2 
111.1 190.8 314.3 427.8 927.6 984.2 
118.5 218.6 314.3 428.9 935.1 998.6 
130.4 218.6 323.7 455.2 937.1 1008.3 
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geometries. However, until we know more about 
the symmetries of the computed eigenvectors this 
would be premature. For the present all that we 
can say is that we do not necessarily expect the 
Raman spectrum to show all the ;= 0 modes and 
thus the present comparison is only semiquantita- 
tive. 

III. SOFT-ZONE-EDGE MODES 

Using the model described in detail in Sec. 11, 
we have computed the phonon dispersion curves for 
modes propagating along the [I101 direction in p. e. 
GMO. The results of these calculations a re  shown 
in Fig. 3. 

The important feature of Fig. 3 i s  the occurrence 
of two soft degenerate modes at the zone edge (M 
point); in fact, for these modes our model lattice 
i s  unstable. Also present i s  an acoustic instability, 
but this instability is not a s  prominent a s  that of 
the two zone-edge modes. This acoustic instability 
i s  probably due to the fact that the frequency of the 
lowest zone center mode is too small. This can re- 
sult in acoustic instability. '' As was mentioned 
above, we believe this difficulty i s  probably due to 

5 
z 
W 
2 

400.0 
(r 
LL 

200.0 

0.0 

11 101 M POINT 

FIG. 3 .  Phonon dispersion curves for p. e. GMO, 
with wave vector along the [I101 direction. The "curves" 
were plotted by computer, and therefore, their appearance 
at points of intersection may be a little misleading. Imag- 
inary frequencies are plotted here as negative real. 

our failure to satisfy the static equilibrium condi- 
tions exactly. 

The eigenvectors for the soft doubly degenerate 
(i, 3, 0) modes were obtained as follows. A matrix 
G = [D- wt( l+  b ) ~ ] "  was constructed from the dynam- 
ical matrix D. I  is the unit matrix, of is the low- 
est  eigenvalue of D (i. e .  , the square if the soft- 
mode frequency), and 6 i s  a small positive number. 
One can easily show that if E, is an eigenvector of 
D associated with the eigenvalue w:, then E, i s  also 
an eigenvector of G with eigenvalue 1/- wt6.  Since 
6 i s  small, 1/- w2,6 i s  much larger than the other 
eigenvalues of G, and for  any vector X, the vector 
GnX will converge rapidly, a s  n increases, to an 
eigenvector associated with this largest eigen- 
value. le 

Since the two soft modes a r e  degenerate, the vec- 
tor  G"X may lie anywhere in a two-dimensional 
"plane" in the hyperspace of eigenvectors. How- 
ever,  by starting with two different vectors X and 
X', we obtain linearly independent eigenvectors , 
GnX and G"x', and from these an orthonormal ba- 
s i s  can be constructed. Two such orthonormal eigen- 
vectors, denoted by S,(k,j) with j= 1 o r  2, a r e  list- 
ed in Table V. 

The displacement of the ion (2, k )  due to all the 
crystal vibrations is given by 

where e,(k, j lc)  is the jth eigenvector of the dy- 
namical matrix, DaS(G,k,k') f o r  wave vector ;, 
~ ( j  I G )  i s  the complex normal coordinate of the mode 
(jI ;), z( l ,k)  is the position of the (I, k) ion, and 
mk is the mass  of the kth ion. The factor erAVla )  
account_s for the fact that all the components 
e, (k, j I q) contain an arbitrary phase factor. It ia im- 
portant to note that one must be careful to express 
the displacements in a manner consistent with the 
definition of the dynamical matrix [see discussion 
following Eq. (38.29) of Ref. 151. In our calcula- 
tions we included the factor e-'a'ct(k)-Ztk')l in the defini- 
tion of DUB(;, k, k t ) ,  and for this  definition the dis- 
placements are  given correctly by Eq. (1). 

Combining the contributions due to the (3 ,+ ,0)  and 
the - ($, i, 0) modes, the displacements due to the 
jth soft mode a re  given by 

where ~ ( l , k ) = G o . ~ ( l ,  k), &,= (?r/a)(l, l ,O),  a i s  the 
unit cell side in the xy plane, and S,(k, j) are  the 
eigenvector components. 

