Winter 12-4-2015

Reactive Oxygen Species Homeostasis and Proline Catabolism

Lu Zhang
University of Nebraska-Lincoln, juliazhang87@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/biochemdiss
Part of the Biochemistry Commons

This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses and Dissertations in Biochemistry by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Reactive Oxygen Species Homeostasis and Proline Catabolism

by

Lu Zhang

A DISSERTATION

Presented to the Faculty of
The Graduate College at the University of Nebraska
In Partial Fulfillment of Requirements
For the Degree of Doctor of Philosophy

Major: Biochemistry

Under the Supervision of Professor Donald Becker

Lincoln, Nebraska
December, 2015
The role of proline metabolism in regulating cellular redox status was first proposed three decades ago. Proline catabolism was then later found to induce programmed cell death and cell apoptosis by regulating ROS signaling. Proline oxidation was also found to promote cell survival under oxidative stress. Proline catabolism-mediated reactive oxygen species (ROS) were suggested to be involved in both cases by serving as a regulatory signal. In this work, the sources of proline oxidation-induced ROS production were explored in both bacteria and animal cells. Proline oxidation-induced ROS was found to be shared by bacteria (Escherichia coli) and animals (human and pig), suggesting it is a common occurrence for many if not all organisms. The source of proline oxidation–mediated ROS was found to be the respiratory chain, where reducing equivalents generated during proline catabolism transfer electrons to molecular oxygen. Proline dehydrogenase (PRODH), the enzyme that catalyzes the first and rate limiting step of proline oxidation, does not directly contribute to proline oxidation-induced ROS formation. For instance, we found recombinant human PRODH1 has low reactivity with molecular oxygen ($k_{cat} = 0.06 \text{ min}^{-1}$), which is
300-700 times slower than with an artificial electron acceptor \((k_{cat} = 0.75 \text{ s}^{-1}) \) or the physiological electron acceptor ubiquinone-1 \((k_{cat} = 0.35 \text{ s}^{-1}) \). We also studied the mechanism of proline treatment in regulating oxidative stress resistance, since proline supplementation was able to promote the survival of wild-type \textit{E. coli} under oxidative stress. Depletion of PutA in \textit{E. coli} resulted in increased sensitivity to oxidative stress, suggesting the role of proline oxidation in regulating oxidative stress resistivity. We found that ROS generated during proline oxidation activates the OxyR regulon leading to increased \textit{katG} expression and oxidative stress tolerance. In addition, the level of proline oxidation induced ROS in \textit{E. coli} are sufficient to serve as an adaptive signal to oxidative stress. In mitochondria, proline oxidation also led to ROS generation suggesting that a conserved feature of proline catabolism in different organisms in the formation of ROS as a byproduct.
ACKNOWLEDGEMENTS

I would never have been able to finish my Ph.D. study without the guidance of my committee members, help from my co-workers and support from friends and my family.

Foremost I would like to gratefully and sincerely thank my advisor, Dr. Donald F. Becker, for taking me originally as a master student of “3+1” program and a Ph.D. student afterwards. Without him, I would not be standing in the place where I am. I am grateful for all of the mentorship, guidance, understanding and patience that he has given me. I also highly appreciate his support and encouragement for my internships at both NUtech Ventures and Dow AgroSciences. I know that not many graduate students are given the opportunity to participate in multiple internship during their Ph.D. program. I felt I owned a debt of gratitude to Dr. Becker and I will forever remember his kindness, support and great work ethics.

I would also like to express my gratitude to members of my advisory committee, Dr. Mark Wilson, Dr. Melanie Simpson, Dr. Nicole Buan and Dr. James Alfano, for their input, valuable discussion and accessibility. I am thankful to my former and present co-workers in Dr. Becker’s lab for their helpful discussion and assistance. I would like to express my appreciation to all office personal and colleagues at the Beadle Center for their help and suggestion. They make the Beadle Center a friendly and enjoyable place to learn and work.
I would like to thank all my friends for their friendship, help and support. They make Lincoln, Nebraska as my second home. They also help me to stay strong and calm during the tough period of graduate school.

Finally, I thank my parents for their faith in me, and my dog Tiantian for his silent love and patience.
TABLE OF CONTENTS

ABBREVIATIONS...ix

CHAPTER 1: Reactive Oxygen Species, Oxidative Stress and Redox Signaling

1.1 Reactive Oxygen Species...2
1.2 Oxidative Stress and ROS Sensors in *Escherichia coli*.........................4
1.3 ROS Activated Intrinsic and Extrinsic Apoptosis Signaling Pathway...........5
1.4 ROS Regulated Mitogen-activated Protein Kinase Cascade8
1.5 The Effect of ROS on PI3K/AKT/mTOR Pathway......................................10
1.6 ROS Activated KEAP1/NRF2 Pathway...12
1.7 Summary...13

CHAPTER 2: Reactive Oxygen Species and Signaling Pathways Associated with Proline Oxidation...18

2.1 The Effect of Proline on ROS Homeostasis ..19
2.2 Proline Metabolic Pathways ...20
2.3 Mechanisms of ROS Formation from Proline Catabolism......................22
2.4 Signaling Pathways Linked to Proline Catabolism in Plants....................30
2.5 Signaling Pathways Linked to Proline oxidation in Animals.....................33
2.6 Summary..45

CHAPTER 3: Proline Increases \textit{katG} Expression and Oxidative Stress Resistance in \textit{Escherichia coli} ..54
3.1 Abstract..55
3.2 Introduction..56
3.3 Materials and Methods..59
3.4 Results..69
3.5 Discussions...83

CHAPTER 4: Proline Oxidation and ROS Production in Mammalian Mitochondria ..95
4.1 Abstract..96
4.2 Introduction...97
4.3 Materials and Methods...99
4.4 Results...105
4.5 Discussions...116

CHAPTER 5: Purification and Characterization of Human Proline Dehydrogenase 1 Mitochondrial Isoform 1...124
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKT</td>
<td>Protein Kinase B</td>
</tr>
<tr>
<td>AMPK</td>
<td>AMP-activated protein kinase</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine- 5'-riphosphate</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>B-cell lymphoma 2</td>
</tr>
<tr>
<td>CoQ1</td>
<td>Ubiquinone -1</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ETC</td>
<td>Electron transport chain</td>
</tr>
<tr>
<td>FAD</td>
<td>Flavin adenine dinucleotide</td>
</tr>
<tr>
<td>GK</td>
<td>γ-Glutamyl kinase</td>
</tr>
<tr>
<td>GPR</td>
<td>γ-Glutamyl phosphate reductase</td>
</tr>
<tr>
<td>GSA</td>
<td>Glutamate-γ-semialdehyde</td>
</tr>
<tr>
<td>GSH</td>
<td>Reduced glutathione</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HR</td>
<td>Hypersensitive Response</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl β-D-thiogalatopyranoside</td>
</tr>
<tr>
<td>JA</td>
<td>Jasmonic acid</td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun N-terminal protein kinases</td>
</tr>
<tr>
<td>KEAP1</td>
<td>Kelch-Like ECH-Associated Protein 1</td>
</tr>
<tr>
<td>[Fe-S]</td>
<td>Iron–sulphur cluster</td>
</tr>
<tr>
<td>mTOR</td>
<td>mechanistic target of rapamycin</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinases</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Name</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>MEK</td>
<td>Mitogen-activated protein kinase kinase</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated kinases</td>
</tr>
<tr>
<td>M KK</td>
<td>Mitogen-activated protein kinase kinase</td>
</tr>
<tr>
<td>MPK</td>
<td>Mitogen Activated Protein Kinase</td>
</tr>
<tr>
<td>NAD$^+$</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADH</td>
<td>Reduced nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>Nrf</td>
<td>Nuclear respiratory factor</td>
</tr>
<tr>
<td>α-AB</td>
<td>α-aminobenzaldehyde</td>
</tr>
<tr>
<td>$^\cdot$OH</td>
<td>Hydroxyl radical</td>
</tr>
<tr>
<td>1O$_2$</td>
<td>Singlet oxygen</td>
</tr>
<tr>
<td>O$_2$$^-^-$</td>
<td>Superoxide anion</td>
</tr>
<tr>
<td>OAT</td>
<td>Ornithine-δ-aminotransferase</td>
</tr>
<tr>
<td>OGDH</td>
<td>α-ketoglutarate dehydrogenase</td>
</tr>
<tr>
<td>PCD</td>
<td>Programmed cell death</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphatidylinositol-3,4,5-triphosphate dependent kinase</td>
</tr>
<tr>
<td>PPAR</td>
<td>Peroxisome proliferator-activated receptor</td>
</tr>
<tr>
<td>PRODH</td>
<td>Proline dehydrogenase</td>
</tr>
<tr>
<td>PutA</td>
<td>Proline utilization A</td>
</tr>
<tr>
<td>P5C</td>
<td>Δ^1-Pyrroline-5-carboxylate dehydrogenase</td>
</tr>
<tr>
<td>P5CR</td>
<td>Δ^1-Pyrroline-5-carboxylate reductase</td>
</tr>
<tr>
<td>P5CS</td>
<td>Δ^1-Pyrroline-5-carboxylate synthase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RHH</td>
<td>Ribbon-helix-helix</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen spices</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SDH</td>
<td>Succinate Dehydrogenase</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>TCA</td>
<td>Tricarboxylic acid cycle</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factor</td>
</tr>
<tr>
<td>THFA</td>
<td>Tetrahydro-2-furoic acid</td>
</tr>
<tr>
<td>TTC</td>
<td>Triphenyltetrazolium chloride</td>
</tr>
</tbody>
</table>
CHAPTER 1

Reactive Oxygen Species, Oxidative Stress and Redox Signaling
1.1 REACTIVE OXYGEN SPECIES

Aerobic organisms inevitably encounter reactive oxygen species (ROS), which are generated as by-products from molecular oxygen (O₂) during respiration (1). ROS such as superoxide anion (O₂•⁻), hydroxyl radical (•OH), hydrogen peroxide (H₂O₂) and singlet oxygen (¹O₂) are the chemical species that are formed when molecular oxygen accepts electrons from cellular redox components (2). O₂•⁻ is produced by the one-electron reduction of O₂ and is the most abundant ROS (3). As a charged molecule, O₂•⁻ is not capable of crossing membranes passively, therefore its deleterious effect is limited to its site of generation (1). With its high electrostatic attraction, O₂•⁻ reacts readily with iron–sulfur clusters (4) disrupting the function of several iron-sulfur proteins which have vital physiological roles, such as in the electron transport chain (NADH dehydrogenase, Coenzyme Q-cytochrome C reductase) and the tricarboxylic acid cycle (TCA) (aconitase) (5). Another consequence of iron-sulfur destruction, however, is the release of iron that can lead to the production of highly reactive •OH. Superoxide dismutase (SOD) is responsible for scavenging O₂•⁻ (2), a process that results in the formation of H₂O₂ (2O₂•⁻ + 2H⁺ → H₂O₂ + O₂). H₂O₂ is more stable than O₂•⁻. It is capable of passing through membranes and, can also be transported via aquaporins into different cellular compartments (1). Main sources of H₂O₂ include flavin enzymes, respiratory electron transport chain, and NAPDH oxidase (7). H₂O₂ itself is not generally reactive, however, H₂O₂ reacts quickly with transition metals to generate •OH, a process known as the Fenton reaction (Cu⁺/ Fe²⁺ + H₂O₂ → Cu²⁺/ Fe³⁺ + •OH + OH⁻) (1). H₂O₂ can also down
regulate the catalytic activity of many enzymes, including protein tyrosine phosphatases, cysteine proteases, and metalloenzymes, by oxidization of iron-sulfur clusters and certain residues (tryptophan, methionine, histidine and cysteine) (8). In some cases, a reactive cysteine on the enzyme acts as a nucleophile by attacking H$_2$O$_2$, resulting in the formation of a cysteine sulfenic species (SOH) that can lead to glutathiolation or a disulfide bond (8). Because H$_2$O$_2$ has multiple effects on cellular processes by either causing oxidative damage or regulating various cell signaling pathways (6), numerous enzymes are dedicated to regulating H$_2$O$_2$ levels. These include catalase and alkyl hydroperoxidase in gram-negative bacteria such as *Escherichia coli* (2), and in eukaryotes, additional glutathione peroxidase and peroxiredoxin (1). With a half-life of only 2-4 ms, ·OH is the most potent oxidant causing damage to cellular macromolecules, including DNA, lipids and protein. The reaction between macromolecular and ·OH produces a variety of organic peroxides, such as malonaldehyde and 4-hydroxyalkenals, which can further propagate oxidative damage (9). Unlike H$_2$O$_2$ and O$_2$··, ·OH cannot be eliminated by an enzymatic reaction (10). Instead, antioxidants, such as melatonin, glutathione and vitamin E, are responsible for ·OH scavenging (10). Considering the difference of efficiency between enzyme-mediated and antioxidants-mediated scavenge of ·OH, it is important to tightly regulate the level of H$_2$O$_2$ and O$_2$··. Therefore, this thesis will be mainly focusing on the biological response and endogenous production of H$_2$O$_2$ and O$_2$··.
1.2 OXIDATIVE STRESS AND ROS SENSORS IN E. COLI

Oxidative stress arises when the concentration of ROS exceeds the cell’s defense capacity (6). Oxidative stress is inevitably encountered by aerobic organisms. E. coli, the model organism of Gram-negative bacteria, generate up to 10 μM of H₂O₂ and 5 μM of O₂•− during respiration at exponential phase of aerobic growth (11). Irradiation, heavy metals, and certain antibiotics and redox cycling compounds will also boost the endogenous production of ROS (2). Besides these sources, bacteria also face ROS derived from exogenous sources, such as a host phagocyte and other competing microorganisms (2). To regulate the oxidative stress defense system, E. coli utilizes two ROS sensors, namely, the SoxRS system and the OxyR regulon.

OxyR is a H₂O₂-sensing transcriptional activator belonging to the LysR family of transcriptional regulators (12). OxyR contains a N-terminal helix-turn-helix DNA binding domain, a central recognition and response domain that senses the regulatory signal, and a C-terminal domain that is responsible for multimerization and activation (4). In its inactive non-DNA binding form, two cysteine thiols of OxyR are reduced. Upon exposure to as low as 20 nM H₂O₂, a concentration that is well below the toxic threshold (1 mM) (13), the cysteine thiols become oxidized thereby leading to activation of OxyR DNA-binding. Based on structural information, the Cys199 residue of OxyR attacks H₂O₂ to generate a sulfenic acid, which then condenses with nearby Cys208 to form an intramolecular disulfide bond (14). The formation of the disulfide bond changes the conformation of OxyR and triggers the activation of OxyR allowing it to bind
site-specifically to DNA promoters of the OxyR regulon (14). The OxyR regulon of *E. coli* is comprised of over 20 genes, including genes involved in H₂O₂ detoxification, heme biosynthesis, reducing equivalents supply, thiol-disulfide isomerization, [Fe-S] repair, iron binding, and the transport of iron and manganese (2). When H₂O₂ stress abates, OxyR is reduced and de-activated by glutaredoxin 1, which contributes to OxyR auto-regulation together with alkyl hydroperoxidase and catalase (4).

The SoxRS system contains two proteins SoxR and SoxS, whose encoding genes are adjacent to each other (15). SoxR, an iron-sulfur transcription factor, is activated when its [2Fe-2S]⁺⁺ cluster is oxidized by O₂⁻⁻ to a [2Fe-2S]²⁺ state (2). Oxidized SoxR then induces the transcription of SoxS, which subsequently activates the expression of more than 100 genes of the SoxRS regulon, including manganese-containing SOD (SodA) and the ferric uptake regulation protein (Fur) (16). With activated SodA, the level of O₂⁻⁻ is kept around 0.1 nM (17). When O₂⁻⁻ stress subsides, SoxR is reduced and SoxS is degraded via proteolysis using the Clp protease system (15).

1.3 ROS ACTIVATED INTRINSIC AND EXTRINSIC APOPTOSIS SIGNALING PATHWAY

ROS induced cell apoptosis is mediated by either intrinsic or extrinsic pathways in animals (18). In either case, apoptosis is associated with the activation of caspases, belonging to cysteine protease family (19). Activated caspases cleave a number of proteins, such as inhibitor of caspase-activated
DNase and cytoskeletal protein, leading to DNA fragmentation, nuclear shrinking and loss of cell shape (19).

1.3.1 ROS induced extrinsic apoptosis pathway

In the extrinsic pathway, caspase is activated at the plasma membrane by activation of the death receptor (DR) (18). Factors that activate DR are members of the tumor necrosis factor (TNF) receptor superfamily, such as TNF-related apoptosis-inducing ligand (TRAIL) receptor. Activation of the DR leads to recruitment of the Fas-associated death domain (FADD) protein and caspase-8, which eventually activates downstream effector caspases such as caspase-3 to induce apoptosis (20). A link between oxidative stress and the extrinsic cell death pathway was discovered to involve nuclear factor of activated T cells (NFAT), which activates TRAIL promoter activity and increases the expression of TRAIL (21). H₂O₂ has been shown to activate the Ca²⁺-calcineurin-NFAT pathway (22). In the Ca²⁺-calcineurin-NFAT pathway, Ca²⁺ binds to the regulatory subunit of calcineurin as well as to calmodulin, therefore leading to the activation of calcineurin phosphatase (23). Dephosphorylation of several phosphorylated residues in the N-terminus of NFAT by calcineurin phosphatase results in increased transportation of NFAT into nucleus. Nuclear localized NFAT binds to the promoter region of target genes such as TRAIL, and regulate their expression (23). Therefore, ROS potentially induces or can at least amplify the extrinsic apoptosis pathway through Ca²⁺-calcineurin- NFAT pathway (24) (Figure 1.1).
Figure 1.1 ROS induction of extrinsic and intrinsic apoptosis pathways. In the extrinsic pathway, ROS induces Ca\(^{2+}\)-calcineurin-NFAT pathway and TRAIL expression, which activates caspases 8 and 3. In the intrinsic pathway, ROS inhibits the expression of Bcl-2, resulting in increased mitochondrial membrane permeabilization and release of cytochrome C (Cyt C) and activation of caspases 9 and 3.
1.3.2 ROS induced intrinsic apoptosis pathway

In the intrinsic pathway, caspase in the mitochondria is activated independent of a receptor (18). B-cell lymphoma 2 (Bcl-2) family proteins, localized on the outer mitochondrial membrane, play a vital role in regulating permeability of outer and inner mitochondria membrane and apoptosis cascades (25). ROS oxidizes Bcl-2 and decreases the expression of Bcl-2, thereby increases the permeability of the mitochondria membrane (26) (Figure 1.1). Upon disruption of the outer mitochondria membrane, cytochrome C localized at the intermembrane space is released into the cytosol (26), thereby triggers apoptosis by either activating caspases or acting as caspase-independent death effectors (18). Cytochrome c binds to the C-terminal of the apoptotic protease activating factor 1 (Apaf-1), a cytosolic protein with an N-terminal recruitment domain (20). The interaction between Apaf-1 and cytochrome c results in the oligomerization of Apaf-1 and the recruitment of caspase-9 (20). The formation of the cytochrome c/Apaf-1/caspase-9-containing apoptosome complex leads to the recruitment and activation of caspase 3, a protease that cleaves key substrates for initiation of apoptosis (18).

1.4 ROS REGULATED MITOGEN-ACTIVATED PROTEIN KINASE CASCADE

Mitogen-activated protein kinase (MAPK) cascades consist of three kinases: MAPK kinase kinases (MEKKs), MAPK kinases (MKKs) and MAPKs (MPKs), each of which phosphorylates its target and acts sequentially (27). Elevated ROS production leads to the activation of members of MPK family,
including extracellular-signal-regulated kinases (ERKs), c-Jun N-terminal Kinases (JNKs) and p38 MAPKs (28) (Figure 1.2). In the ERK pathway, Ras-GTPase in response to growth hormone, activates RAF proto-oncogene serine/threonine-protein kinase (Raf), an MEKK, followed by phosphorylation and activation of M KK and ERK (29). M KK4 and M KK7 in the JNK pathway phosphorylates threonine (Thr) and tyrosine (Tyr) residues within a Thr-Pro-Tyr motif located in JNK subdomain VIII, which activates JNK (30). The p38 MAPKs are usually activated in response to inflammatory cytokines, by M KK3 and M KK6 (27). Upon activation by growth factors, the ERK pathway is involved in cell growth, differentiation and development, while JNK and p38 MAPK pathway are associated with inflammation, apoptosis, cell growth and differentiation when activated by stress stimulation (27).