The normal coordinates may be written Q(j )  



TABLE V. The orthonormal sets of soft-mode eigenvectors S,&, j): j= 1 and j = 2 ,  written in the polar form S,@z,j) = R,(k,j) exp [- iB,&, $ 1 ,  where Balk, j) is given 
in degrees. 

k 1 B,&, 1)  %&, 1 )  e,&, 1 )  R,&,l) B,&,l) Rx&,2) Bx(k,2) R,(k,2) B,Q,2) R,&, 2 )  ex&, 2 )  

1 0.02344 119.808 0.02344 119.805 0.0 0.0 0.02565 124.211 0.02565 124.208 0.0 0.0 
2 0.02344 299.804 0.02344 299.808 0.0 0.0 0.02565 304.206 0.02565 304.211 0.0 0.0 
3 0.01161 236.745 0.01161 56.745 0.0 0.0 0.00513 107.372 0.00513 287.372 0.0 0.0 
4 0.01161 281.792 0.01161 101.787 0.0 0.0 0.00514 152.418 0.00514 332.417 0.0 0.0 
5 0.076 98 341.662 0.076 98 341.663 0.0 0.0 0.03457 244.871 0.03457 244.871 0.0 0.0 
6 0.07698 161.663 0.07698 161.662 0.0 0.0 0.03457 64.872 0.03457 64.871 0.0 0.0 
7 0.13219 192.007 0.13219 12.007 0.0 0.0 0.14901 119.718 0.14901 19.718 0.0 0.0 
8 0.13219 223.234 0.13219 43.234 0.0 0.0 0.14901 230.945 0.14901 50.945 0.0 0.0 
9 0.02844 315.547 0.08356 37.871 0.0 0.0 0.036 15 60.217 0.08053 29.374 0.0 0.0 

10 0.08356 217.871 0.02844 135.547 0.0 0.0 0.08053 209.374 0.03615 240.217 0.0 0.0 
11  0.03329 107.149 0.03329 107.147 0.0 0.0 0.04217 129.959 0.04217 129.958 0.0 0.0 
12 0.03329 287.146 0.03329 287.149 0.0 0.0 0.04217 309.958 0.04217 309.958 0.0 0.0 
13 0.03503 214.676 0.03503 34.676 0.0 0.0 0.02361 173.526 0.02361 353.526 0.0 0.0 
14 0.035 03 254.136 0.035 03 74.136 0.0 0.0 0.023 61  212.985 0.023 61  32.983 0.0 0.0 
15 0.00403 340.621 0.00403 340.621 0.0 0.0 0.00184 248.078 0.00184 248.078 0.0 0.0 
16 0.00403 160.621 0.00403 160.621 0.0 0.0 0.001 84 68.078 0.00184 68.078 0.0 0.0 
17 0.00675 343.662 0.00675 163.662 0.0 0.0 0.00765 351.913 0.00764 171.913 0.0 0.0 
18 0.00675 70.854 0.006 75  250.854 0.0 0.0 0.00765 79.108 0.00765 259.107 0.0 0.0 
19 0.368 97 164.047 0.028 24 163.488 0.05152 335.622 0.43166 176.147 0.03326 176.403 0.06580 359.710 
20 0.36897 245.264 0.02824 244.706 0.05152 236.837 0.43166 257.364 0.033 26 257.622 0.065 80 260.926 
21 0.02076 23.411 0.262 02 204.482 0.05638 193.612 0.011 06 317.237 0.135 85 134.774 0.038 77 154.349 
22 0.02076 103.398 0.26202 284.472 0.05638 93.605 0.01106 37.223 0.13585 214.765 0.03877 54.342 
23 0.02824 343.486 0.36897 344.047 0.05152 155.622 0.03326 356.404 0.43166 356.147 0.06580 179.710 
24 0.02824 64.705 0.368 97 65.264 0.05152 56.837 0.03326 77.622 0.431 66 77.364 0.065 80 80.926 
25 0.26202 104.472 0.02076 283.398 0.05638 273.605 0.13585 34.765 0.01106 217.223 0.03877 234.342 
26 0.26202 24.482 0.02076 203.412 0.056 38 13.612 0.13585 314.774 0.01106 137.237 0.03877 334.349 
27 0.02622 247.656 0.01197 41.135 0.01992 237.841 0.015 93 66.953 0.005 7 9  321.009 0.009 49 88.849 
28 0.02622 300.218 0.01197 93.717 0.01993 110.414 0.015 93 119.514 0.00579 13.588 0.00949 321.415 
29 0.01841 345.591 0.06555 352.258 0.04371 170.478 0.02118 355.688 0.06878 352.195 0.047 09 173.192 
30 0.01841 66.443 0.065 55 73.110 0.04371 71.331 0.02118 76.543 0.06878 73.047 0.04709 74.046 
31 0.011 97 221.135 0.02622 67.656 0.01992 57.843 0.005 7 9  141.014 0.015 93 246.953 0.009 49 268.849 
32 0.01197 273.717 0.02622 120.218 0.01992 290.415 0.00579 193.588 0.01593 299.514 0.00949 141.412 
33 0.06555 172.258 0.01841 165.592 0.04371 350.478 0.06878 172.195 0.021 18 175.688 0.047 09 353.192 
34 0.06555 253.110 0.01841 246.443 0.04381 251.331 0.06878 253.047 0.02118 256.542 0.04709 254.045 
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= Ql(j)+iQz(j) ,  where Q,(j) and Q,(j) are  solutions 
of the harmonic oscillator equation. Thus, if we 
set Q(j)  a 1 +i, Eq. (2) may be written 