ROS has been shown to induce the activation of Ras-GTPase through cAMP and protein kinase A, followed by the activation of Raf and ERKs (31). In both p38 MAPK and JNK pathways, apoptosis signal-regulating kinase 1 (ASK-1) is one of the MEKKs in the pathway. In the absence of oxidative stress, ASK-1 binds to reduced thioredoxin, which promotes ASK-1 ubiquitination and degradation to inhibit ASK-1-mediated tumor growth factor (TGF)-α-induced apoptosis (32). Upon oxidative stress, oxidized thioredoxin disassociates from ASK-1, leading to the oligomerization of ASK-1 and activation of the JNK and p38- MAPK pathways (33). MAPK phosphatases (MPKs), which dephosphorylate and deactivate MAPKs, are regulated by ROS (7). In murine embryo fibroblasts, ROS generated by TGF-β1 stimulates NADPH oxidase 4
(Nox4) expression resulting in the modification of a catalytic cysteine residue in MKP-1, leading to activation of the JNK and p38 MAPK pathways (7). Besides thiol modification, ROS can also affect the expression level of MKP-1, thereby regulating the activation of MAPK cascades (34). In addition, ROS also impacts multiple MEKs. In plant, ROS activation of MAPK cascades through MEKs regulate the expression of antioxidant enzymes (27,35). \(\text{H}_2\text{O}_2 \) activates *Arabidopsis* MEKK ANP1, which initiates a phosphorylation cascade involving MKK4/5 and MPK3/6 (36). In the process of pathogen defenses, \(\text{H}_2\text{O}_2 \) activates the MEKK1-MPK4 pathway in Arabidopsis (35). \(\text{H}_2\text{O}_2 \) also induces nucleoside-diphosphate kinases 2, which activates ROS scavenging enzymes by phosphorylation of MPK3/6 (37).

1.5 THE EFFECT OF ROS ON PI3K/AKT/mTOR PATHWAY

The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mechanistic target of rapamycin (mTOR) pathway is a signaling pathway regulating cell proliferation while inhibiting cell apoptosis (38). PI3K activation phosphorylates and activates Akt, which can regulate a series of down-stream targets, including mTOR and Forkhead box O (FOXO) (38). Akt inhibits FOXO through direct phosphorylation, and indirectly activates mTORC1, which is associated with protein synthesis and cell growth (39). FOXO is involved in the regulation of cell metabolism, proliferation, and stress response (38). PI3K is negatively regulated by phosphatase and tumor suppressor (PTEN) (40). In *vitro*, \(\text{H}_2\text{O}_2 \) oxidizes
Figure 1.2 Scheme for how ROS can regulate various signaling pathways such as MAPKs, PI3K/AKT/mTOR, Nrf2 and AMPK pathways. In the presence of oxidative stress, MAPKs cascades are activated by inhibition of MKP, and activated Ras, Ask-1 and MEK. By oxidizing PTEN, PI3K/Akt pathway is induced by ROS, leading to activation of mTORC1 and inhibition of FOXO. ROS induces dysfunction of mitochondria ATP production resulting in activation of the AMPK pathway. ROS can also promote the dissociation of Nrf2 from KEAP1 leading to the expression of several antioxidant defense genes.
Cys121 and Cys71 of PTEN, generating a disulfide bond and inactivating PTEN, thus relieving inhibition of PI3K. In vivo, increased amounts of oxidized PTEN and activated PI3K due to growth factor induced ROS were observed (42). Therefore, upon oxidative stress, PTEN inhibition of PI3K is disrupted, leading to activation of Akt/mTORC and inhibition of the FOXO pathway (Figure 1.2).

1.6 ROS ACTIVATED KEAP1/NRF2 PATHWAY

A cysteine–zinc complex constitutes the redox sensor of the Kelch-like ECH associated protein-1 (KEAP1) in mammals. Residues Cys273 and Cys288 of KEAP1 are crucial to zinc coordination and the degradation of the nuclear factor erythroid 2-related factor 2 (Nrf2) (43). Nrf2 is a transcription factor responsible for the regulation of antioxidant proteins (40). In the absence of oxidative stress, Nrf2 forms a complex with KEAP1, leading to proteasome degradation of Nrf2 (44). Upon oxidative stress, Cys273 and Cys288 become oxidized, leading to the release of Nrf2 from KEAP1. Subsequently, Nrf2 is translocated into the nucleus and binds to antioxidant-response elements of antioxidant genes, which are associated with regulating glutathione homeostasis, stress response, calcium homeostasis, and iron metabolism (44) (Figure 1.2). Besides KEAP1, MAPKs and PI3K are also responsible for the activation of Nrf2 under oxidative stress, although the mechanism is still under investigation (45). In the MAPKs, ERK and JNK appear to positively regulate Nrf2, whereas p38 MAPK was reported to regulate Nrf2 both positively and negatively (45).
1.7 SUMMARY

Although oxidative stress is toxic and may initiate cell apoptosis, ROS is required for cellular regulation and is integrated with several different signaling pathways, including MAPKs cascades, and the PI3K/Akt/mTOR and Nrf2 pathways (6). In addition, impaired mitochondrial function due to ROS leads to intracellular increases in AMP, which can activate the AMP-dependent protein kinase (AMPK) pathway (31) (Figure 1.2). The mechanisms by which organisms respond to ROS as an adaptive signal for protection and cell survival during oxidative stress will be explored in Chapters 3 and 4.
REFERENCES:

CHAPTER 2

Reactive Oxygen Species and Signaling Pathways Associated with Proline Oxidation

2.1 THE EFFECT OF PROLINE ON ROS HOMEOSTASIS

Besides its proteogenic function, the imino acid proline plays numerous roles in cellular processes, including bioenergetics, cell differentiation, tumor growth, lifespan, and cell apoptosis (1-9). The function of free proline is normally connected to the regulation of ROS homeostasis. Generally, proline may directly scavenge certain types of ROS (e.g. 'OH) or protect antioxidant enzymes from metal, osmotic and oxidative stress. Free and polypeptide-bound proline can react with O₂⁻ and 'OH to form a variety of hydroxyproline derivatives (e.g., 4-hydroxyproline and 3-hydroxyproline) (10,11). The reaction rate of proline with H₂O₂ is too slow to effectively diminish cellular ROS by a direct chemical mechanism (10,11). However, the pyrrolidine ring of proline has a low ionization potential and effectively quenches ¹O₂ most likely through a charge transfer mechanism in which molecular oxygen returns to the ground triplet state (³O₂) (12-14). Alia and coworkers used irradiation of various photosensitizers to produce ¹O₂ and showed that 20 mM proline completely inhibits ¹O₂ formation (15). However, recent evidence suggests that proline cannot quench ¹O₂ in aqueous buffer causing the potential scavenging role of proline against ¹O₂ to be reconsidered (16). As an osmolyte, proline acts as a chaperone and stabilizes proteins, including antioxidant enzymes. Proline (1 molar concentration) in vitro protected nitrate reductase under osmotic, metal, and H₂O₂ stress (17). However, relative to other osmolytes, proline is categorized as a weak stabilizer of protein folding and ranks lower in its ability to induce protein folding (18,19). In addition, the concentration of proline used for osmoprotectant experiments in
vitro is > 1 M which is significantly higher than intracellular proline concentrations found under stress conditions (100-400 mM). Therefore, the role of proline as a chaperone in protecting antioxidant enzymes at physiological condition remains to be determined.

2.2 PROLINE METABOLIC PATHWAYS

Proline metabolism involves the interconversion of proline and glutamate. The oxidation of proline is coordinated by the flavin-adenine dinucleotide (FAD) dependent proline dehydrogenase (PRODH; EC 1.5.99.8) and nicotinamide adenine dinucleotide (NAD+) dependent Δ^1-pyrroline-5-carboxylate dehydrogenase (P5CDH; EC 1.5.1.2) (20) (Figure 2.1). In Gram-negative bacteria, these two enzymes are fused into a single protein known as proline utilization A (PutA) (21). PRODH catalyzes the first and the rate-determining step by coupling the two-electron oxidation of proline to the reduction of membrane-associated ubiquinone (22). Δ^1-pyrroline-5-carboxylate (P5C), the product of PRODH, spontaneously converts into glutamate-γ-semialdehyde (GSA), which is oxidized to glutamate by P5CDH using NAD$^+$ as an electron acceptor (23). In eukaryotes, PRODH and P5CDH localize in the mitochondrial matrix with PRODH associating with the inner mitochondrial membrane. In prokaryotes, P5CDH is in the cytosol while PRODH binds peripherally to the cytoplasmic membrane (24).

The biosynthesis of proline from glutamate requires the bifunctional
Figure 2.1 Proline metabolic pathways. In the biosynthesis pathway, ornithine and glutamate can be converted to glutamate-γ-semialdehyde (GSA) by ornithine-δ-aminotransferase (OAT) and 1Δ-pyrroline-5-carboxylate (P5C) synthetase (P5CS), respectively. GSA then spontaneously cyclizes to P5C, which is the substrate for P5C reductase (P5CR). P5CR catalyzes the last step in proline synthesis. In the catabolic pathway, proline dehydrogenase (PRODH) and P5C dehydrogenase (P5CDH) catalyze the oxidation of proline to glutamate. Electrons from reduced flavin (FADH₂) are transferred to the respiratory electron transport chain to regenerated oxidized flavin (FAD). Glutamate dehydrogenase (GDH) interconverts glutamate and α-ketoglutarate.
enzyme P5C synthetase (P5CS), which contains both activities of γ-glutamyl kinase (GK, EC 2.7.2.11) and γ-glutamyl phosphate reductase (GPR, EC 1.2.1.41) (Figure 2.1). In bacteria and yeast, GK and GPR are monofunctional enzymes (23). P5CS, the rate-limiting enzyme of proline biosynthesis, requires ATP and NAD(P)H for the reduction of glutamate to GSA, which then spontaneously cyclizes to P5C (25). P5C is then reduced to proline by P5C reductase (P5CR, EC 1.5.1.2) using NAD(P)H as an electron donor (26). Proline derived from ornithine requires ornithine-δ-aminotransferase (OAT, EC 2.6.1.13), which converts ornithine into GSA (27). In yeast, OAT is cytosolic (28), whereas in plants and humans, OAT is localized in the mitochondria (29-31).

2.3 MECHANISMS OF ROS FORMATION FROM PROLINE CATABOLISM

PRODH dependent ROS signaling has been implicated in cell proliferation, cell survival, apoptosis and autophagy (1,32-34). The amount of ROS generated depends on the availability of proline and the level of PRODH activity in the mitochondrion. Low ROS generation (i.e., constitutive PRODH expression) was predicted to stimulate protective effects such as activation of Nrf2 and life span extension as found in C. elegans (34). High ROS generation due to elevated PRODH expression would lead to apoptosis and cell death, contributing to physiological processes such as the hypersensitive response (HR) in plants. Several ROS sources have been linked to proline catabolism-mediated ROS formation, including PRODH itself, electron transport chain
(ETC), proline-P5C cycle, accumulated P5C and ROS-generating pathways regulated by proline catabolism.

PRODH is also known as proline oxidase, indicating its potential ability to use molecular oxygen as an electron acceptor, a common property of many flavoenzymes. This implies that PRODH itself may serve as a source of proline oxidation-dependent ROS formation. The reactivity of PRODH with molecular oxygen during catalytic turnover of proline leads to the formation of $O_2^\cdot-$, which is converted into H_2O_2 by SOD (Figure 2.2). Oxygen reactivity and H_2O_2 formation were reported in several purified PRODH enzymes. By measuring the rate of H_2O_2 formation in air-saturated buffer, PutA from *Escherichia coli* was shown to have only minimal turnover with proline and molecular oxygen ($< 0.3 \text{ min}^{-1}$) whereas PutAs from *Helicobacter pylori* and *H. hepaticus* exhibited > 200-fold higher activity with oxygen (35). PRODH from *Thermus thermophilus* also exhibited higher proline:O$_2$ reactivity than *E. coli* PutA with a k_{cat} of 12.7 min^{-1} (36). Crystallographic studies of various PRODH enzymes have identified an α-helix near the FAD that appears to shield the cofactor from solvent oxygen. The α-helix may help direct electrons from the reduced flavin to ubiquinone or allow exposure of the reduced FAD to solvent oxygen thereby allowing for the generation of superoxide anion. Whether mammalian and plant enzymes exhibit significant proline:O$_2$ reactivity is not yet clear, but if they behave similarly to the yeast PRODH enzyme (Put1p), then it is likely that the human and plant enzymes have only minimal reactivity with molecular oxygen as Put1p was shown to have a turnover number of only 0.54 min^{-1} with proline and molecular oxygen.
Instead of being directly formed in the FAD active site, a second source of proline-mediated ROS is the downstream electron transfer events of proline oxidation in the ETC of prokaryotes or the mitochondrion of eukaryotes. Every catalytic turnover of PRODH and P5CDH generates FADH$_2$ and NADH, respectively, which provide electrons for the ETC, leading ultimately to reduction of oxygen into water by cytochrome C oxidase. The ETC chain, however, is not 100% efficient with estimates of 1-2% O_2^- and H_2O_2 being generated per water molecule formed. The formation of ROS by proline via the ETC is supported by the fact that in isolated Drosophila mitochondria using proline as a substrate, ROS production can be inhibited by malate, an inhibitor of mitochondrial Complex II (succinate dehydrogenase) (38). Similarly, isolated mitochondria of a human breast cancer cell line (ZR75-30) was shown to generate H_2O_2 during incubation with proline (38).

Even though proline is likely to drive ROS formation by the ETC, little is known about which sites in the ETC actually generate ROS during proline oxidation. The logical sites of ROS formation are those to which proline oxidation directly feeds reducing equivalents. PRODH has been shown in bacteria and yeast to utilize Coenzyme Q as an electron acceptor, thus PRODH directly passes electrons into the ubiquinone pool. The NADH generated by the P5CDH reaction is a second source of electrons for the ubiquinone pool. In prokaryotes, such as E. coli, NADH is oxidized by NADH dehydrogenase and reduced ubiquinone is transferred to cytochrome bd (quinol:O_2 oxidoreductase) and
Figure 2.2 Potential sites for electron flow of proline oxidation into the ETC and ROS production. (1) PRODH may directly react with molecular oxygen to generate superoxide (O$_2^-$) and hydrogen peroxide (H$_2$O$_2$). (2) PRODH feeds electrons directly into the ubiquinone pool. (3) NADH generated by P5CDH is a substrate for complex I and another potential source of electrons for the ubiquinone pool. (4) Conversion of glutamate into α-ketoglutarate and eventually to succinate provides another route for electrons to enter the ubiquinone pool via succinate dehydrogenase.
cytochrome \(b_{o3} \) (quinol oxidase) complexes\(^{(39)}\). In eukaryotes, complex I (NADH dehydrogenase complex) transfers electrons from NADH to ubiquinone with reduced ubiquinone being oxidized by Complex III (ubiquinol-cytochrome c reductase complex)\(^{(39)}\). A third possible route for reduction of ubiquinone during proline oxidation is succinate dehydrogenase. Glutamate produced by proline oxidation can be deaminated to \(\alpha \)-ketoglutarate by glutamate dehydrogenase (GDH, EC 1.4.1.2). Subsequently, \(\alpha \)-ketoglutarate dehydrogenase (OGDH, EC 1.2.4.2) and succinyl-CoA synthetase (EC 6.2.1.4) convert \(\alpha \)-ketoglutarate into succinate which is oxidized to fumarate by succinate dehydrogenase (SDH, EC 1.3.5.1) or complex II. Therefore, proline oxidation can pass electrons into the ubiquinone pool of the ETC via PRODH, NADH dehydrogenase complex, and SDH (Figure 2.2). A few studies have been reported to explore the mitochondrial sites of proline induced ROS production. Isolated mouse liver mitochondria were shown to generate ROS using proline as substrate\(^{(9)}\). The sites of proline-dependent ROS production in mouse mitochondria were suggested to be Complex III, because inhibition of complex III with myxothiazol or antimycin A resulted in a dramatic increase of ROS\(^{(9)}\). On the other hand, with proline as substrate, isolated mitochondria from a human breast cancer cell line (ZR75-30) consumes \(O_2 \) and produces \(H_2O_2 \) presumably at complex I and \(\alpha \)-ketoglutarate dehydrogenase\(^{(38)}\). As mentioned above, isolated \textit{Drosophila} mitochondria oxidize proline and generate ROS at complex I and complex II\(^{(38)}\). Thus far, no information on ETC sites that contribute to proline-mediated ROS formation in prokaryotes has been reported. The
preliminary study of sites associated with proline oxidation-mediated ROS in *E. coli* will be discussed in Chapter 3. It is still unclear whether different organisms share the same sites of proline-dependent ROS formation or if each organism has unique sites of proline oxidation-induced ROS.

An important component of proline-induced ROS formation is the potential of a proline-P5C cycle that further feeds reducing equivalents into the ETC (Figure 2.3). The proline-P5C cycle has been mostly studied in mammalian cells and plants with NADPH as the fuel source for the cycle. When plants are exposed to certain biotic or abiotic stress, such as pathogen infection or exogenous high proline application, PRODH activity significantly increases (20). When PRODH activity exceeds the capacity of P5CDH, P5C accumulates and is reduced back to proline by P5CR and NAPDH (31). This is so called proline-P5C cycle. Significant cycling of proline-P5C is thought to enhance ROS production by increased electron flow to the ubiquinone pool of the ETC (6). Indeed, down-regulation of P5CDH in Arabidopsis by 24-nr SRO5-P5CDH natural silencing RNAs during salt treatment led to an increase in ROS production, consistent with the proline-P5C cycle enhancing ROS formation (40,41). In flax (*Linum usitatissimum*) it was also found that reduced expression of the flax homologue of *Arabidopsis* P5CDH, FIS1, resulted in increased sensitivity to exogenous proline and higher levels of *H₂O₂* (42,43). Besides plant, evidence for the proline-P5C cycle has also been found in mammals (44). The proline-P5C cycle in mammalian cell lines is closely linked to maintenance of proper NADP⁺/NADPH levels in the cytosol, enhancing the oxidative pentose phosphate pathway in
Figure 2.3 Proline-P5C cycle in plant and human. **Left Panel:** In plant, proline oxidation enzymes localize in mitochondria while proline biosynthesis enzymes localize in cytoplasm and chloroplast. When PRODH activity exceeds the capacity of P5CDH, accumulated P5C in the mitochondria is transported to the cytoplasm by unknown transporter and reduced back to proline by P5CR. Accelerated proline-P5C cycle increases the electron flow from PRODH to the ubiquinone pool of ETC, thereby inducing the production of ROS. Accumulated P5C in the mitochondria also inhibits the activity of Complex II, potentially resulting in increased ROS production. **Right Panel:** There are 3 isoforms of human PYCR (P5CR): PYCR₁ localizes in cytoplasm and PYCR₁/2 localize in mitochondria. Human P5CS is also found in mitochondria. With excessive activity of PRODH, accumulated P5C can be converted back to proline by PYCR₁/2 or PYCR₁. In cytoplasm, NAD(P)⁺ generated by PYCR₁ induces the pentose phosphate pathway, where NAD(P)H is produced. NAD(P) H is then transported into mitochondria and enters ETC, where ROS is produced. (G-6-P: glucose-6-phosphate; R-5-P: ribose-5-phosphate)
cytoplasm (7). The production NAPD+ by the proline-P5C cycle has been shown to up-regulate the oxidative pentose phosphate pathway, which produces NADPH. Because NADPH is vital for maintenance of key redox molecules such as thioredoxin and glutathione via thioredoxin reductase and glutathione reductase, respectively, NADPH has a critical supportive role in many cellular processes including cell survival and proliferation. The direct link of the proline-P5C cycle to NADPH balance can therefore potentially have a profound impact on redox balance and cellular processes.

Another mechanism by which proline metabolism has been proposed to affect ROS production is the accumulation of P5C/GSA (46). In Saccharomyces cerevisiae knocking out the PUT2 gene encoding P5CDH (Put2p) resulted in higher levels of P5C, enhanced ROS production and inhibition of growth. In a put2 mutant of Cryptococcus neoformans, proline supplementation led to increased mitochondrial O$_2$$^•−$ and cell death (48). In a human bladder tumor cell line (ECV-304), application of P5C initiated an oxidative burst followed by cell apoptosis (47). The mechanism by which P5C induces ROS formation is not clear and remains to be studied. In S. cerevisiae, however, evidence was reported for P5C inhibiting mitochondrial respiration in a dose-dependent manner, presumably at complex II (49) (Figure 2.3 left panel). Although it is unknown whether P5C-induced inhibition of complex II will generate ROS, loss of function of complex II will lead to increased ROS formation in mammalian cells (50).

In summary, although PRODH as a flavoenzyme may react with
molecular oxygen during turnover to generate H_2O_2, the most likely mechanism by which PRODH induces ROS production is by transferring electrons to the ubiquinone pool of the ETC. Additionally, PRODH expression that is disproportionate to P5CDH levels may propel a proline-P5C cycle or result in accumulation of P5C, both of which will lead to increased ROS formation. Proline catabolism may also induce ROS-generating signaling pathway, such as NADPH oxidases through Ca^{2+} as secondary signaling molecule. Further investigations into these aforementioned mechanisms are needed to better understand the linkages between proline catabolism and the associated increases in ROS.

2.4 SIGNALING PATHWAYS LINKED TO PROLINE CATABOLISM IN PLANTS

Proline catabolism has been shown to be down-regulated in response to exogenous ROS treatment presumably as a mechanism to accumulate proline. For instance, deleterious concentration of exogenous H_2O_2 treatment of maize seedlings and *Nitraria tangutorum* callus significantly decreased PRODH activity, which would be expected to facilitate proline accumulation and resistance to further oxidative stress (53).

In contrast to the response found with exogenous ROS, proline catabolism is manipulated under other stress conditions to generate endogenous ROS via mechanisms described in the previous section, can have an important signaling role in pathogen defense and stress resistance in plants. It was established that proline oxidation mediated ROS production is vital for the
Pseudomonas syringae pathogen induced HR in plants (55). HR is a localized reaction stimulated by ROS against pathogens to induce programmed cell death of infected tissue (55). Upon infection by *P. syringae*, both expression and activity of PRODH1 in *Arabidopsis* are up-regulated through a salicylic acid-sensitive pathway at the initial stage of HR, prior to the oxidative burst (56). Between the two isoforms of PRODH found in plants, PRODH1 is considered to be the main isoform responsible for proline oxidative flux (57). Plants with silenced PRODH1 expression had significantly lower ROS levels and exhibited increased susceptibility to infection relative to wild-type plants (56). Therefore, PRODH1 is required for ROS production and promotes HR during infection. In addition, at the oxidative stage of HR when oxidative stress occurs, the expression of PRODH and P5CDH was uncoupled with reciprocal upregulation of PRODH and downregulation of P5CDH. In HR, P5C levels remained constant thereby enabling the futile proline-P5C cycle and promoting ROS generation (31).

Proline oxidation induced ROS has been linked to programmed cell death in plant (52). In cells with excessive PRODH activity, or limited P5CDH activity, the hyperactivity of the proline-P5C cycle is anticipated to increase ROS generation. Accordingly, *Arabidopsis* wild-type and *p5cdh*-mutant plants treated with exogenous proline exhibited HR-like lesions, a marker of programmed cell death (42,43). Besides, the proline-P5C cycle, NADPH oxidase was another source of ROS induced by exogenous proline treatment (58). Proline-treated plant cells undergo cell death with features consistent with the production of ROS and DNA fragmentation (51). As discussed above, in a model proposed by
Chen et al. (52), exogenous proline can induce calcium-dependent generation of ROS through NADPH oxidase. It subsequently induces the production of salicylic acid probably via NDR1-mediated signaling resulting in a HR-like lesion (52).

Another cellular process linked to proline catabolism is senescence which is an age-dependent, development regulated programmed cell death phenomenon (59). PRODH2 was shown to have stronger expression in leaf vascular tissues at senescence in Arabidopsis thaliana and Brassica napus (rapeseed) (60,61). P5CDH expression was also found to increase in older leaves of Arabidopsis as observed using a AtP5CDH promoter-β-glucuronidase fusion construct (62). One possibility of upregulated proline degradation during leaf senescence is to facilitate nitrogen recycling in the phloem from old leaves to sink organs which would be consistent with the stronger expression of PRODH2 in vascular tissues (60,61) and induced cytosolic GS1 and GDH during leaf senescence (63). On the other hand, PRODH1 may be involved in plant hormone induced senescence, although PRODH1 expression in attached leaves did not change during senescence (61). The mechanism by which plant hormones such as methyl jasmonic-acid (JA) (64) and ABA (65) induced senescence, involves phosphatidylinositol-3,4,5-triphosphate dependent kinase (PI3K) signaling and H$_2$O$_2$ generation. Inhibiting PI3K activity by wortmannin or LY294002 aborts H$_2$O$_2$ production and delays JA induced-senescence in rice leaves (66). Phosphatidylinositol-3-phosphate (PI3P), the product of PI3K, has also been shown to be necessary for ABA-induced H$_2$O$_2$ production and senescence (64). Thus, PI3K and PI3P promote plant hormone (ABA and methyl
JA)-induced senescence by facilitating H_2O_2 production. Inhibition of PI3K by LY294002 under salt stress resulted in lower $P5CS1$ transcripts, higher $PRODH1$ expression and decreased endogenous proline content in Arabidopsis (64). Consistent with these results, $PRODH1$ expression was higher in a pi3k-hemizygous Arabidopsis mutant, although there was no change in $P5CS1$ transcription level (66). Thus, PI3K appears to negatively regulate proline catabolism by repressing $PRODH1$ expression. Whether proline metabolism has an important role in PI3K signaling and plant hormone induced-senescence in leaves remains to be explored. Repression of $PRODH1$ by PI3K could potentially decrease oxidative stress resistance as discussed above due to loss of proline-mediated ROS signaling and a lower ability to adapt to oxidative stress.

2.5 SIGNALING PATHWAYS LINKED TO PROLINE OXIDATION IN ANIMALS

2.5.1 Proline oxidation mediated ROS and cell apoptosis

The function of PRODH as a tumor suppressor has been established by different studies using cancer cell lines (67) and xenograft tumor models in immunodeficient mice (68) and, by analysis of tissue samples from cancer patients (69). As a tumor suppressor, PRODH induces cell apoptosis when its expression is upregulated (68).

The tumor suppressor protein p53 and the peroxisome proliferator-activated receptor γ (PPAR\(\gamma\)) are involved in up-regulating $PRODH1$ gene expression (Figure 2.4). Homo sapiens $PRODH1$, encoding human proline dehydrogenase, was first identified as a p53 target gene in 1997 and the role of
p53 in activating \textit{PRODH1} expression in cancer cells is well documented (67). Recent analysis of the \textit{PRODH1} promoter identified p53 responsive binding elements further establishing \textit{PRODH1} as a p53 regulated gene. PPAR\textgamma, a ligand-dependent transcription factor that controls lipid metabolism and cell apoptosis, has also been shown to induce \textit{PRODH1} expression (70). PPAR\textgamma ligand troglitazone was found to activate the \textit{PRODH1} promoter in colon cancer HCT116 cells, by enhancing the binding of PPAR\textgamma to PPAR-responsive element in the \textit{PRODH1} promoter (70). However, blocking PPAR\textgamma activation with an antagonist only partially decreased \textit{PRODH1} expression, indicating the existence of both PPAR\textgamma dependent and independent mechanisms of PRODH1 induction (70). Because troglitazone also induces p53 protein expression in HCT116 cells, p53 may be responsible for the PPAR\textgamma-independent PRODH activation (70). \textit{PRODH1} was also found to be regulated by microRNA. Ectopic expression of miR-23b* in normal renal endothelial cells decreased PRODH1 protein expression, PRODH-induced ROS generation and cell apoptosis (71). miR-23b* was shown to post-transcriptionally downregulate PRODH1 by binding to the 3'-UTR of the \textit{PRODH1} gene (71). The level of miR-23b* is negatively controlled by the transcription factor c-MYC (MYC). Thus, loss of c-MYC results in higher levels of miR-23b* thereby lower PRODH1 expression, a mechanism that could potentially decrease PRODH1-dependent apoptosis and promote cancer progression (69).

The mechanism by which upregulation of PRODH1 induces apoptosis is thought to rely on increased mitochondrial ROS production. Upregulation of
Figure 2.4 Proline oxidation mediated ROS and cell apoptosis. The expression of PRODH1 is negatively regulated by c-MYC via miR-23b* and positively regulated by PPARγ and p53. During proline oxidation, ROS is generated as a byproduct. ROS can induce apoptosis by intrinsic and extrinsic apoptosis pathway and down-regulate proliferation by inhibiting MAPKs and Cox-2/PGE2/β-catenin pathway. α-ketoglutarate derived from proline oxidation can also inhibit HIF-1 pathway by promoting degradation of hydroxylated HIF-1.
PRODH by p53 or PPARγ leads to increased mitochondrial O_2^- production, which can be inhibited by antioxidant NAC or co-expression of mitochondrial SOD (MnSOD) (67). Proline catabolism induces cell apoptosis by intrinsic (mitochondrial) and extrinsic (death receptor) pathways (72) (Figure 2.4). In the intrinsic pathway which involves non-receptor mediated intracellular signaling, proline oxidation-induced O_2^- alters mitochondrial membrane potential allowing for the release of cytochrome c into the cytosol, followed by the activation of caspase 9 and the caspase cascade (72). In the extrinsic (death receptor) pathway, proline-derived ROS activates apoptotic pathways through the calcineurin-dependent expression of nuclear factor of activated T cells (NFAT) (73). NFAT is a potent activator of the tumor necrosis factor-related apoptosis inducing ligand (TRAIL) promoter (73). Overexpression of PRODH induces the expression of TRAIL and death receptor 5 through NFAT, resulting in the cleavage of caspase-8 and thus death by extrinsic apoptosis (74).

ROS produced during proline oxidation has also been shown to affect MAPK signaling by decreasing the phosphorylation of all three subtypes of MAPK, namely, ERK, JNK and p38 (74) (Figure 2.4). Constitutive expression of MEK markedly reduced PRODH-mediated cell apoptosis (74). Therefore, proline-dependent ROS down-regulates MPAK pathway, which promotes cell apoptosis.

PRODH1 also inhibits signaling pathways associated with tumor cell proliferation (16). PRODH inhibits cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) signaling by down-regulating the expression of COX-2 and suppresses the production of PGE2. It was found that PRODH also reduces the
phosphorylation of GSK-3β and increases the phosphorylation of β-catenin (16) (Figure 2.4). Expression of MnSOD reversed the effect of PRODH on the aforementioned phenomenon and abolished cell apoptosis (16), indicating a role for proline oxidation induced ROS in driving the COX2-PGE2-β-catenin pathway. PGE2, produced by COX2, stimulates the direct association of the G-protein α subunit (Gαs) with Axin through the EP2 receptor (75). In concert with the coupling of APC (adenomatous polyposis coli protein) to the EP2-associated Gαs subunit and Axin, was the release of unphosphorylated β-catenin from the axinglycogen synthase kinase 3β (GSK3β) complex (75). Phosphorylated β-catenin by GSK3β results in its subsequent degradation via the 26S proteasome (75). Unphosphorylated β-catenin accumulated in the cytoplasm will enter into the nucleus and activate genes that stimulate cell survival, proliferation, and angiogenesis, including hypoxia-inducible factor-1 (HIF-1) (75). Thus, PRODH inhibits COX2-PGE2- β-catenin pathway and negatively impacts cancer cell survival. Interestingly, PRODH also down regulates HIF-1 independent of COX2-PGE2- β-catenin pathway (9). By using glutamate, the final product of proline oxidation, α-ketoglutarate can be generated by GDH. α-ketoglutarate is a substrate of prolyl hydroxylase (PHD), which catalyzes posttranslational hydroxylation of specific proline and asparagine residues in the α-subunit of HIF-1 (76). Hydroxylated HIF-1 is then degraded by ubiquitin and proteasomal degradation systems (76). Dimethyloxalylglycine, a α-ketoglutarate analogue and inhibitor of PHD, blocked PRODH dependent degradation of HIF-1 (9). Interestingly, the effects of PRODH on HIF-1 signaling could not be reversed by
MnSOD (9), suggesting ROS is not the mediator of HIF inhibition by PRODH.

2.5.2 Proline oxidation mediated ROS and cell survival under starvation and hypoxia

In environments with limited nutrients or oxygen supply, proline oxidation can provide benefits to the cell by promoting autophagy, ATP production, or mitochondrial oxidative metabolism of available substrates.

The AMP-activated protein kinase (AMPK) is the energy sensor in eukaryotes, activated by rising cellular AMP level (82). Under nutrient energy stress, AMPK is activated and mTOR is downregulated. In RKO colon cancer cells, inhibition of mTOR activity by rapamycin stimulated degradation of proline and increased PRODH catalytic activity (16) (Figure 2.4). On the other hand, activation of AMPK, by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), also markedly upregulated PRODH and increased ATP levels. Under these conditions, PRODH was responsible, at least in part, for the maintenance of ATP levels (16). Thus, AMPK and mTOR pathways coordinately up-regulate PRODH under nutrient starvation to enable cells to use proline as an alternative energy source. Increases in PRODH are also associated with upregulation of the pentose phosphate pathway in colorectal cancer cells grown with low glucose, consistent with the proline-P5C cycle helping support the pentose phosphate pathway flux (83).
Autophagy, literally "self-eating", is a mechanism for survival and is mainly regulated through the mTOR pathway under nutrient depletion or metabolic stress (84). The link between autophagy and hypoxia is connected by proline oxidation in cancer cells. Under hypoxic conditions, proline metabolism was induced, leading to mitochondria ROS production and autophagic signaling, which could be abolished by inhibiting PRODH or treating cells with the antioxidant N-acetyl cysteine (NAC)(84). The mechanism by which PRODH contributes to the survival of cancer cells under hypoxia appears to involve ROS as prodh knockdown under hypoxia diminished ROS production but had no effect on ATP levels (84). Because AMPK both positively regulated mRNA and protein expression of PRODH, it was considered to be responsible for the hypoxia induced PRODH expression. Accordingly, compound C ((6-[4-(2-piperidin-1-yl-ethoxy)- phenyl])3-pyridin-4-yl-pyrazolo[1,5-a] pyrimidine), a specific inhibitor of AMPK activation, completely blocked hypoxia-induced increase of PRODH expression (85). Also, hypoxia inducible factor-1 (HIF-1) which mediates the transcriptional response to hypoxia, was determined not to be responsible for hypoxia induced PRODH (9). Therefore, AMPK induces the expression of PRODH under hypoxia, leading to increased mitochondria ROS and pro-survival autophagy.

The adipose tissues in aged animals are poorly vascularized, therefore adipocytes suffer from nutrient starvation, which results in increased activity of PRODH and mitochondrial ROS production (9). The ROS produced by proline oxidation promotes the upregulation and the nuclear translocation of fork head
transcription factor class O1 (FoxO1), a transcriptional factor with the capacity to sense nutrient availability and tune several adaptive responses (9). Nuclear localized FoxO1 binds to the promoter of adipose triglyceride lipase (ATGL), which promotes mitochondrial oxidative metabolism and triglyceride utilization that supplies energy to starved adipocytes and prevents cell death, as well as adipose tissue inflammation (9).

2.5.3 PRODH protects cells from oxidative stress

Exogenous addition of proline has been shown to protect mammalian cells against oxidative stress (8,77) (Figure 2.5). Treatment with 5 mM proline decreased the \(\mathrm{H}_2\mathrm{O}_2 \) induced cell apoptosis in HEK293 cells by more than 2-fold (77). The activity of PRODH is required for proline-dependent oxidative stress protection, as either knockdown of \textit{prodh} expression or inhibition of PRODH activity by L-tetrahydro-2-furoic acid (L-THFA), a competitive inhibitor of L-proline, abolished the protective role of proline (8). PRODH mediated protection against oxidative stress may involve ATP production and the activation of the Akt survival pathway (8). For the former, treatment of WM35 cells with proline retained ATP and NADPH levels after exposure to \(\mathrm{H}_2\mathrm{O}_2 \). Inhibition of TCA cycle enzymes by \(\mathrm{H}_2\mathrm{O}_2 \) is well established (58). Therefore, proline oxidation may help maintain ATP levels when the TCA cycle is shutdown under \(\mathrm{H}_2\mathrm{O}_2 \) stress. Akt activation and its downstream phosphorylation of the fork head transcription
Figure 2.5 PRODH protects cell from oxidative stress. In response to exogenous ROS stress, PRODH can provide ATP/NADPH and activate Akt/FOXO3a pathway to protect cell survival. Under oxidative stress due to cytotoxic compound, such as gp120, ROS produced during proline oxidation induces pro-survival autophagy.
factor class O3a (FOXO3a), were significantly increased in proline treated cells under \(\text{H}_2\text{O}_2 \) stress, whereas knockdown of prodh in PC3 cells attenuated phosphorylated levels of Akt and FoxO3a (8). Therefore, PRODH can provide ATP to cells under oxidative stress and activate Akt resulting in increased phospho-FoxO3a which blocks FoxO3a from inducing cell death. The result is increased survival of proline treated cells during oxidative stress. The mechanism for how PRODH activates Akt is not yet known, however, ROS is well known to stimulate Akt signaling (8), suggesting ROS may be the link between PRODH and Akt activation.

In addition to protecting cells against exogenous oxidative stress, PRODH and proline oxidation were recently shown to protect cells from virulent agent or cytotoxic compound induced oxidative stress. HIV-1 glycoprotein 120 (gp120) is an envelope protein that mediates entry of the virus into host cells, including microglia, astrocytes and neurons (78). HIV-1 gp120 is a neurotoxic factor that is associated with HIV-1 associated neurological disorders (88). The neurotoxic effect of HIV-1 gp120 is partially due to its induction of oxidation stress (89). In astrocytes and microglia, HIV-1 gp120 has been shown to induce oxidative stress through the cytochrome P450 and NADPH oxidase, two major ROS production sites in mammalian cells (90). Recently, gp120 treatment has been shown to up-regulate transcription and activity of PRODH in SH-SY5Y (human neuroblastoma) cells (79). Concurrently, gp120 also increased intracellular ROS levels, which mostly depends on proline oxidation, since the inhibition of proline oxidation by dehydroproline attenuated ROS levels (79).
Although gp120 can induce both the apoptosis and autophagy of neurons (78), PRODH-dependent ROS was found to be only associated with autophagy (79). Parallel with increased ROS was the induction of autophagy markers, beclin 1 and LC3-II. The appearance of these autophagic markers was dependent on PRODH with inhibition of PRODH decreasing marker levels and over-expression of PRODH increasing the levels of the markers (79). The gp120 induced PRODH was suggested to be mediated by p53, since gp120 induces p53 via binding to CXCR4, the receptor of gp120 (79). Collectively, by binding to CXCR4, HIV-1 gp120 induces p53, which up-regulates PRODH expression and proline oxidation induced ROS, resulting in ROS-dependent autophagy. PRODH-mediated autophagy prevents HIV-1-induced neuron apoptosis, and may explain the resistance of neurons to HIV-1.