where we have expressed the eigenvectors in the 
polar form Sa(k,j) =Ra(k, j )  e"ea(h*", as  they are  
listed in Table V. 

The soft-mode theory of displacive phase transi- 
tions hypothesizes that at the transition the dis- 
placements associated with the soft mode (or 
modes) are  "frozen" o r  "condensed" into the phase 
of lower symmetry. That i s ,  the difference be- 
tween the structure of the two phases corresponds 
to the displacements associated with the soft modes 
in the higher-symmetry phase. 

The structure of f .  e. GMO has been determined 
by Jeitschko. 5 * 6  He concludes that ferroelectric 
switching may be visualized a s  an application of 
the 7 operation, which was a symmetry operation 
of the high-temperature phase, +I Thus, we can de- 
termine the positions of the ions in the ferroelec- 
trically switched phase from Jeitschko' s values by 
performing a rotation of 90" about the x = f ,  y = f 
axis followed by a reflection in the z = 0 plane. 

The 3 operation may be applied n times, where 
n =  0,1,2,  o r  3, to obtain four different se ts  of ion 
coordinates. Hence, when one subtracts from 
these, the coordinates of the ions in the p. e. phase 
one obtains four different sets of displacements 
denoted by G(1, k In), to be interpreted a s  arising 
from "frozen in" soft modes. In Table VI we list 
the displacements associated with the structural 
difference between the two phases for the k = 19 
and k = 21 ions. These displacements were com- 
puted for zero macroscopic strain, i. e . ,  the lat- 
tice constants $f the f .  e. phase woere taken to be 
a = b = 10.4554 A and c = 10.6700 A, which corre- 
spond to those of the p. e ,  phase, insteadof thoseof 
the room-temperature phase. 

An important feature of the displacements 
G(1, k 1 n)  i s  that those associated with an even (or 

odd) number of applications of the a operation dif- 
fer  primarily only in their sign; i. e .  , G(l, k in) 
2-<( l ,k ln+2) .  

For example, using the data given in Table VI, 
we find that the angle between G(0,1910) and G 
(0,191 2) is 175. l o  and the angle between G(0, 19 11) 
and ;(0,19l3) is 174. 2", while the lengths of these 
vectors are,  respectively, 0.3435, 0.3801, 0.3483, 
and 0.3453 A f o r n =  0 , 2 , l ,  and3. This approxima- 
tion is not a s  good for some of the other ions which 
have smaller displacements, and i s  poorest for the 
O(9) ions. For k = 27, which refers to an O(9) ion, 
the corresponding angles and lengths are  167. !", 
155. 3", 0.1444, 0.0938, 0.1355, and 0.0906 A. 
Because of the fact that G ( l , k l n ) ~ -  G(l, k In +2) ,  
we characterize the "frozen in" displacements by 
? ( ~ k ) = ~ [ G ( l , k 1 0 ) - ~ ( l , k 1 2 ) ]  and Gt(l,k)='[-( 2 w 1 ,k I l )  
- w(l ,  k 13)] and their negative counterparts. 