2.5.4 Proline oxidation and lifespan

Evidence for proline oxidative metabolism being linked to aging is mostly from studies of Caenorhabditis elegans. In C. elegans PRODH and proline catabolism was shown to significantly increase the lifespan of the worm. In a daf-2 mutant containing impaired insulin and IGF1 signaling, knockdown of prodh significantly decreased lifespan (34). Complementary to the effect of prodh knockdown on lifespan, proline treatment extended the lifespan of wild-type worms expressing PRODH (34). The mechanism of increased lifespan was shown to involve transient ROS signals generated by PRODH via the mitochondria ETC (34). Proline derived ROS is proposed to activate the worm
homologues of p38 MAP kinase (PMK-1) and Nrf2 (SKN-1), which defend against exogenous and endogenous cellular stress, leading to increased expression of antioxidant enzymes and extended lifespan (34). Although transient low levels of ROS benefit longevity, high ROS levels have also been shown to decrease lifespan. In C. elegans, knockdown of alh-6 (p5cdh) by RNAi resulted in the activation of SKN-1, the worm ortholog of the mammalian Nrf2 (34). With an activated SKN-1, alh-6 mutant had a 40% reduction in lifespan when fed on standard laboratory E. coli B strains OP50 and BL21, whereas, overexpression of alh-6 extended life span, suggesting alh-6 is a longevity gene (47). Interestingly, the effect of P5CDH on the life span of C. elegans is diet-dependent because the alh-6 mutant and alh-6 overexpressed worms had normal lifespans when fed on E. coli K-12 strains HT115 and HMS174 (47). Mechanistically, the expression of PRODH was induced by E. coli B strains but not E. coli K-12 strains (80). With impaired P5CDH and induced PRODH, the shorter lifespan may be due to accumulated P5C or an overactive proline-P5C cycle that results in toxic levels of ROS. In the alh-6 mutant fed on E. coli OP50, ROS accumulation was confirmed and treatment of the worms with the antioxidant NAC reversed the shortened lifespan without affecting SKN-1 activation (80). Therefore, the continuous production of ROS due to dysregulated PRODH/P5CDH expression (i.e., high PRODH and low P5CDH) affects the longevity of C. elegans via a SKN-1 independent pathway. Instead, the neuromedin U receptor-1 (NMUR-1), which regulates food-associated activities in invertebrates, was responsible for the decreased lifespan found in alh-6
mutant as *nmur-1/alh-6* double mutants lived a normal lifespan (80). To summarize the experiments in *C. elegans*, low amounts of ROS produced during proline oxidation benefit longevity by activating PMK-1 and SKN-1 pathways whereas high levels of ROS generated by down-regulation of P5CDH and increased proline-P5C cycling or accumulated P5C, lead to shorten lifespan via NUMR-1.

2.6 SUMMARY

The function of the proline metabolic pathway in the regulation of redox homeostasis and cell survival has been known for 30 years (7). Consistent with this hypothesis, many studies have shown that proline oxidation induces ROS generation, which propels cellular signaling pathways that influence cell reprogramming, cell death and cell survival, and therefore facilitate proline-induced stress resistance, development and aging (8,34,81,84).

There are four major sources of ROS generated by proline oxidation: 1. PRODH with solvent exposed active site can directly reduce O$_2$ during turnover with proline and generate H$_2$O$_2$ (36); 2. The FADH$_2$ and NADH generated by proline oxidation ultimately feed electrons into the ETC where O$_2^-$ and H$_2$O$_2$ can form in reactions O$_2$ (38); 3. Enhanced proline-P5C cycling due to imbalanced activities of PRODH and P5CDH, can fuel additional reducing equivalents to the ETC where ROS is generated (31); 4. PRODH induces ROS-generating signaling pathways involving NADPH oxidases (52).
Although proline metabolism may regulate cellular signaling pathways in a ROS-independent manner, such as using α-ketoglutarate derived from proline oxidation to regulate the level of HIF-1 (9), in most cases, the effect of proline metabolism on signaling pathway depends on ROS generated from proline oxidation (12, 34, 29). Depending on the level of ROS (O$_2^-$ and H$_2$O$_2$) produced by proline oxidation, the effect of proline metabolism can be beneficial or detrimental. For instance, modest amounts of ROS produced during proline metabolism in mammalian cell lines are necessary to proline-mediated adaption to oxidative stress (12,29), cytotoxic compounds (79), nutrient starvation and hypoxia (84). Modest ROS levels are also beneficial for worm longevity (34). On the other hand, excess ROS produced because of imbalanced PRODH and P5CDH results in programed cell death (64), including hypersensitive response (55), cell apoptosis (47,72-74,85-88), senescence and shortened lifespan (80).

In summary, the role of proline metabolism as a source of ROS appears to be an important phenomenon in plants and animals. ROS generated by proline oxidation can have pro-death and pro-survival effects depending on the ROS production rate. Understanding the mechanisms by which proline-dependent ROS impacts cellular signaling and survival will improve human health by further defining the roles of proline metabolism in cancer, aging, and in plants, senescence and pathogen defense.
REFERENCES:

CHAPTER 3

Proline Increases *katG* Expression and Oxidative Stress Resistance in *Escherichia coli*

Note: Part of this chapter has been published as the research article: “Proline Metabolism Increases katG Expression and Oxidative Stress Resistance in *Escherichia coli*” Lu Zhang, James Alfano, Donald Becker. *Journal of Bacteriology*, 2014, 197(3).
3.1 ABSTRACT

The oxidation of proline to glutamate in gram-negative bacteria is catalyzed by the proline utilization A (PutA) flavoenzyme, which contains fused proline dehydrogenase (PRODH) and Δ^1-pyrroline-5-carboxylate (P5C) dehydrogenase domains. The PRODH domain catalyzes the flavin-dependent oxidation of proline to Δ^1-pyrroline-5-carboxylate (P5C), a reaction that is coupled to the reduction of the electron transport chain, while the P5C dehydrogenase domain catalyzes the NAD$^+$-dependent formation of glutamate from P5C. Previous studies have suggested that aside from providing energy, proline metabolism may also influence oxidative stress response in bacteria. To explore this potential role and define the mechanism, we characterized the oxidative stress resistance of wild-type and putA mutant strains in Escherichia coli. Initial stress assays revealed that the E. coli putA mutant strain was significantly more sensitive to oxidative stress than the matching wild-type strain. Expression of PutA in the putA mutant strain restored oxidative stress resistance confirming that the loss of PutA activity was responsible for the oxidative stress phenotype of the putA mutant. Pre-treatment of wild-type E. coli cells with proline resulted in significantly higher survival rates in oxidative stress assays than cells without proline treatment. The mechanism of proline protection was then explored by using strains deficient in catalase and superoxide dismutase. E. coli strains that lack a functional katG gene failed to respond to proline despite exhibiting PutA expression. In wild-type cells, a > 3-fold increase in katG expression and activity was observed after 40 min incubation with proline.
Thus, proline metabolism leads to increased katG expression and oxidative stress tolerance in $E. \text{coli}$.

3.2 INTRODUCTION

The conversion of proline to glutamate is a four-electron oxidation process that is coordinated in two successive steps by the enzymes, proline dehydrogenase (PRODH) and Δ^1-pyrroline-5-carboxylate dehydrogenase (P5CDH) (Figure 3.1) (1,2). In gram-negative bacteria, PRODH and P5CDH are combined into a bifunctional enzyme known as proline utilization A (PutA) (3,4). The PRODH domain contains a non-covalently bound flavin adenine dinucleotide (FAD) cofactor and couples the two electron oxidation of proline to the reduction of ubiquinone in the cytoplasmic membrane (5). The product of the PRODH reaction, Δ^1-pyrroline-5-carboxylate (P5C), is subsequently hydrolyzed to glutamate-γ-semialdehyde (GSA), which is then oxidized to glutamate by the NAD$^+$-dependent P5CDH domain (6). In certain gram-negative bacteria such as $Escherichia \text{coli}$, PutA also has an N-terminus ribbon-helix-helix (RHH) DNA-binding domain (residues 1-47) (7). The RHH domain enables PutA to act as an autogenous transcriptional regulator of the putA and putP (high affinity proline transporter) genes (7). PutA represses put gene expression by binding to five conserved operator sites in the put regulatory region (8). Transcription of the put genes is activated by proline, which causes the reduction of the flavin cofactor and subsequent localization of PutA on the membrane (8-12).
Figure 3.1 Reactions catalyzed by the PRODH and P5CDH domains of PutA.

Reduction of ubiquinone (CoQ) in the electron transport chain is coupled to proline oxidation.
Proline has been shown to be an important carbon and nitrogen source supporting growth in varied nutrient conditions for *Escherichia coli*, *Pseudomonas putida*, *Bradyrhizobium japonicum*, and *Helicobacter pylori* (13-17). In *H. pylori*, L-proline is a preferred respiratory substrate in the gut (13,18). *H. pylori* can cause acute gastric inflammation that can progress from superficial gastritis to peptic ulceration, and gastric cancer (19). Proline levels are 10-fold higher in the gastric juice of patients infected with *H. pylori* than in noninfected individuals (13). Recently, a *H. pylori* putA mutant strain was shown to be less efficient in colonization of mice relative to the wild-type strain and the proline transporter, PutP, was found to be essential for gastric colonization of *H. pylori* (20). Altogether, these studies show that PutA and the proline catabolic pathway help promote the pathogenesis of *Helicobacter* species.

Besides being an important energy source in certain ecological niches, proline also provides protective benefits against abiotic and biotic stresses in a broad range of organisms (21-24). Proline is a well-known osmoprotectant and in *E. coli* proline has been described as a thermoprotectant by diminishing protein aggregation during heat stress (25-27). Proline has also been found to help combat oxidative stress, a property which has been well characterized in fungi and plants (22,23,28). The mechanism by which proline protects against oxidative stress is not fully known. However, in the fungal pathogen, *Colletotrichum trifolii*, proline was reported to increase catalase expression (28).

In a previous study, we examined the pathophysiological role of PutA in the mouse pathogen, *Helicobacter hepaticus*. We showed that a *H. hepaticus* putA
mutant strain caused significantly less inflammation in the livers of infected mice relative to mice inoculated with wild-type H. hepaticus (29). Unexpectedly, the H. hepaticus putA mutant strain was found to have lower catalase (katA) expression relative to the wild-type strain (29). The low catalase activity was proposed to contribute to the decreased pathogenesis of the putA mutant strain as Helicobacter species, which must effectively combat oxidative stress to successfully persist in the gastric mucosa (30-33). The rationale for lower catalase expression in H. hepaticus putA mutant cells relative to wild-type cells, however, was not apparent.

Here we further explore the role of proline metabolism in oxidative stress resistance in E. coli. We provide evidence that the mechanism by which proline enhances oxidative stress resistance involves upregulation of catalase, which is induced by proline-dependent ROS.

3.3 MATERIALS AND METHODS

3.3.1. Reagents, bacterial strains and culture conditions

β-mercaptoethanol, o-aminobenzaldehyde (o-AB), o-nitrophenyl-β-D-galactopyranoside, L-proline, and L-tetrahydro-2-furoic acid (L-THFA) were purchased from Sigma. All other chemicals were purchased from Thermo Fisher unless noted otherwise. PutA-pUC18 plasmid was described previously (8). E. coli strains used in this study are listed in Table 1. The MG1655 ΔputA strain was generated in this work by P1 transduction of the MG1655 wild-type strain (34). E. coli cultures were grown in Luria-Bertani (LB) broth (10 g tryptone, 5 g yeast extract, and 10 g NaCl per liter) or glucose minimal medium containing (0.5 g glucose, 0.1
g thiamine, 1 mM MgSO₄, 0.5 g NaCl, 1 g NH₄Cl, 3 g KH₂PO₄ and 6 g Na₂HPO₄⋅7H₂O per liter). Ampicillin and kanamycin were used as needed at 50 μg/ml. Cultures were grown at 37°C with shaking at 225 rpm. To perform measurements upon exponentially growing cells, overnight cultures were diluted 1,000-fold with fresh medium and grown to mid-logarithmic phase which corresponds to an optical density at 600 nm (OD₆₀₀) of 0.3.

Table 1. Strains used in this study

<table>
<thead>
<tr>
<th>E. coli K12 Strains</th>
<th>Relevant genotype</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG1655</td>
<td>wild-type (F<sup>−</sup>, Δλ<sup>−</sup>, rph-1)</td>
<td>(35)</td>
</tr>
<tr>
<td>MG1655 ΔputA</td>
<td>As MG1655 plus ΔputA758::kan</td>
<td>This work</td>
</tr>
<tr>
<td>AL441</td>
<td>As MG1655 plus D(lacZ1::cat)1 attL::[pSJ501::katG<sup>−</sup>-lacZ<sup>+</sup> cat<sup>+</sup>]</td>
<td>(36)</td>
</tr>
<tr>
<td>CSH4</td>
<td>wild-type (F<sup>−</sup>, lacZ1125, λ<sup>−</sup>, trpA49(Am), relA1, rpsL150(strR), spoT1)</td>
<td>(17)</td>
</tr>
<tr>
<td>JT31</td>
<td>As CSH4 plus putA1::Tn5</td>
<td>(17)</td>
</tr>
<tr>
<td>JT34</td>
<td>As CSH4 plus putP3::Tn5</td>
<td>(17)</td>
</tr>
<tr>
<td>BW25113</td>
<td>wild-type (F<sup>−</sup>, Δ(araD-araB)567, ΔlacZ4787(ΔrrnB-3), λ<sup>−</sup>, rph-1, Δ(rhaD-rhaB)568, hsdR514)</td>
<td>(37)</td>
</tr>
<tr>
<td>JW0999</td>
<td>As BW25113 plus ΔputA758::kan</td>
<td>(37)</td>
</tr>
<tr>
<td>JW1721</td>
<td>As BW25113 plus ΔkatE731::kan</td>
<td>(37)</td>
</tr>
<tr>
<td>JW3914</td>
<td>As BW25113 plus ΔkatG729::kan</td>
<td>(37)</td>
</tr>
<tr>
<td>JW3933</td>
<td>As BW25113 plus ΔoxyR749::kan</td>
<td>(37)</td>
</tr>
<tr>
<td>JW4024</td>
<td>As BW25113 plus ΔsoxR757::kan</td>
<td>(37)</td>
</tr>
</tbody>
</table>

3.3.2 Disk assay for oxidative stress sensitivity

Cells were grown in LB Broth to 0.3 OD₆₀₀. Aliquots (0.5 mL) from each culture were then mixed with 4.5 ml cooled down soft agar (glucose minimal medium, 0.8% agar and no antibiotics) and then poured immediately onto LB plates (no antibiotics). After the soft agar solidified, a round filter paper (d = 0.8 cm)
saturated with 10 μl of 6.6 M H₂O₂ was placed in the center of the plate. Plates were then incubated at 37°C overnight. The inhibitory circle diameter was measured from three different directions to calculate a mean value for the diameter of the inhibition zone.

3.3.3 Cell counting assay

Cells were grown in glucose minimal medium to 0.3 OD₆₀₀ with (or without) 10 mM L-proline. Cells were then collected, diluted to 0.1 OD₆₀₀ with fresh medium prior to 30 min treatment with 5 mM H₂O₂. After serial dilution, cells were spread onto LB plates and allowed to grow overnight at 37°C. Cell survival rates were calculated as colony forming units of H₂O₂ treated cells divided by those of untreated cells.

3.3.4 β-Galactosidase activity

To measure the effect of proline oxidation on katG expression, AL441 cells were grown in glucose minimal medium to 0.3 OD₆₀₀ before treatment with 10 mM L-proline and L-THFA. Samples were collected at designated time points and β-galactosidase activities were measured as described (38). To determine the effect of H₂O₂ on katG expression, cells were cultured as described above and then treated with different concentrations of H₂O₂ for 30 min, followed by measurement of β-galactosidase activity. β-galactosidase activity assays were performed as previously described (38) and are reported in Miller units (34).
3.3.5 Catalase activity

MG1655 wild-type and ΔputA cells were grown in glucose minimal medium to 0.3 OD$_{600}$ with (or without) 10 mM L-proline. Cells were then collected, centrifuged and lysed with bacterial extraction reagent (Pierce). Cell debris was removed by centrifugation, and catalase activity in the supernatant was measured with 20μM H$_2$O$_2$ by Amplex® Red Catalase Assay Kit (Life Technology) using a newly prepared H$_2$O$_2$ standard curve according to the manufacture’s protocol and measuring absorbance at 568 nm with a powerwave XS microplate reader. Protein concentrations were determined with 660 nm Protein Assay (Pierce). One unit of catalase activity is defined as the decomposition of 1.0 μmole H$_2$O$_2$ per min at pH 7.0 at 25 °C.

3.3.6 H$_2$O$_2$ clearance assay

To determine the effect of proline oxidation on H$_2$O$_2$ scavenging, MG1655 wild-type and ΔputA cells were grown in glucose minimal medium to 0.3 OD$_{600}$ with (or without) 10 mM L-proline. Cells were then pelleted, washed and resuspended in phosphate-buffered saline (PBS) to 0.1 OD$_{500}$. After addition of 5 μM H$_2$O$_2$, 0.45 mL aliquots were removed at different time intervals and H$_2$O$_2$ was measured immediately by Amplex® Red Hydrogen Peroxide/Peroxidase Assay Kit (Life Technology) at room temperature as previously described (39). Fluorescence measurements were made with an Agilent (Varian) Cary Eclipse fluorescence spectrophotometer with excitation at 545 nm and monitoring fluorescence emission at 590 nm.
Figure 3.2 Depletion of PutA increases oxidative stress sensitivity. (A) Disk assays were performed with CSH4 (parental wild-type), JT31 (putA1::Tn5), JT34 (putP3::Tn5), JT31 transformed with empty pUC18 vector or pUC18 vector bearing wild-type PutA using filter paper saturated with 10 μl of 6.6 M H$_2$O$_2$. (B) Inhibition zone diameters from five replicates of the disk assays shown in (A) (*P < 0.05). (C) Western blot analysis of PutA expression in strains used for A and B.
3.3.7 Real-time PCR

MG1655 wild-type and ΔputA cells were grown in glucose minimal medium to 0.3 OD$_{600}$. At time zero (t = 0 min), 10 mM L-proline was added to the cultures. Immediately after, a sample of 0.5 mL was taken and mixed with 1 ml of RNAprotect Bacteria Reagent (Qiagen) for the time zero point. Additional samples were then withdrawn from the cultures at different time points. RNA was extracted using RNeasy Mini Kit (Qiagen) according to manufacturer’s protocol. Genomic DNA was removed from the RNA preparations with RNase free DNase I (Fermentas). The cDNA was synthesized using the RevertAid™ First Strand cDNA Synthesis Kit (Fermentas) with 100 ng of template RNA and random hexamer primers. The following primers were used to analyze expression of katG, grxA, trxC, and 16S rRNA: katG forward, 5’- AATCCAGTTCAAGCGGTAG-3’; katG reverse, 5’-CACCAGCATTGTGCGGTTAC-3’; grxA forward, 5’-GATCTGGCTGAGAAATTGAG-3’; grxA reverse, 5’-GTTTACCTGCCTTTTGTTGT-3’; trxC forward, 5’- AATACCGTTTGTACCCATG-3’; trxC reverse 5’-GCTTCGGTATTCACTTTCAC-3’. The 20 μL real-time PCR mixture contained 10 μL SsoFast EvaGreen Supermix (Biorad), 300 nM of primers and 50 ng cDNA. Thermal cycling was performed using iCycler iQ (Biorad) for 40 cycles in 3 steps: 95°C for 15 sec, 58°C for 30 sec and 65°C for 60 sec. Relative mRNA levels were calculated using the $2^{-\Delta\Delta CT}$ method and using 16s rRNA as the internal control. PCR products were also analyzed by agarose gel electrophoresis to confirm product size and specificity.
3.3.8 **PutA western blotting**

The expression of PutA was confirmed by western blot analysis as described previously using an antibody against a polypeptide containing PutA residues 1-47 (8).

3.3.9 **Triphenyl tetrazolium chloride reduction (TTC) test**

During the proline oxidation, TTC was reduced to red 1,3,5-triphenylformazan (TPF), which has a molar extinction coefficient of 13410 L mol⁻¹ cm⁻¹ in ethanol. To confirm proline utilization in minimal media containing low glucose, MG1655 wild-type and ΔputA cells were grown in minimal media with 0.025% TTC to 0.3 OD₆₀₀, in the presence and absence of 10 mM proline. Cells were pelleted and washed, and TPF was extracted from pallet by 95% ethanol. The amount of TPF was determined by its absorbance at 485 nm.

3.3.10 **H₂O₂ production assays**

H₂O₂ produced and accumulated within cells passes through the membranes and equilibrates with the culture medium (53). To determine the effect of L-proline treatment on H₂O₂ production *in vivo*, BW25113 (Keio strain collection) wild-type and ΔkatG (strain JW3914) cells were grown to 0.3 OD₆₀₀ in glucose minimal medium with (or without) 10 mM L-proline. Cells were then pelleted and the H₂O₂ content in the supernatant was measured immediately by
Figure 3.3 Proline enhances cell survival and H$_2$O$_2$ clearance. (A) Cell survival rates of MG1655 wild-type and ΔputA strains, and the ΔputA strain transformed with empty or PutA-pUC18 vectors in the absence (Con) and presence (Pro) of 10 mM proline in minimal medium. Cells were treated with 5 mM H$_2$O$_2$ for 30 min. (B) Western blot analysis of PutA expression in strains used for (A) and ΔputA strain transformed with PutA Lys9Met-pUC18 vector. (C) H$_2$O$_2$ clearance in MG1655 wild-type and ΔputA cells grown in minimal medium in the absence (Con) and presence (Pro). (*P < 0.05)
nm and monitoring fluorescence emission at 590 nm.

The kinetics of H$_2$O$_2$ formation from proline was determined using inverted membrane vesicles from the ΔkatG strain (JW3914). Inverted membrane vesicles were prepared as described (40) from JW3914 (ΔkatG) cells grown in minimal A medium (33 mM KH$_2$PO$_4$, 51 mM K$_2$HPO$_4$, 8 mM (NH$_4$)$_2$SO$_4$, 0.4 mM MgSO$_4$, 0.5 mM tryptophan, 10 mM L-proline, 8% glycerol and 0.05% glucose) to 0.7 OD$_{600}$. Assays were performed at room temperature with 50 μg/ml of membrane vesicles (or membrane protein) and 10 mM substrate (proline, glutamate, glycine and succinate) to estimate the rate of H$_2$O$_2$ production in the presence and absence of THFA and 1 μg/mL antimycin A. The assay buffer (pH 7.2) included 40 U/mL superoxide dismutase, 125 mM KCl, 4 mM KH$_2$PO$_4$, 14 mM NaCl, 20 mM HEPES-NaOH, 1 mM MgCl$_2$, 0.2% BSA, and 0.02 mM EDTA (41). H$_2$O$_2$ was quantified using the Amplex® Red Hydrogen Peroxide/Peroxidase Assay Kit with excitation at 555 nm and monitoring fluorescence emission at 581 nm as described (41) with the rate defined as pmol of H$_2$O$_2$ formed min$^{-1}$ mg$^{-1}$ of total membrane protein. To represent the intracellular H$_2$O$_2$ formation rate, extracellular H$_2$O$_2$ formation rate measured with membrane vesicle was normalized to cytosolic volume of cultured cells, by using the relationship that 1 ml of 1.0 OD bacteria comprises 0.47 μl of volume (42). Intracellular H$_2$O$_2$ formation rate μM min$^{-1}$= Measured H$_2$O$_2$ formation rate pmol mg$^{-1}$ min$^{-1}$ x total protein 20 mg/total cytosolic volume μl. Total cytosolic volume = 0.8 OD x 500 ml culture x 0.47 μl cytosolic volume. The effect of L-THFA on H$_2$O$_2$ production was determined using the same assay conditions above with
Figure 3.4 Proline does not affect the growth curve of MG1655 wild-type and ΔputA strains or scavenge H$_2$O$_2$. (A) The growth curve of MG1655 wild-type and ΔputA strains in the presence (Pro) and absence (Con) of 10 mM proline. (B) Proline itself does not scavenge H$_2$O$_2$ levels during a 30 min incubation of proline (10 mM) and H$_2$O$_2$ (5 μM) in medium without cells.
proline concentration fixed at 10 mM and varying L-THFA (1-10 mM). Background formation of H$_2$O$_2$ was determined in control cytosolic by quantifying P5C production using o-AB as previously described (43). The K_m value for proline with membrane vesicles as an electron acceptor is 1.5 mM (8).

3.3.11 Statistical analysis

The reported mean values and standard deviations are from three to five experiments. Data were analyzed by Student’s t-tests with statistical significance considered to be a P-value < 0.05.

3.4 RESULTS

3.4.1 *E. coli* putA mutants have increased oxidative stress sensitivity.

Oxidative stress disk assays were performed with wild-type *E. coli* strain CSH4, the isogenic *putA* (JT31) and *putP* mutant (JT34) strains grown in LB broth to exponential phase (Figure 3.2A). The inhibition zone found for the JT31 strain is almost twice the size of the zones observed with CSH4 and JT34 strains (Figure 3.2A and B). This indicates JT31 cells have increased sensitivity to H$_2$O$_2$. The observed phenotype of the JT31 cells can be complemented by transformation with the pUC18 vector bearing the wild-type PutA (Figure 3.2), confirming that depletion of PutA contributes to the H$_2$O$_2$ sensitivity of JT31 cells. Expression levels of PutA in the different strains were confirmed by western blot analysis as shown in Figure 3.2C.
The above experiments were performed in LB broth, which is abundant in L-proline (9.5 mM) and contains low glucose (< 0.1 mM) necessitating *E. coli* to utilize amino acids for growth (44). It was previously reported that L-proline is significantly utilized by *E. coli* in LB broth (44). Thus, we hypothesized that proline catabolism may account for the differences in oxidative stress resistance observed between CSH4 and JT31 strains. Although CSH4 and JT31 are commonly used strains for proline studies (7,8,12), the CSH4 strain contains mutations in *relA* and *spoT*, which regulate (p)ppGpp levels and are important for bacterial survival under nutrient starvation, oxidative and osmotic stress conditions (45,46).

Thus, to further evaluate the effects of proline metabolism on oxidative stress sensitivity, a Δ*putA* strain was generated in the strain MG1655 by P1 transduction (Figure 3.3B). MG1655 wild-type and Δ*putA* strains exhibited similar growth profiles, and proline supplementation did not affect growth of either strain (Figure 3.4A).

To confirm proline utilization in MG1655 wild-type cells grown in minimal media in the presence of 0.05% glucose, proline oxidation indicator TTC was added to the minimal media. Proline utilization was measured by determining the accumulated TPF, the reduced product of TTC, in the cells. MG1655 wild-type cells accumulated 0.23 ± 0.01 μM OD⁻¹ TPF when grown in the absence of proline. In the presence of proline, TPF level in wild-type cells reached 0.81 ± 0.027 μM OD⁻¹. On the other hand, proline supplementation had no effect on MG1655 Δ*putA* cells, their TPF levels are 0.19 ± 0.02 and 0.18 ± 0.01 μM OD⁻¹, in the absence and presence of proline, respectively. Therefore, MG1655 cells actively consume
proline during the growth even when a low amount of glucose presents in the media.

Figure 3.3A shows that proline supplementation promotes cell survival of the wild-type MG1655 strain by 2-fold after exposure to H$_2$O$_2$ whereas no protection is observed in the MG1655 ΔputA cells. To confirm that the lack of proline protection was due to the loss of PutA, MG1655 ΔputA cells were transformed with the PutA-pUC18 vector. PutA expression in the different strains was confirmed by western blot analysis as shown in Figure 3.3B. The MG1655 ΔputA cells transformed with the pUC18 vector carrying wild-type PutA showed increased survival with proline (Figure 3.3A), while the empty pUC18 vector had no effect. It was noticed that ΔputA cells were more sensitive to H$_2$O$_2$. One possible explanation is that the incapability of ΔputA cells to utilize endogenous proline impaired their ability to cope with oxidative stress. Consistent with this idea, complementing with PutA increased the survival rates of cells grown without proline by almost 2-fold. However, complemented ΔputA cells still have lower survival rate compared with wild-type cells in the presence or absence of proline. This may be due to the reason that the complementation did not fully restore the ability of ΔputA cells to metabolize proline, although a decent amount of PutA expression was detected by western-blot. Thus, PutA is required for the improved oxidative stress tolerance with proline of 10 mM proline.

Next, we questioned the mechanism by which proline enhances resistance to H$_2$O$_2$. Scavenging enzymes, like peroxidases and catalases, are a key defense mechanism against H$_2$O$_2$ (47). To test whether proline increased the scavenging
of H₂O₂, which is membrane permeable, extracellular H₂O₂ levels (Figure 3.3C) were measured in cultures of MG1655 wild-type and ΔputA cells grown to exponential phase in medium supplemented with and without proline. In wild-type cells, extracellular H₂O₂ (5 μM) was cleared at a significantly faster rate with proline than without proline (Figure 3.3C). In the MG1655 ΔputA strain, proline had no effect on the H₂O₂ clearance rate indicating that the faster clearance of H₂O₂ in wild-type cells with proline is dependent on PutA. Proline alone did not decrease H₂O₂ levels during a 30 min incubation of proline (10 mM) and H₂O₂ (5 μM) in medium without cells (Figure 3.4B). Therefore, proline oxidation rather than proline itself enhances H₂O₂ scavenging ability in E.coli.

3.4.2 Proline metabolism upregulates katG expression and activity

The influence of proline on catalase activity was next evaluated as a possible means for the increased oxidative stress resistance and faster clearance of H₂O₂. Figure 3.5A shows that MG1655 wild-type cells exhibit 1.7-fold higher catalase activity with proline than cells without proline treatment. In the MG1655 ΔputA cells with no significant change in catalase activity was observed with proline.

E. coli has two catalases, hydperoxidase I and hydperoxidase II, which are encoded by katG and katE, respectively (48). The expression of katE is regulated by RpoS and up-regulated during stationary phase, whereas the expression of katG is regulated by OxyR and is induced by H₂O₂ during oxidative
Figure 3.5 Catalase expression and activity are upregulated by proline. (A) Catalase activity of MG1655 wild-type and ΔputA cells grown with (Pro) and without (Con) 10 mM proline. (B) Time course of katG expression in MG1655 wild-type and ΔputA cells. Cells were harvested at the time indicated after 10 mM proline being added to and katG expression was measured by real-time PCR. 16S rRNA was used as the internal control. (C) Effect of proline on katG' promoter activity was determined by monitoring katG':lacZ reporter construct activity in AL441 cells, which were treated with proline (10 mM) and THFA (10 mM) as indicated (0-60 min). β-galactosidase activity was measured. (D) Same as in (C) except AL441 cells were treated with increasing concentrations of H₂O₂ (30 min) prior to measuring β-galactosidase activity, reported as Miller units (U/OD₆₀₀). (*P < 0.05)
stress (48). Changes in expression of katG were quantified by real-time PCR in cells treated with proline for up to 60 min (Figure 3.5B). A 3.5-fold increase in katG expression was observed in wild-type MG1655 cells at 20 min and > 6-fold by 40 min. In the ΔputA cells, no increase in katG expression was observed in response to proline. Thus, proline induction of katG expression is dependent on PutA. Additional evidence for proline increasing katG expression was obtained using a katG′::lacZ expression reporter construct in MG1655 cells (strain AL441), in which the expression of katG is monitored by changes in β-galactosidase activity. Expression of katG was 1.5-fold higher in cells with proline relative to control cells without proline at 60 min (Figure 3.5C). Incubating cells with proline and THFA, a competitive inhibitor of PutA/PRODH activity (Kᵢ = 1.6 mM) (5), blocked the observed increase in β-galactosidase activity suggesting PutA catalytic activity is critical for the effects of proline on katG expression (Figure 3.5C). The effect of proline metabolism on the katG′::lacZ reporter was then compared with the effect of adding H₂O₂ to the cell medium. Figure 3.5D shows that exposure of cells to 0.1 mM and 1 mM of H₂O₂ for 30 min results in 1.7- and 2.5-fold increases in katG expression, respectively. Thus, the level of increased katG expression by proline is similar to that observed with 0.1-1 mM H₂O₂. The different assay sensitivities may explain the higher katG up-regulation level obtained by real-time PCR in comparison with β-galactosidase assay, since 1 mM H₂O₂ treatment led to a 44-fold increase of katG expression according to previously reported microarray data (49), while we only observed 2.5-fold increase when using katG::lacZ fusion. Altogether, these results strongly suggest that proline metabolism promotes
Figure 3.6 DNA binding is not required for proline dependent oxidative stress resistance. Survival rates of the MG1655 Δ*putA* cells and Δ*putA* cells transformed with empty or PutA K9M-pUC18 vector. PutA K9M is a mutant that does not bind DNA (*P < 0.05).
the expression of \textit{katG} and catalase activity.

3.4.3 DNA binding function of PutA is not required for increased oxidative stress resistance

\textit{E. coli} PutA contains a RHH DNA binding domain (residues 1-47) that enables PutA to act as transcriptional repressor of the \textit{putA} and \textit{putP} genes (7). Because PutA is a DNA binding protein, it is feasible that the effect of PutA on \textit{katG} expression may be via direct PutA-DNA interactions. \textit{E. coli} PutA-DNA binding involves a GTTGCA consensus motif (8), which is not found in the promoter region of \textit{katG}. Nevertheless, to rule out the possibility that PutA regulates \textit{katG} expression by DNA binding, we transformed the MG1655 Δ\textit{putA} strain with the PutA mutant Lys9Met (K9M) (Figure 3B). Previously, Lys9 residue was determined to be critical for PutA-DNA interactions as the Lys9Met mutation abolished PutA-DNA binding (8). Figure 3.6 shows that Δ\textit{putA} cells expressing the PutA mutant K9M respond to proline with a 2-fold increase in cell survival similar to that observed with wild-type PutA (Figure 3.3A). Expression of PutA K9M was confirmed by western blot analysis (Figure 3.3B). Therefore, the DNA binding function of PutA is not required for the proline dependent increase in oxidative stress resistance.

3.4.4 Proline metabolism activates the OxyR regulon

The effect of proline on cell survival was next tested using a panel of mutants from the \textit{E. coli} Keio strain collection (37). The cell survival rates of
Figure 3.7 Proline protection involves the OxyR regulon. (A) Cell survival rates of the BW25113 wild-type strain and BW25113 ΔputA, ΔkatE, ΔkatG, ΔoxyR, and ΔsoxR mutants (*P < 0.05). (B and C) Time course of grxA (B) and trxC (C) expression in MG1655 wild-type and ΔputA cells. Experiments were performed as described in Figure 3.4B using 16S rRNA as internal control (*P < 0.05).
BW25113 wild-type and mutant strains after H$_2$O$_2$ stress treatment were tested in the absence and presence of proline (Figure 3.7A). As anticipated, proline increased the survival of BW25113 wild-type cells but not the ΔputA strain. Similar to the ΔputA strain, the survival rates of the ΔkatG and ΔoxyR cells were not increased by proline, suggesting that OxyR, which regulates katG, is involved in the protective mechanism of proline. In contrast, proline increased the survival rates of ΔkatE and ΔsoxR indicating that hydroperoxidase II and SoxR which is a transcription factor activated in response to redox active metabolites (50), are not essential for the mechanism of proline protection. Besides H$_2$O$_2$ scavenging, activation of OxyR initiates other oxidative stress systems such as the sequestration of unincorporated iron by Dps and the repair of polypeptide cysteine oxidation by thioredoxins and glutaredoxins (47). Because OxyR appears to have a critical role in proline promoted oxidative stress resistance, the transcription levels of other antioxidant genes in the OxyR regulon were evaluated. Similar to katG, the expression levels of grxA (glutaredoxin 1) and trxC (thioredoxin 2) in MG1655 wild-type cells increased (~ 7-fold) in a time-dependent manner upon treatment with proline (Figure 3.7 B and C). In MG1655 ΔputA cells no changes in grxA or trxC transcription levels were observed. These results are consistent with proline metabolism activating OxyR.

3.4.5 Proline catabolism generates reactive oxygen species

Because of the above results, we suspected that proline respiration might generate H$_2$O$_2$ sufficient enough to activate OxyR. To test this, H$_2$O$_2$ levels in
Figure 3.8 Proline metabolism generates H₂O₂. (A) BW25113 wild-type and ΔkatG (strain JW3914) cells were grown to exponential phase in minimal medium in the absence (Con) and presence of (Pro) of 10 mM L-proline. H₂O₂ content in medium was measured by Amplex® Red and converted to an estimate of the intracellular H₂O₂ concentration (*P < 0.05). (B) In vitro assays of H₂O₂ production uses inverted membrane vesicles from ΔkatG (strain JW3914) cells. Assays were performed with 50 μg/ml of membrane vesicles and 10 mM proline in the presence of varying concentrations of the PutA inhibitor THFA as indicated. H₂O₂ formation was estimated by the Amplex® Red assay (*P < 0.05).
BW25113 wild-type and ΔkatG strains were measured with and without proline. Without proline, the estimated intracellular concentration of H$_2$O$_2$ in ΔkatG cells was nearly 3-fold higher (289 ± 46 nM) than that of wild-type cells (79 ± 7 nM). In both strains, H$_2$O$_2$ levels were significantly higher in the presence of proline with a > 2-fold increase observed in the ΔkatG cells (663 ± 9 nM). In wild-type cells, intracellular H$_2$O$_2$ levels increased to 145 ± 8 nM with proline.

To further evaluate ROS production by proline oxidative metabolism, *in vitro* assays, membrane vesicles prepared from the BW25113 ΔkatG mutant strain are used. The rate of H$_2$O$_2$ formation with 10 mM proline was 91 ± 9 pmol min$^{-1}$ mg$^{-1}$ which is equivalent to 9.6 ± 0.9 μM min$^{-1}$ when converted into an intracellular endogenous rate (Figure 3.8 B). With 10 mM proline, PutA activity in the membrane vesicle was 103 ± 6.5 nmol P5C min$^{-1}$ mg$^{-1}$, indicating that the H$_2$O$_2$ production rate is ~0.1% of the PutA turnover rate. L-THFA was observed to inhibit H$_2$O$_2$ formation in a dose-dependent manner, with 5 mM THFA almost completely blocking H$_2$O$_2$ production (Fig. 3.8B). PutA activity was completely abolished with the concentration of THFA. With membrane vesicles as the electron acceptor, PutA has a K_m value of 1.5 mM proline. These results indicate that PutA/PRODH activity is required for H$_2$O$_2$ formation with proline.

3.4.6 Proline catabolism-mediated reactive oxygen species are produced at α-ketoglutarate dehydrogenase, glutamate dehydrogenase and cytochrome bo.

For PutA from *E. coli*, molecular oxygen is not a good electron acceptor,
therefore proline oxidation induced ROS is not generated by PutA itself (51). Instead, PutA most likely promotes the formation of endogenous H$_2$O$_2$ by passing electrons into the ubiquinone pool via the PRODH domain of PutA and the NADH pool via the activities of the P5CDH domain of PutA, glutamate dehydrogenase (GDH) and α-ketoglutarate dehydrogenase (aka, oxoglutarate dehydrogenase, OGDH) (Figure 3.9A). Increased electron flux through the respiratory chain in periplasmic membrane results in O$_2^-$ and subsequently H$_2$O$_2$ formation (Figure 3.9A). GDH and OGDH were found on the bacteria membrane vesicle by immunology study (52) and mass spectrometry (53), respectively. Therefore, in the *E. coli* membrane vesicle, both the PRODH and P5CDH domains of PutA, as well as OGDH and GDH are likely to be sources of proline-dependent ROS in assays with mitochondrial vesicles.