Equation (3) gives the displacements due to one 
o r  other of a pair of orthogonal eigenvectors. How- 
ever, these are still arbitrary and we now define a 
new pair of vectors: 

and its orthogonal counterpart 

We are now free to choose the coefficients a,, 
a, and the phase angles ~ ( l ) ,  A(2), so that t;,(l,k) 
and r;L(l, k) fit the largest components of the dis- 
placements ?j(l, k) and ij'(1, k), for t!e O(5) ions. 
pecifically, if we take a, = 8.5093 A, a, = - 1.0088 
A , A ( ~ ) = - 2 .  734", and A(2)=5.021°, then t;,(l,19) 
=q,(l, 19), g i  (1,19)=~:(1,19), LY(1,2l)= qy(1,21), 
and $~(1,21)=q~(1,21) .  The displacements t;(O,k) 
and ~ ' ( 0 ,  k) obtained using the parameters given 
above, together with the corresponding displace- 
ments G(0, k )  and G'(0, k), which characterize the 
difference in the structure of the f .  e. and p. e. 
phases, are  listed in Table VII for all values of k. 
F2r the other lattice points Z(Z, k ) =  ( - ~ ) ( l , +  l,)_ 
x C(O,  k )  with similar expressions for g'(1, k), q(1, k),  
and ?'(l, k). 

The differences between the calculated and mea- 
sured displacements are  displayed pictorially in 

TABLE VI. Displacements of the k =19 and k =  21 sublattice ions obtained from the structural differences between the 
f.e. phase after n applications of the 4 operation and the p.e. phase. The values listed are those obtained using lattice 
constants a =  b =10.4554 A and c=10.6700 A for the f.e. phase. The axes are those of the p.e. phase. Displacements 
are in A. 

G(o, 19 in)  G(o, 21 ~ n )  
n x Y z x Y z 

0 0.2772 - 0.0037 -0.2027 0.0384 0.3327 0.0843 
1 0.3327 - 0.0384 - 0.0843 - 0.0148 - 0.3238 - 0.1985 
2 - 0.3238 0.0148 0.1985 - 0.0178 - 0.3430 - 0.0577 
3 -0.3430 0.0178 0.0577 0.0037 0.2772 0.2027 
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Fig. 4.  There a re  13 nonequivalent displacement 
differences. The measured displacements are  
denoted by solid vertical arrows with length pro- 
portional to the magnitude of the displacement. 
The lengths of the dashed arrows denote the mag- 
nitudes of the calculated displacements while their 
directions show the directional deviation from the 
measured values. 

There i s  clearly a correlation between our cal- 
culated soft-mode displacements and those obtained 
from the structures of the two phases. There a re  
some discrepancies; particularly in that the mag- 
nitudes of the calculated displacements, other than 
those which we fit, a re  too small. On the other 
hand, one does not expect the soft-mode displace- 
ments to be frozen into the crystal exactly, owing 
to the higher-order effects that are  significant at 
the transition and which a re  responsible for the 
onset of the permanent polarization. Also the use 
of our oversimplified model may be causing some 
of the discrepancies. 

Perhaps the most important factor which spoils 
the correlation i s  the fact that the f .  e. structure, 
which we have used to determine ?(l,k) and :'(l,  k), 
was determined at room temperature. Jeitschko 
has shown that the structure changes continuously 
with temperature from room temperature to just 
below 159 "C and that about half the change in struc- 
ture occurs over this temperature range. ' For a 
better comparison, we really need the structure of 

FIG. 4. Comparison of the measured  displacements 
(solid a r rows)  with t h e  computed values (dashed a r rows)  
given i n  Table VII. The solid a r r o w s  a r e  assigned a ver- 
t i ca l  direct ion and the lengths and angular  deviations a r e  
drawn to  scale.  

f .  e. GMO at a temperature just below 159 "C. On 
the whole however, y e  believe the present correla- 
tion is quite good and provides new insight into the 
nature of the transition and the formation and 
switching of f .  e .  domains. l4 
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