NAD$^+$ supplementation may induce the activities of all enzymes that consume NAD$^+$, which includes the P5CDH domain of PutA, OGDH and GDH (Figure 3.9B), thus elevating the amount of NADH and adding more fuel to the ETC and increasing H$_2$O$_2$ production. Consistent with this idea, addition of NAD$^+$ (0.2 mM) to *E. coli* membrane vesicles boost the production of H$_2$O$_2$ from 91 ± 9 pmol min$^{-1}$ mg$^{-1}$ to 2,524 ± 45 pmol min$^{-1}$ mg$^{-1}$ (Figure 3.9B). Treatment of the vesicles with 20 mM THFA, which is sufficient to completely inhibit PutA activity in membrane vesicles, dramatically reduced H$_2$O$_2$ production to 236 ± 3 pmol min$^{-1}$ mg$^{-1}$ (Figure 3.9B). This result indicates that the basal H$_2$O$_2$ generation rate of NADH dehydrogenase and its downstream electron transporters is around 230 pmol min$^{-1}$ mg$^{-1}$ with saturating amounts of NAD$^+$. Thus, NADH provided by the P5CDH
domain of PutA, GDH and OGDH to the ETC can maximally generate 2.3 μmol of H₂O₂ per min. Because the H₂O₂ production rate using glutamate and proline has no difference (Figure 3.9 B), the P5CDH domain of PutA appears to have a minimal effect on ROS production. In contrast, when using succinate as a substrate, the H₂O₂ production rate is 25% lower than glutamate or proline used as a substrate (Figure 3.9 B), indicating that NADH provided via GDH and OGDH may account for 25% of proline-induced ROS production.

In the respiratory chain of *E. coli*, NADH dehydrogenase II, the primary site of ROS production, produces 133 molecules of H₂O₂ per min (54). Although ROS is generated at a slower rate, succinate dehydrogenase produces 13 molecules of H₂O₂ per min (55). Different from eukaryotes, *E. coli* uses cytochrome *bd* oxygen reductase or cytochrome *bo* oxygen reductase as terminal oxidases (Figure 3.9A). Cytochrome *bd* has a high affinity for molecular oxygen, predominates in *E. coli* under low oxygen conditions (56), and displays notable catalase activity (k_{cat} =130 s⁻¹) (57). In contrast, cytochrome *bo* oxygen reductase, has a low affinity for molecular oxygen and is the predominate enzyme during aerobic growth (56). Therefore, cytochrome *bo* terminal oxidase, instead of cytochrome *bd* oxygen reductase may contribute to ROS production in *E. coli* during aerobic exponential growth. In summary, NADH dehydrogenase, succinate dehydrogenase and cytochrome *bo* terminal oxidase are possible sources of proline-dependent ROS in the respiratory chain during aerobic growth.

Next, to answer which electron transporter in the respiratory chain is responsible for proline oxidation induced ROS, antimycin A was used. Antimycin
A is a compound that preferentially blocks electron transport between ubiquinone and cytochrome bd (58). With 1 μM of antimycin A, ~50% of electron flow between ubiquinone and cytochrome b is blocked and H$_2$O$_2$ production, due to ubisemiquinone autoxidation and reverse electron flow through NADH dehydrogenase, is increased by 2-3 fold (58). The application of 2 μM antimycin A along with 10 mM proline decreases both the PutA activity and H$_2$O$_2$ production rate, however, the H$_2$O$_2$ formation rate is still 0.1% of the PutA turnover rate, the same as that determined in the absence of antimycin A (Figure 3.9D). Since antimycin A has no effect on proline-dependent H$_2$O$_2$ formation, the source of proline-dependent H$_2$O$_2$ on respiratory chain is the most likely cytochrome b terminal oxidase.

3.5 DISCUSSION

Proline is a multifaceted amino acid with important roles in carbon and nitrogen metabolism, protein synthesis, and protection against various environmental factors such as drought (59), metal toxicity (60,61), osmotic stress (26,27), ultraviolet irradiation (62), unfolded protein stress (25,63), and oxidative stress (22,28,64-66). In this study, we explored the role of proline metabolism in oxidative stress protection by characterizing the oxidative stress response of wild-type and putA mutant $E. coli$ strains. Wild-type $E. coli$ strains exhibited significantly higher resistance to H$_2$O$_2$ stress relative to the putA mutant strains in medium supplemented with proline. Complementation of the putA mutant strains with PutA restored oxidative stress protection to near that of the parent wild-type strain.
These results indicate that stress protection afforded by proline is a general phenotype in *E. coli*, and is dependent on PutA.

The addition of proline to the culture medium increased total catalase activity and led to significantly higher expression of *katG* in wild-type cells whereas no significant increase in catalase was observed with proline in Δ*putA* cells. Proline did not protect Δ*katG* cells indicating that hydroperoxidase I is necessary for proline-enhanced protection against H$_2$O$_2$ stress in *E. coli*. The *katG* gene is regulated by the transcription factor OxyR (67), which is a critical regulator of cellular response to H$_2$O$_2$ and thiol redox changes. The OxyR regulon encodes response genes such as *katG*, *grxA* (glutaredoxin I), *trxC* (thioredoxin 2), and *ahpCF* (peroxiredoxin AhpCF) that provide protection against reactive oxygen species (49). Consistent with hydroperoxidase I having a critical role in proline protection, proline did not improve the oxidative stress survival of the oxyR mutant strain. In addition, proline increased the expression of other genes in the OxyR regulon such as *grxA* and *trxC*. Whether proline broadly affects the OxyR regulon will require a more extensive profiling of gene expression changes. Altogether, our results indicate that proline catabolism activates OxyR, leading to increased expression of *katG*. In contrast to the oxyR mutant, proline enhanced the oxidative stress resistance of soxR mutant cells indicating that SoxR is not essential for proline protection.

The finding that proline increases transcription of genes in the OxyR regulon suggests that proline metabolism increases intracellular H$_2$O$_2$. OxyR reacts with H$_2$O$_2$ to form a disulfide bond between Cys199 and Cys208, which
Figure 3.9 Proline catabolism-mediated reactive oxygen species are produced at oxoglutarate dehydrogenase and NADH dehydrogenase. (A). In *E. coli* membrane vesicles, FADH$_2$ provided by the PRODH domain of PutA and NADH provided by the P5CDH domain of PutA, GDH and OGDH fuel the ETC and ROS production. (B). Rate of H$_2$O$_2$ production in response to different substrates and NAD$^+$ supplementation. (C). The effect of complex *bd* inhibitor Antimycin A on H$_2$O$_2$ production rate.
results in transcriptional activation of the OxyR regulon (68,69). Oxidation of OxyR and activation of the OxyR regulon have been reported to occur with 0.05-0.2 µM H$_2$O$_2$ (70,71). We observed a significant increase in endogenous H$_2$O$_2$ levels in ΔkatG cells with proline and, in wild-type cells, H$_2$O$_2$ levels were found to be > 0.1 µM with proline. Thus, it appears that proline oxidative metabolism can drive H$_2$O$_2$ concentrations to levels that are sufficient to induce OxyR. The rapid increase of *katG* transcription by proline treatment (20 min) is also consistent with the response time of the OxyR regulon to H$_2$O$_2$ stress (49).

Previous work has addressed metabolic sources of endogenous ROS in *E. coli* indicating that the respiratory chain contributes to the majority of endogenous H$_2$O$_2$ production (58). It was found, however, that H$_2$O$_2$ can also be significantly generated in *E. coli* by enzymes not associated with the respiratory chain (72). The oxidation of proline by PutA provides reducing equivalents directly to the respiratory pathway via ubiquinone (5). The PRODH domain of PutA contains a FAD cofactor that couples the oxidation of proline (reductive half-reaction) to the reduction of ubiquinone in the membrane (oxidative half-reaction). The rate limiting step in the proline:ubiquinone oxidoreductase reaction catalyzed by PutA is the oxidative step (FADH$_2$ oxidation by ubiquinone) (73). Production of H$_2$O$_2$ by proline oxidation would conceivably involve increased flux in the respiratory chain or aberrant electron transfer from FADH$_2$ to molecular oxygen generating superoxide anion radicals, a general feature of flavoenzymes. In a previous study, the reactivity of different PutA proteins with molecular oxygen was evaluated and PutA from *E. coli* was shown to have a turnover number of < 0.3 min$^{-1}$ with oxygen (51).
Thus, we propose that endogenous H$_2$O$_2$ from proline metabolism is not generated directly by PutA, but rather by PRODH domain of PutA passing electrons into the ubiquinone pool and P5CDH domain of PutA, as well as GDH and OGDH producing NADH. Those reducing equivalents would lead to increased electron flux through the respiratory chain. Consistent with this, we observed that proline elevates respiration in wild-type *E.coli* cells by 4-fold using the redox indicator 2,3,5-triphenyl tetrazolium chloride. Superoxide that results from proline metabolism would be converted to H$_2$O$_2$ either non-enzymatically or enzymatically by superoxide dismutase. Our measurement of intracellular H$_2$O$_2$ in wild-type cells grown without proline is consistent with the physiological concentration of H$_2$O$_2$ (< 0.1 µM) reported previously for *E. coli* in the exponential growth phase (74). Two-fold increases in H$_2$O$_2$ production, which we observed with proline, have also been shown to significantly induce katG expression with intracellular H$_2$O$_2$ at 0.1-0.2 µM (58). Thus, increases in the endogenous levels of H$_2$O$_2$ as a byproduct of proline metabolism are likely to be enough to activate OxyR, which induces katG expression. Compared with the rate of H$_2$O$_2$ production by NADH dehydrogenase II, the main ROS producer on the respiratory chain of *E.coli*, the amount of H$_2$O$_2$ produced during proline oxidation is modest, and capable of serving as adaptive signal without causing detrimental effect on the cells.

We also studied the sources of proline-dependent ROS. Our results indicate that cytochrome bo terminal oxidase is the most likely source of proline-induced ROS in the respiratory chain. Among all the enzymes associated with proline oxidation, OGDH and GDH are the main suppliers of reducing equivalents
to the respiratory chain. This supports the unique role of proline oxidation in providing NADH for H$_2$O$_2$ production. Glycolysis and the TCA cycle also provide NADH to the respiratory chain, however, neither glucose nor glycine (which enters the TCA cycle via pyruvate) is able to induce H$_2$O$_2$ production or protect *E. coli* against oxidative stress (Data not shown).

The observation that proline metabolism can influence hydroperoxidase I activity, indicates that besides serving as an important growth substrate in nutritional deplete microenvironments, proline may offer a competitive advantage to bacteria in harsh oxidative environments. Bacteria often encounter oxidative stress from the host immune system such as the respiratory burst associated with phagocytic killing of microbes (75). Previously, pretreatment of *E. coli* cells with low amounts of H$_2$O$_2$ was shown to have a protective effect by 10-fold induction of hydroperoxidase I (76,77). Here, proline metabolism may also provide a preconditioning effect by generating H$_2$O$_2$ as a by-product and elevating hydroperoxidase I levels, thereby raising the overall stress tolerance of the cell. Various studies of proline metabolism in eukaryotes have shown that proline oxidation, which in eukaryotes occurs in the mitochondrion, generates ROS (22,66) which can mediate cell death (78), cell survival against oxidative stress (65), and lifespan (79). The results from this work further illustrate the fundamental importance of how H$_2$O$_2$ as a metabolic by-product, can enhance oxidative stress tolerance and appear to be an underlying feature of proline metabolism that is conserved between *E. coli* and mammals.
REFERENCES

CHAPTER 4

Proline Oxidation and ROS Production in Mammalian Mitochondria
4.1 ABSTRACT

Besides serving as an energy source and building block of proteins, proline and its oxidation in human cells play an important role in regulating cell apoptosis, proliferation, autophagy and defense against oxidative stress. All of these functions of proline catabolism appear to be associated with reactive oxygen species (ROS). Previously, we have shown that proline catabolism protects human cell lines from \(\text{H}_2\text{O}_2 \) stress by maintaining ATP levels and activating the Akt pathway. However, it is unclear whether proline-induced ROS is involved in this protection. Recently, proline-dependent ROS was shown to serve as an adaptive signal to \(\text{H}_2\text{O}_2 \) stress in *E. coli*. We hypothesize that the generation of ROS by proline catabolism is a conserved feature in different organisms that potentially influences various cell signaling pathways such as the OxyR regulon in *E. coli*, Nrf2 in worm, and Akt in human cell lines. In this chapter, proline catabolism is studied in mitochondria isolated from mammalian cells to evaluate ROS production as a function of proline and PRODH activity. ROS generation from proline was observed in mitochondria isolated from a human cell line and pig kidney, suggesting proline-induced ROS is common to mammalian cells. In addition, we found mitochondria using proline as a substrate have a lower efficiency (low respiration and high ROS production) than those using succinate as a substrate. Our data suggest that the amount of ROS generated by proline oxidation is sufficient to serve as an adaptive signal to oxidative stress and does not exceed a threshold that would induce adverse effects.
4.2 INTRODUCTION

Proline oxidation and ROS signaling have been shown to play a vital role in mammalian cell proliferation, apoptosis and survival (1-3). The various cellular responses to proline oxidation are thought to be due to different amounts of ROS. Constitutively expressed PRODH is associated with a lower amount of ROS production and is associated with protective effects, such as pro-survival autophagy in neurons encountering cytotoxic HIV envelope protein gp120 (4). Overexpression of PRODH, such as induction by p53, usually results in deleterious effects, such as cell apoptosis (5).

Previously, our lab has shown that proline treatment is capable of protecting human embryonic kidney 293 (HEK293) cells against H$_2$O$_2$ stress by diminishing the amount of ROS in the cell (6). Later, the beneficial effect of proline on WM35 (human melanoma cell lines) and PC3 (human prostate cancer cell line) cells against H$_2$O$_2$ stress was shown to rely on PRODH activity, since knockdown of PRODH abolished the protective effect of proline supplementation (7). Proline oxidation was observed to facilitate cell survival by providing ATP and activating the Akt signaling pathway, which promotes tumor cell survival, proliferation and metastasis (7). Although no evidence was reported in these experiments for transient ROS being generated from proline oxidation, ROS was still implicated as proline treatment induced phosphorylation of Akt at major regulatory sites Ser-473 and Thr-308 (7), which mimics Akt activation by H$_2$O$_2$ (8-9). Studies in E. coli (10) and C. elegans daf-2 mutant (11) have both indicated that ROS is generated during proline oxidation resulting in the upregulation of antioxidant enzymes via
OxyR and p38 MAPK/Nrf2, respectively. Therefore, it is plausible that proline oxidation generates H_2O_2 that is sufficient to activate Akt and other pathways helping to maintain redox homeostasis and promote cell survival.

Previous studies have shown evidence for proline-dependent ROS formation in various mammalian cell lines using a fluorescence probe against superoxide anion or hydrogen peroxide, however, little is known about the actual sites of ROS formation during proline oxidation. So far, the sources of proline-dependent ROS in mammalian cells were reported to be PRODH itself and/or the electron transport chain (ETC) of mitochondria. In support of the former source, partially purified human PRODH exhibited production of superoxide (O_2^{-*}) during catalytic turnover with proline and molecular oxygen (6), suggesting that PRODH can react with molecular oxygen as an electron acceptor and directly produce ROS. However, the activity of the partially purified PRODH with molecular oxygen was similar (~ 0.1 U/mg) to that with the artificial electron acceptor, 2,6-dichlorophenolindophenol, indicating human PRODH is not a genuine flavoenzyme oxidase (6). Evidence for sites of proline-dependent ROS production in the ETC was obtained from assays using isolated mouse liver mitochondria and ZR75-30 (human breast cancer cell) mitochondria. In these experiments it was concluded that complex III (12) of mouse liver mitochondria and complex I/α-ketoglutarate dehydrogenase (13) of breast cancer cell mitochondria were the sites of ROS generation during proline oxidation.

To further examine potential sites of ROS formation in mitochondria during proline oxidation, we explored sources of ROS in isolated human mitochondria
and pig mitochondria. In this study, we found that in comparison with proline and glutamine co-treatment, WM35 cells with proline treatment alone have a higher survival rate under oxidative stress but a lower maximal oxygen consumption rate, which suggests a higher possibility of ROS production. Consistently, proline treatment induces H_2O_2 production in both whole cells and isolated mitochondria of the CRL2429 (human skin fibroblast) cell line. Proline-mediated H_2O_2 production can be diminished by L-THFA, a competitive inhibitor of PRODH. We also found proline induces superoxide production in isolated pig mitochondria, suggesting superoxide/hydrogen peroxide from proline catabolism is a common feature shared in different mammalian cells. In addition, mitochondria using proline substrate was found to have a higher ratio of ROS production (ROS production/oxygen consumption) relative to succinate.

4.3 MATERIAL AND METHODS

4.3.1 Materials and growth conditions

All chemicals, enzymes and regents were purchased from Fisher scientific and Sigma-Aldrich, Inc. unless stated otherwise. CRL2429 (human skin fibroblast cell) cell line was purchased from ATCC. WM35 cells were provided by Dr. Adam Richardson and Dr. Jeffrey Smith at the Sanford-Burnham Medical Research Institute, La Jolla, CA. Pig kidney was generously provided by Dr. Brett White, Animal Science Department at the University of Nebraska-Lincoln. WM35 cells and CRL2429 cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) and Iscove’s Modified Dulbecco’s Medium (IMDM), respectively, and
supplemented with 10% fetal bovine serum (FBS) and 0.25 μg/ml of antibiotic-
antimycotic solution (Invitrogen) at 37 °C in 5% CO2 environment. IMDM media was obtained from Thermo Scientific contains 0.35 mM of proline.

4.3.2 Mitochondria isolation

For CRL2429 cells, once cells reached 80% confluence they were scraped off the petri dish and washed twice with ice cold PBS via centrifugation. The cell pellets were resuspended in 5 mM Tris buffer containing 0.25 M sucrose and 1 mM EDTA, pH 7.4. Resuspended cells were hand homogenized using a Dounce homogenizer with 25x up-and-down strokes on ice. The cellular lysates were centrifuged at 150 × g for 10 min at 4 °C and then the supernatants were centrifuged at 17,000 × g for 15 min at 4 °C to pellet the mitochondria. Total protein concentrations were quantified using the Pierce 660 nm protein assay. For isolation of mitochondria from pig kidney, connective tissue and blood vessels were removed from the kidney tissue. The kidney tissue was then cut into 1cm x 1cm pieces and extensively washed with ice cold PBS to remove blood. After that, the kidney tissue was disrupted with Polytron tissue grinder at 500 rpm for 1 min in 5 mM Tris buffer with 0.25 M sucrose and 1 mM EDTA, pH 7.4. Mitochondria were then pelleted with the aforementioned procedures. The presence of human and pig PRODH in isolated human and pig mitochondria were confirmed by western blot against human PRODH and mass spectrometry, respectively.

4.3.3 Western blot
Antibodies recognizing VDAC/Porin were from Sigma. Polyclonal antibodies against PRODH, were custom-made by Proteintech. Horse radish peroxidase (HRP)-labeled anti-mouse, anti-goat and anti-rabbit secondary antibodies were from GE Healthcare. Isolated mitochondria were lysed using M-PER (Pierce) and the proteins of the mitochondrial lysates were resolved by SDS-PAGE. Proteins were transferred to a PVDF membrane and visualized by immunoblotting.

4.3.4 Stress and cell viability

For stress treatments, WM35 and CRL2429 cells were grown to 80% confluence. Cells were then treated with and without 5 mM proline, 10 mM pipecolate or proline plus 4 mM glutamine for 12 hr in cultural media containing 10% FBS. The media was then changed and cells were incubated for 3 hr with and without H$_2$O$_2$ stress (0.1 mM or 1 mM, 3 h) in serum free medium. After stress treatment, cells were washed with PBS and cell viability was quantified using the tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] (MTS) (Promega). Cell survival rates were determined relative to the control groups.

4.3.5 ROS measurement

H$_2$O$_2$ produced by mitochondria and whole CRL2429 cells was measured at room temperature with 50 μg/ml of mitochondria or 13,000 cells/mL and different amounts of substrate. The assay buffer (pH 7.2) included 40 U/mL superoxide
dismutase, 125 mM KCl, 4 mM KH$_2$PO$_4$, 14 mM NaCl, 20 mM HEPES-NaOH, 1 mM MgCl$_2$, 0.2% BSA, and 0.02 mM EDTA (14). H$_2$O$_2$ was quantified using the Amplex® Red Hydrogen Peroxide/Peroxidase Assay Kit with excitation at 555 nm and monitoring fluorescence emission at 581 nm as described (14) with the rate defined as pmol of H$_2$O$_2$ formed min$^{-1}$ mg$^{-1}$ of mitochondria. Superoxide production was detected by measuring the H$_2$O$_2$ production rate in the absence of SOD, which is subtracted from the H$_2$O$_2$ production rate in the presence of SOD. The effect of L-THFA or antimycin A on H$_2$O$_2$ production was determined using the same assay conditions as mentioned above. Background formation of H$_2$O$_2$ was determined in control assays without substrate. For the calculation of intracellular levels of H$_2$O$_2$ in CRL2429 cells, the cytosolic volume of CRL2429 was estimated to be 940 μm3 (15).

4.3.6 Measurement of oxygen consumption

The oxygen consumption of isolated mitochondria was measured using a Clark-type electrode. Air-saturated 50 mM phosphate buffer, pH 7.4 (0.5 ml) was introduced into the electrode chamber (capacity of 1 ml) and incubated until a steady baseline was obtained. 50 mg of mitochondria was suspended in 0.5 ml buffer and then added to the incubation chamber using a Hamilton syringe. Oxygen consumption with different substrates was then recorded. All of the measurements were carried out at 25 °C. The oxygen consumption rate (OCR) in intact WM35 cells was measured using a Seahorse XF extracellular Flux analyzer.
Figure 4.1 Oxygen consumption and cell survival rate of WM35 cells treated with proline or/and glutamine. (A) Cell survival rate of cells under 1 mM H$_2$O$_2$ with and without treatment of 5 mM proline, or co-treatment of 5 mM proline and 4 mM glutamine. (B, C). Oxygen consumption rate of cells using 5 mM proline, or 5 mM proline plus 4 mM glutamine as substrate.
(Seahorse). 20,000 cells were seeded in a 96-well culture plate in high glucose DMEM media. The cells were then treated with 5 mM proline or 5 mM glutamine for 3 hr before the assay and for the duration of the experiment. Selective inhibitors were injected at the indicated time points during the measurement to achieve the final concentration of 1 μM oligomycin, 2 μM carbonyl cyanide-4-phenylhydrazone (FCCP), and 2 μM rotenone. The baseline OCR was defined as the average of the values measured from time points 1 to 3 during the experiments, and normalized by the total protein concentration. The maximum OCR is the average values from time points 7 to 9, which is after addition of FCCP. The spare OCR is the average values from time points 10 to 12. The coupled OCR is the basal OCR minus the average values from time points 4 to 6. After the analysis the cells were stained with Trypan Blue (Invitrogen) to confirm cell viability.

4.3.7 Measurement of PRODH activity

PRODH activity in the mitochondria was confirmed by quantifying P5C production through adding o-aminobenzaldehyde (o-AB) (4 mM final concentration) and following the formation of the o-AB-P5C yellow complex at 443 nm (ε = 2,900 M⁻¹ cm⁻¹) as previously described (16).

4.3.8 Statistic analysis

Data were collected with 3-5 replicates and are expressed as mean ± standard deviation. Statistical significant analysis was tested by Student’s t-test, with a P value of <0.05 considered to be statistically significant.
4.4 RESULTS

4.4.1 WM35 Cells with proline supplementation have a lower maximum oxygen consumption rate

Previously, 5 mM proline supplementation has been shown to increase the survival rate of HEK293 cells from 39% to 77% after H$_2$O$_2$ treatment (0.5 mM, 3 hr) (6). Whereas, 5 mM glutamine showed less ability to protect cells from oxidative stress, with a 45% cell survival rate after H$_2$O$_2$ treatment (6). Our study in WM35 cells had a similar result. Without amino acid supplementation, cells had 49% survival rate after H$_2$O$_2$ treatment (1 mM, 3 hr) (Figure 4.1A). Treatment with 5 mM proline increased the cell survival rate to 73%, whereas 5 mM proline and 4 mM glutamine co-treatment modestly increased cell survival rate to 53% (Figure 4.1A). Since both proline and glutamine enter the tricarboxylic acid cycle via glutamate and α-ketoglutarate, oxidation of proline and glutamine are likely to provide similar amounts of ATP. To test this hypothesis, we measured the bioenergetic profile of intact WM35 cells (Figure 4.1 B). The coupled respiration is calculated by subtracting the residual respiration, which is the OCR after the addition of oligomycin, an F1Fo-ATPase inhibitor, from the basal respiration. It represents the rate of mitochondria oxygen consumption used for ATP generation via F1Fo-ATPase (17). Proline treatment alone and proline/glutamine co-treatment resulted in no significant difference in coupled respiration (Figure 4.1 C). This is consistent with our hypothesis that supplementation with proline and proline/glutamine has minimal difference in ATP production.

Different amount of ROS production during proline oxidation and proline/
Figure 4.2. Proline induces ROS production and resistance to H$_2$O$_2$ stress in CRL2429 cells. (A). Cell survival rate of CRL2429 cells after H$_2$O$_2$ treatment (1 mM, 3 hr) in the presence and absence of 5 mM proline or pipcolate. (B). Intracellular H$_2$O$_2$ level in CRL2429 cells with and without 10 mM succinate, 5 mM proline, 2 μg/mL antimycin A and 3 mM THFA. (C). Western blot analysis of human PRODH in WM35, HEK293 and CRL2429 cells.
glutamine catabolism may be another possible explanation for the difference in proline and proline/glutamine mediated protection against H$_2$O$_2$ stress. Proton leak, which is mediated by electron flow via complexes I, III, and IV, has been suggested to have physiological function as heat production and prevention of ROS formation (18). Proton leak (uncoupled respiration) can be calculated by subtracting the rate of respiration after the addition of rotenone, a complex I inhibitor that suppresses mitochondrial respiration, from the rate of respiration after addition of FCCP, which uncouples mitochondrial ATP generation from oxygen consumption (17). Proton leak with proline supplementation (35 ± 5.1 pmol O$_2$ consumption min$^{-1}$ mg$^{-1}$) is significantly lower than that of proline/glutamine supplementation (58 ± 2.5 pmol O$_2$ consumption min$^{-1}$ mg$^{-1}$) (Figure 4.1C). This implies proline treatment may induce more ROS generation.

Interestingly, maximum respiration with proline/glutamine treatment is much higher than that of proline treatment (Figure 4.1C). Maximal respiration is the rate of OCR after the addition of FCCP (17). Maximum respiration represents the maximum capacity of electron transport by the cell under assay condition (18). Decreased maximum respiration usually indicates lower efficiency of electron transport, which can be caused by proton leak or reverse electron flow (18). In mitochondria isolated from Parkinson’s disease subjects, proton leak at Complex I resulted in a loss of maximum respiration (19). Promoting reverse electron flow by application of antimycin A, which inhibits the electron flow from going through Complex III, resulted in decreased maximum respiration (20). Since we observed a lower amount of proton leak with proline supplementation, reversed electron flow
may be the contributor of the decreased maximum respiration. Reverse electron flow has been linked to ROS production (21).

In summary, the oxygen consumption profile of WM35 cells suggested cells with proline treatment have lower proton leak and maximum respiration, indicating possible higher production of ROS during proline oxidation. Higher ROS signaling may explain the higher survival rate of cells grown with proline alone under H$_2$O$_2$ stress.

4.4.2 Proline induces H$_2$O$_2$ production in CRL2429 cells

In order to measure the mitochondria ROS production, we switched to CRL2429, which is a skin fibroblast cell line and is well suited isolation of mitochondria. The expression of human PRODH in CRL2429 cells was confirmed by western blot (Figure 4.2 C). We then measured the cell survival rate of CRL2429 under oxidative stress. After H$_2$O$_2$ treatment (1 mM, 3 hr), treatment with 5 mM proline or 5 mM pipecolate resulted in 1.7-and 2-fold increases of cell survival rate, compared with that of cells without proline supplementation (Control) (Figure 4.2.A). Pipecolate, oxidized by pipecolate oxidase, is not a substrate or inhibitor of PRODH. It was found previously in HEK293 cells (6) and WM35 cells (unpublished data) that pipecolate treatment protects cells against H$_2$O$_2$ stress similarly to proline. The ability of pipecolate to protect against oxidative stress was contributed to its antioxidant property (6). Thus, our data showed that CRL2429 cells, similar to WM35 and HEK293 cells, could be protected from H$_2$O$_2$ stress by proline and pipecolate supplementation.
Next, the intracellular concentration of H$_2$O$_2$ formation was measured using CRL2429 cells, with the estimated cell cytosolic volume as 940 μm3 (15). Because SOD was added to the assay buffer, the level of H$_2$O$_2$ accounts for both O$_2$•$^-$ and H$_2$O$_2$. In the absence of amino acid supplementation, the basal level intracellular H$_2$O$_2$ was 400 nM in CRL2429 cells (Figure 4.2.B). Succinate, a commonly used positive control for the measurement of mitochondrial H$_2$O$_2$ production, increased the intracellular H$_2$O$_2$ production to 660 nM. Proline treatment also elevated H$_2$O$_2$ production to 825 nM, indicating that half of intracellular H$_2$O$_2$ (~425 nM) was produced by proline oxidation. From the measurements in rat liver, in vivo intracellular H$_2$O$_2$ concentrations was estimated to be on the order of 0.2 μM (27). In addition, the intracellular H$_2$O$_2$ concentration used for signaling in mammalian cells was estimated to be 0.5–0.7 μM (27). Therefore, with proline supplementation, intracellular H$_2$O$_2$ concentration is sufficient to induce cellular signaling pathways in CRL2429 cells.

Using L-THFA as a competitive inhibitor along with proline treatment significantly decreased the intracellular level H$_2$O$_2$ formation (50 nM) (Figure 4.2.B). It is unclear why intracellular H$_2$O$_2$ level after L-THFA treatment is lower than that of control. But L-THFA may also inhibit the usage of both intracellular and extracellular proline. Since previous research has shown that proline-dependent ROS was produced at complex III (12), we use antimycin A to test whether proline-induced ROS is also produced at the same complex in CRL2429 cells. Antimycin A binds to the oxidized ubiquinone (Qi site) of Complex III, inhibiting electron transfer from reduced heme b$_L$ of Complex III to oxygen via semiquinone
Figure 4.3 Proline induces ROS production in isolated mitochondria from CRL2429 cells. (A). The specific activity of PRODH in isolated mitochondria using 240 mM proline as substrate, in the presence and absence of 10 mM THFA. (B).
H$_2$O$_2$ production rate of isolated mitochondria using succinate, proline and pipcolate as substrate, in the presence and absence of 10 mM THFA. (C). Western blot analysis of human PRODH and VADC in isolated mitochondria.
Application of antimycin A nearly doubled intracellular H_2O_2 concentration when using proline as substrate (Figure 4.2.B). In cell level, antimycin A has been used as a ROS generator and was shown to induce mammalian cell apoptosis (28). This may be contributed to the ability of antimycin A in inducing mitochondrial swelling and loss of membrane potential, as well as the apoptosis signaling (23). The succinate induced ROS production is known to be mainly contributed by complex II (29). Because antimycin A treatment increases the intracellular H_2O_2 concentration by the same level using proline and succinate as substrate, we suspect that the effect of antimycin A on H_2O_2 levels that we observed is due largely to its effect on mitochondrial membrane potential.

4.4.3 Proline induces H_2O_2 production in isolated mitochondria from CRL2429

After confirming proline-dependent H_2O_2 production in CRL2429 cells, we then tested ROS production in isolated mitochondria from CRL2429. The existence of PRODH in isolated mitochondria was confirmed by western blot against PRODH, with VADC serving as a mitochondrial marker (Figure 4.3C). The specific activity of PRODH in isolated mitochondria was determined by following the production of P5C when using proline as a substrate. With saturated proline (200 mM), the specific activity of mitochondrial PRODH is 0.03 U/mg (Figure 4.3A). 80% of the activity can be inhibited by application of 10 mM L-THFA. In addition, the existence of PRODH in the isolated mitochondria was confirmed by co-
treatment of mitochondria with proline and 10 mM THFA. Those data suggest isolated mitochondria from CRL2429 cells contain active PRODH.

The H$_2$O$_2$ production rate of isolated mitochondria using proline as substrate (65 pmol min$^{-1}$ mg$^{-1}$) is similar to that using succinate as substrate (67 pmol min$^{-1}$ mg$^{-1}$) (Figure 4.3B). Using pipcolate as substrate, a higher rate of H$_2$O$_2$ formation (91 pmol min$^{-1}$ mg$^{-1}$) was observed. Figure 4.3B also shows that the H$_2$O$_2$ production rate increases in response to increased amount of proline (200 mM) as substrate. 10 mM of L-THFA inhibits the H$_2$O$_2$ production rate by 23%.

4.4.4 Proline induced the production of O$_2^{•–}$ and H$_2$O$_2$ in isolated pig mitochondria

The existence of pig PRODH in isolated mitochondria was confirmed by mass spectrometry. Since the sequencing information for domestic pig (Sus scrofa domesticus) is unavailable, trypsin digested solubilized pig mitochondria were sequenced against Sus Scorfa (wild boar) PRODH, resulting in 32% sequence coverage. The activity of pig PRODH in pig kidney mitochondria was 35 ± 4 mU/mg in the presence of 240 mM of proline (Figure 4.4.A). Co-treatment of mitochondria with proline and 10 mM THFA resulted in 70% decreased PRODH activity (Figure 4.4A). Therefore, isolated pig kidney mitochondria contain active PRODH.

We then measured the superoxide and hydrogen peroxide production in isolated mitochondria from pig kidney. The rate of O$_2^{•–}$ production and H$_2$O$_2$ production induced by 10 mM proline were 26 ± 2.2 pmol min$^{-1}$ mg$^{-1}$ and 0.94 ±
Figure 4.5. PRODH activity and proline induced superoxide and hydrogen peroxide formation in isolated pig kidney mitochondria. (A). PRODH activity of pig mitochondria was measured by determining the formation of P5C-oAB complex using 240 mM proline in the presence and absence of 10 mM THFA. (B). Formation of superoxide and hydrogen peroxide induced by 10 mM proline in pig mitochondria.
0.05 pmol min$^{-1}$ mg$^{-1}$, respectively (Figure 4.4B). This is consistent with the previous idea that proline-oxidation mediated ROS is primarily in the form of O$_2^{•-}$, as overexpressed SOD can diminish the ROS produced by overexpressed PRODH (25).

4.4.5 Proline induced H$_2$O$_2$ is regulated independent of proline induced oxygen consumption

Pig PRODH has not been purified yet and its reactivity with molecular oxygen remains to be determined. We would like to test whether proline mediated O$_2^{•-}$ and H$_2$O$_2$ is mediated by the oxygen reactivity of pig PRODH. Therefore, we compared the oxygen consumption of pig kidney mitochondria with proline and succinate as substrate (Figure 4.5A). With 10 mM succinate as substrate, the oxygen consumption rate of pig mitochondria is 22 nmol min$^{-1}$ mg$^{-1}$. Using 10 mM proline as substrate, the oxygen consumption rate of pig mitochondria is 4 nmol min$^{-1}$ mg$^{-1}$. The mitochondria oxygen consumption rate with proline as substrate not only represents the total mitochondria respiration induced by proline, but also represents the rate of oxygen reactivity of pig PRODH. We then measured the ROS production rate of mitochondria using either substrate. The level of H$_2$O$_2$ accounts for both O$_2^{•-}$ and H$_2$O$_2$, since SOD was added to the assay buffer. With the same amount of proline and succinate, similar rates of H$_2$O$_2$ production were observed (Figure 4.5B). Proline and succinate generate H$_2$O$_2$ at a rate of 26.2 pmol min$^{-1}$ mg$^{-1}$ and 25.4 pmol min$^{-1}$ mg$^{-1}$, respectively. The results show that proline generates more ROS per oxygen in isolated pig mitochondria relative to
Figure 4.5 Proline oxidation induced \(\text{H}_2\text{O}_2 \) formation is not correlated with proline-induced oxygen consumption. (A). Oxygen consumption of isolated pig mitochondria using 10 mM proline and succinate as substrates. (B). \(\text{H}_2\text{O}_2 \) production rates of isolated pig kidney mitochondria using 10 mM proline and 10 mM succinate as substrates in the presence of SOD.
succinate.

4.5 DISCUSSION

Proline-dependent ROS (O$_2^*$ and H$_2$O$_2$) production is critical to the effect of PRODH in regulating cell proliferation, apoptosis and survival under oxidative stress (1-3). In WM35 cells, proline-mediated protection against oxidative stress requires proline oxidation, which provides ATP and activates Akt signaling pathways (7). It is still unclear whether proline-dependent ROS plays a role in regulating oxidative stress resistance in WM35 cells. However, it has been reported that proline-induced ROS is required for the survival of mammalian cells under oxidative stress (3), and the activation of Akt (phosphorylation at Thr308 and Ser473) responds to oxidative stress. This leads to the hypothesis that proline-induced ROS is sufficient to activate Akt pathway.

In comparison with glutamine and glutamine/proline co-treatment, the oxygen consumption profile of WM35 cells suggests cells with proline treatment have lower proton leak and maximum respiration relative to glutamine, suggesting possible higher production of ROS during proline oxidation, because decreased maximum respiration is commonly linked to increased reverse electron flow (18), a well-known source of ROS generation. Interestingly, we also observed a higher survival rate of WM35 cell under H$_2$O$_2$ stress grown with proline alone. In addition, pipecolate, which shows better protection for CRL2429 cells from oxidative stress, induces more ROS formation than proline. These data highlight the possibility of proline-induced ROS serving as a signaling molecule in regulating the survival of
cells under oxidative stress as higher ROS signaling may explain the higher cell survival rate.

By using CRL2429 cells, we observed proline treatment doubles the intracellular H$_2$O$_2$ concentration, reaching ~800 nM. In mammalian cells with a fully functional antioxidant system, as low as 50-60 μM extracellular H$_2$O$_2$ is sufficient to induce oxidative stress (32), as treatment with 60 μM of H$_2$O$_2$ was found to induce aldehyde DNA lesions (33). Thus, the amount of ROS formed during proline oxidation is insufficient to cause deleterious effect. On the other hand, treating chicken B cell line DT40 with 10μM of H$_2$O$_2$ for 30 min resulted in significantly increased phosphorylation of Akt (34). In addition, extracellular application of 0.1 μM of H$_2$O$_2$ was shown to increase the phosphorylation of Ser473 by 1.7-fold (30). This suggests proline-induced H$_2$O$_2$ is sufficient to induce the activation of Akt pathway. Future study is required to test whether proline oxidation induced Akt pathway can be abolished by the application of antioxidant or overexpression of MnSOD.

We also found that proline and succinate generate similar amount of ROS in CRL2429 cells, and in isolated mitochondria from CRL2429 cells and pig kidney. To the best of our knowledge, unlike proline, oxidation of succinate does not protect mammalian cells against oxidative stress. Therefore, although ROS generated by proline oxidation is sufficient to induce pro-survival signaling pathways, proline oxidation-mediated oxidative stress protection can not be completely explained by proline-dependent ROS. Furthermore, application of antimycin A elevates the amount of H$_2$O$_2$ generated by proline oxidation and
succinate oxidation by ~2-fold. Phang et al. (5) also observed increased proline oxidation-mediated ROS production by antimycin A treatment. Based on the observation, Phang et al. (5) claimed complex III is the production site of proline-dependent ROS. However, since antimycin A induces the production of proline-dependent ROS and succinate-dependent ROS, we are not able to draw the conclusion that Complex III is the source of proline-mediated ROS. Instead, decreased mitochondrial membrane potential may be the reason for antimycin A induced production of ROS.

We also observed that mitochondria (or cells) consuming proline have a relatively low oxygen consumption rate than those consuming glutamine and succinate. On the other hand, H$_2$O$_2$ production rates of mitochondria consuming proline and succinate as substrates are similar. Those data indicate that mitochondria oxidizing proline has lower respiration efficiency, suggesting the unique role of proline catabolism in generating signaling ROS. The low respiration efficiency found in mitochondria using proline may have two explanations: 1). Proline oxidation impairs mitochondrial membrane integrity and decreases mitochondrial membrane potential; 2). Proline oxidation regulates mitochondrial matrix calcium signaling, thereby regulating oxidative metabolism and respiration in mitochondria.

In summary, we observed proline oxidation induced production of mitochondrial of ROS in both human cells and pig tissue, indicating ROS formation induced by proline oxidation is a common phenomenon in mammalian cells. Although the ROS produced by proline oxidation is sufficient to activate Akt
pathways, we suspect partial proline-mediated protection against oxidative stress is mediated by proline-dependent ROS. In addition, oxygen consumption of proline in mitochondria is lower than succinate.
References:

CHAPTER 5

Purification and Characterization of Human Proline Dehydrogenase 1

(Mitochondrial Isoform 1)
5.1 ABSTRACT

The *Homo sapiens* PRODH1, a mitochondrial enzyme, catalyzes the conversion of L-proline to \(\Delta^1 \)-pyrroline-5-carboxylate, which is the first step of proline oxidation. Human PRODH1 plays a vital role in ATP production, regulating cell survival and apoptosis, and missense mutations in the *PRODH1* gene are associated with schizophrenia. Human PRODH1 contains all the components of the \((\beta\alpha)_8\) catalytic core, which is conserved in monofunctional PRODHs and bifunctional PutAs, except sheet \(\beta2 \). Full-length recombinant human PRODH1 that lacks only its mitochondrial targeting signal peptide (PRODH1 ΔMTS) was expressed and purified from *Escherichia coli*. The kinetic parameters of human PRODH1 ΔMTS using an artificial electron acceptor for the oxidative half-reaction were estimated to be \(K_m = 6.6 \) mM proline and \(k_{cat} = 0.75 \) s\(^{-1}\). With ubiquinone-1 (CoQ\(_1\)) as an electron acceptor, human PRODH1 ΔMTS exhibited a \(K_m = 3.3 \pm 0.6 \) mM proline and \(k_{cat} = 0.35 \pm 0.01 \) s\(^{-1}\). The oxygen reactivity of human PRODH1 ΔMTS is low, with estimated \(k_{cat} = 0.06 \) min\(^{-1}\) and \(K_m = 7.7 \) mM proline, indicating human PRODH1 does not significantly react with molecular oxygen during turnover with proline. Human PRODH1 exhibited optimal activity at pH 7.9 and L-tetrahydro-2-furoic acid was determined to be a competitive inhibitor with a \(K_{ic} \) of 3.4 mM.
5.2 INTRODUCTION

Homo sapiens PRODH1, located on chromosome 22a11.21, encodes proline dehydrogenase (aka, oxidase) 1 (EC 1.5.99.8) that catalyzes the first step of proline degradation by oxidizing L-proline to Δ¹-pyrroline-5-carboxylate (P5C) (1). There are two isoforms of human PRODH1: human PRODH1, mitochondrial isoform 1 (NP_057419) and human PRODH1, mitochondria isoform 2 (NP_0011821155) (2). The former has 600 amino acids, containing the mitochondrial target sequence (1-48 residues). The latter is a splice variant of isoform 1, with a length of 492 amino acids, lacking an N-terminal region of 1-118 residues. The expression of human PRODH1 isoform 2 has been linked to an increased risk of autism (3), although the reason for this linkage remains unknown. Human PRODH1 isoform 2 was found in mitochondria (2), but it is unclear how this isoform is transported into the mitochondria in the absence of mitochondrial target sequence. The localization of human PRODH1 isoform 1 was suggested to be on the matrix side of the inner mitochondrial membrane in kidney, liver, and brain (4).

Most functional studies of human PRODH1 have been on isoform 1. Phang's group has shown that human PRODH1 isoform 1 is a tumor suppressor, negatively regulated by the oncogenic transcription factor c-MYC (5). Human PRODH1 is also regulated by p53 and has a role in programmed cell death. Overexpression of human PRODH1 results in tumor cell apoptosis (6-8). In paired tumor and normal tissues (kidney, liver, colon and rectum, etc) from patients, immunohistochemical staining of human PRODH1 revealed that 56 of 92 pairs had
decreased expression of human PRODH1 in tumor tissues compared with that of normal tissue (9). Constitutive expression of human PRODH1 is beneficial to cell survival under oxidative stress or cytotoxic conditions by providing ATP, Akt activation (10), and promoting pro-survival autophagy (11). In the brain, proline is the precursor of the neurotransmitter glutamate. Therefore, proline catabolism may be involved in neurological diseases. Deficiencies in human PRODH1 are linked to schizophrenia, a psychiatric disorder affecting about 1% of the population (12). Human PRODH1 missense mutations Arg185Trp and Gly521Arg are associated with increased susceptibility of schizophrenia (12). Hyperprolinemia type I is another disease caused by a deficiency in human PRODH1 (13). The plasma proline level in people with hyperprolinemia type I is 3-10 times higher than the normal level (13).

To further explore the function of human PRODH1 in tumor progression and neurological disease, it is necessary to understand the relationship between the activity and polymorphisms of PRODH. These types of studies are dependent on having purified active human PRODH1. Previously our lab partially purified full-length human PRODH1 but the yield was poor (<0.1 mg/L of culture) and was not sufficient for detailed enzymological and structural studies (14). The semi-purified recombinant PRODH was reported to have a specific activity of 0.1 U/mg and a K_m value for proline of about 15 mM using the proline: DCPIP oxidoreductase assay (14). By monitoring P5C formation and cytochrome c reduction, the proline:O$_2$ activity of recombinant PRODH was determined to be 0.09 U/mg (14). A second purification of human PRODH1 was reported more recently but was only
successful by deleting one third of the protein. This truncated form of human PRODH1 (residues 176-572) was purified in high yield (10 mg/L of culture) and using the proline: DCPIP oxidoreductase assay, the specific activity was reported to be 0.032 U/mg with a K_m of 470 mM proline (15). Although the specific activity of truncated human PRODH1 was similar to that of full-length semi-purified human PRODH1, the K_m of for proline was considerably much higher. Because human plasma proline concentration is around 0.2-0.3 mM (16), the K_m value for the truncated form of PRODH1 is likely not physiologically relevant.

In this study, we designed, expressed and purified human PRODH1 in which the mitochondrial target sequence was deleted (PRODH1 ΔMTS). The recombinant human PRODH1 (ΔMTS) was characterized by steady-state kinetics including pH activity profile and inhibition by the proline analog L-tetrahydro-2-furoic acid.

5.3 MATERIALS AND METHODS

5.3.1 Chemicals

All chemicals, enzymes and buffers were purchased from Fisher Scientific Inc., Fermentas and Sigma-Aldrich, Inc. unless otherwise noted. Nanopure water was used in all experiments.

5.3.2 Human PRODH 1 construct

The $PRODH1$ gene was obtained from a previously made PRODH1-pFlag-CMV3 construct. $PRODH$ 1, mitochondria isoform 1 precursor was subcloned
Figure 5.1 Analysis of the protein sequence of full-length Human PRODH 1.

(A) Regions human PRODH1 has the tendency to be structurally disordered and domain scheme of human PRODH1 (bottom). (B) Multiple alignment of protein sequences of PRODHs from different organisms. Secondary structure analysis was done for domain 3 (260-600 residues) of human PRODH1. Red boxes: conserved motifs involved in FAD (black letters) and proline binding (red letters).
without the Flag tag into the EcoRV and XhoI sites of pET32a. Analysis of the primary structure of Human PRODH1 by Target P and MitoProt suggested the N-terminal 48 residues comprised a mitochondrial signaling peptide (MSP). The predicted MSP was removed by site-directed mutagenesis by through inserting a BamHI site upstream of residue 49 using primer 5’-CGAAATGGATCCCGGTTCGGCGGTG-3’ and 5’-CGAATACTCGAGCTACAGGGCGATG-3’. After BamHI and XhoI digestion, PRODH 1ΔMTS was cloned into pET28a to make pET28a-human PRODH 1ΔMTS which encodes a N-terminal 6xHis tag fusion human PRODH 1 lacking MTS (His-human PRODH 1ΔMTS). Double digested PRODH 1ΔMTS was also cloned into pGEX-4t-1 (GE Health) to make pGEX-4t-1-human PRODH 1ΔMTS which codes an N-terminal glutathione S-transferase (GST) tag fusion human PRODH 1 lacking MTS (GST-human PRODH 1ΔMTS). The PRODH1 constructs were confirmed by nucleic acid sequencing (Eurofins Scientific). Two mutations (N175I & A454V) were found in the PRODH1-pFlag-CMV3 construct.

5.3.3 Expression and purification of human PRODH1 ΔMTS

His-human PRODH1 ΔMTS construct was transformed into *E. coli* strain BL21 (DE3) pLysS and then plated onto Luria-Bertani (LB) agar containing chloramphenicol (34 µg/ml) and kanamycin (50 µg/ml). Resulting colonies were inoculated and grown in 5 ml of LB broth with the appropriate antibiotics. 1 ml per Liter of the LB culture was then inoculated to 4 Liter of LB media containing the desired antibiotics. The cultures were incubated at 30°C with shaking (250 rpm)
until OD\textsubscript{600} of 1.0 at which point His-human PRODH1 ΔMTS expression was induced with 0.2 mM IPTG for 10 hr at 18°C. The overnight cultures were centrifuged at 6000 rpm for 10 min at 4 °C. The resulting pellets were resuspended in a final 400 ml volume of binding buffer (50 mM NaH\textsubscript{2}PO\textsubscript{4}, 5 mM imidazole, 0.5 M NaCl, 10% glycerol, pH 8.0) supplemented with protease inhibitors (3 mM ε-amino-N-caproic acid, 0.3 mM phenyl methyl sulfonyl chloride, 1.2 µM leupeptin, 48 µM N-p-tosyl-L-phenyl alanine chloromethyl ketone, 78 µM N-α-tosyl-L-lysine chloromethylketone) and 0.1% Triton X-100. The cell suspension was disrupted by sonication at 4 °C for a total of 5 min (5 sec pulse on, 15 sec pulse off, 50% power). The cell extract was centrifuged at 16000 rpm (4 °C) for 20 min. The supernatant (100 ml) was passed through a 0.45 µm filter (VWR) and applied to a Ni-NTA superflow (Qiagen) resin (40 ml bed volume in a 2.8 cm × 30 cm column) equilibrated with binding buffer. Wash buffer (0.4 L, Binding buffer, 20 mM imidazole,) was then applied to the column followed by elution buffer (His-human PRODH 1ΔMTS 500 mM imidazole, 0.5 M NaCl, 10% glycerol, pH 8.0). Eluted protein was then dialyzed into Storage Buffer (50 mM NaH\textsubscript{2}PO\textsubscript{4}, 0.5 M NaCl, 10% glycerol, 0.5mM Tris (3-hydroxypropyl) phosphine, pH 8.0,) and concentrated using an Amicon 30-kDa cutoff filter (Millipore).

GST-human PRODH1 ΔMTS construct was expressed and purified from BL21(DE3) pLysS, which was grown in LB media containing chloramphenicol (34 µg/ml) and Ampicillin (100 µg/ml) until OD\textsubscript{600} of 0.5. The expression of GST-human PRODH 1ΔMTS was induced by 0.1 mM IPTG for 1 hr at 30°C. Cells were pelleted using the procedures as described above. The cells were resuspended in PBS.
Figure 5.2 3D-structure model of domain 3 of human PRODH 1. (A). Structure alignment of TtPRODH (grey; PDB:2EKG) and domain 3 of human PRODH1 with indicated (αβ)ε-barrel domain. (B). Flavin and conserved residue proposed to be important for enzyme activity are shown in sticks. Mutated residue of Ala454Val is also shown in sticks.
containing protease inhibitors, 1% Triton X-100 and 0.5 mM Tris (3-hydroxypropyl) phosphine (THP). Cells were then lysed by sonication and cell debris was pelleted by centrifugation. After passing through a 0.45 µm filter, the lysate supernatant was loaded onto a glutathione sepharose column (GE Healthcare) equilibrated with PBS, at a flow rate of 0.1 ml/min. After 10 volumes of washing with PBS, the protein was eluted with reduced glutathione (GSH) elution buffer (20 mM Tris, 200 mM NaCl, 10 mM GSH, pH 8.0). The eluted protein was digested with thrombin (10 Unit per mg of protein) at 4 °C overnight to remove the N-terminal-GST tag. After removing thrombin by a HiTrap Benzamidine column (GE Healthcare), the protein was extensively (2,000-fold) dialyzed against PBS (0.5 mM THP) to remove GSH. Then un-cleaved protein was removed by glutathione sepharose column and protein was dialyzed against 20 mM Tris, 0.2 M NaCl, 10% glycerol, 0.5 mM THP, pH8.0. Protein concentration was measured by Pierce protein A660 nm assay buffer.

5.3.4 Steady-state kinetic measurements

Measurements were made with a Cary® 50 UV-Vis spectrophotometer (Varian, Inc). For the measurement of human PRODH 1ΔMTS activity, dichlorophenolindo-phenol (DCPIP) and CoQ₁ (100 µM) were used as terminal electron acceptors with varying proline (0-200 mM) as previously described (17). The DCPIP assay mixture contained 20 mM Tris, 0.27 mM phenazine methosulfate and 75 µM DCPIP, pH 8.0. The rate of DCPIP reduction was monitored by the absorbance at 600 nm (ε = 16100 cm⁻¹ M⁻¹). When using CoQ₁
as the electron acceptor, PRODH activity was measured by the production of the yellow dihydroquinazolinium complex, which is formed between P5C and o-aminobenzaldehyde (o-AB). P5C formation was monitored by the absorbance at 443 nm (ε = 2900 M⁻¹cm⁻¹) (18). The PRODH1-CoQ₁ assay mixture contained 50 mM potassium phosphate buffer, 4 mM o-AB and 100 µM CoQ₁, pH 8.0. One unit of PRODH activity is defined as the amount of enzyme that transfers electrons from 1 µmol of proline to the electron acceptor per min at 25°C. The parameters Kₘ and V were obtained by fitting the data to the Michaelis-Menten equation using Prism Software.

Inhibition of PRODH activity by L-tetrahydro-2-furoic acid (THFA) was examined by steady-state inhibition kinetic measurements using proline as the variable substrate (0-200 mM) and DCPIP as the electron acceptor. L-THFA concentration was varied from 0 – 6 mM. The inhibition constant (Kᵢ) for L-THFA was estimated by Lineweaver-Burk plot analysis (18).

The pH profile of PRODH1 activity was determined using a mixed buffer system from pH 6.0–10.0 comprised of 20 mM each HEPES, MES, MOPS and TAB (80 mM total). The kinetic measurements were performed at different pH values by varying proline (0-200 mM) and using DCPIP as the electron acceptor. The pH profiles of the kinetic parameters for PRODH1 were analyzed for the effect of pH on enzyme–ligand complexes by plotting k₅₅, k₅₆/Kₘ, and Kₘ vs pH. Kinetic data were fit to the equation

\[P_{obs} = P_{lim}/(1+10^{(pK_a-pH)}) \] (eq1)

where \(P_{obs} \) and \(P_{lim} \) represent the observed and limited parameter values, respectively, and \(pK_a \) is the acidic-dissociation equilibrium constant, representing the ionization
Figure 5.3. SDS-PAGE analysis of His-Human PRODH 1 ΔMTS and GST-human PRODH 1 ΔMTS. (A). SDS-PAGE electrophoresis of samples from purification of His-Human PRODH1 ΔMTS (indicated with arrow). (B). Western blot analysis of samples from purification of His-Human PRODH 1 ΔMTS using anti-human PRODH antibody and anti-His antibody. (C). SDS-PAGE electrophoresis of samples from purification of GST-Human PRODH1 ΔMTS (indicated with arrow), with digested flow through representing protein with cleaved his-tag (indicated with arrow) and digested elution representing protein with uncleaved his-tag (not shown on the gel).
that contributes to the pH dependent curve of the reaction velocity (19).

5.3.5 Proline:O$_2$ reactivity

Proline:O$_2$ activity was measured in air-saturated 50 mM potassium phosphate buffer (pH 7.5) at 25°C, using various amounts of proline (0 - 200 mM) as substrate. The assay buffer included 40 U/mL superoxide dismutase, 125 mM KCl, 4 mM KH$_2$PO$_4$, 14 mM NaCl, 20 mM HEPES, 1 mM MgCl$_2$, 0.2% BSA, and 0.02 mM EDTA (20). Rates of the proline:O$_2$ activity were determined by following the production of H$_2$O$_2$, which was quantified using the Amplex® Red Hydrogen Peroxide/Peroxidase Assay Kit (20). H$_2$O$_2$ was measured by monitoring the fluorescence emission at 581 nm (555nm excitation wavelength) with a Cary® Eclipse Fluorescence Spectrophotometer. One unit of proline:O$_2$ activity is defined as the amount of PRODH that generates 1 μmol of H$_2$O$_2$ per min at 25°C. The effect of L-THFA on proline:O$_2$ activity was determined using the same assay conditions as described above.

5.3.6 UV-Visible spectroscopy

The UV-visible spectra were recorded from 300–700 nm on a Cary 100 spectrophotometer. GST-human PRODH1 ΔMTS (6.7 μM) was incubated with increasing concentration of flavin to reach a final concentration of 7 μM. The absorbance spectrum was measured after addition of flavin and incubation period of 5 min. The GST-human PRODH1 ΔMTS (6.7 μM) and flavin (7 μM) mixture were then titrated with proline range (0 – 10 mM). The absorbance spectrum was
recorded at each proline concentration after incubating the enzyme with proline for 5 min.

5.3.7 Statistical analysis

The reported mean values and standard deviations are from three to five replicates. Data were analyzed by Student’s t-tests with statistical significance considered to be a P-value < 0.05.

5.4 RESULTS

5.4.1 Design of human PRODH1 ΔMTS

Human PRODH1 is predicted to harbor a mitochondria targeting sequence of residues 1-48. (MTS, 1-48). Secondary structure analysis also defines three domains in PRODH1 of residues 48-133 (domain 1), 134-260 (domain 2), and 261-600 (domain 3). (Figure 5.1A). Domain 3 is predicted to be the catalytic domain of human PRODH1 as it contains highly conserved active sites residues such as Arg563 and Arg564 (motif 9) which are known to be critical for proline binding in *E. coli* PutA (4). The association of human PROH1 with the inner mitochondrial membrane suggests that it may contain hydrophobic regions that are prone to be distorted in the absence of membrane. The distorted regions would likely diminish the solubility of recombinant human PRODH1. Indeed, RONN (regional order neural network) analysis of human PRODH1 indicates (Figure 5.1A) three regions of high distortion probability which are located at MTS, the first part of domain 2 (175-200 residues) and at the end of domain 3 (590-600 residues). Previously, truncation off prone-distorted regions was shown to improve the solubility of
recombinant human PRODH1, however, the enzyme kinetic properties appear to be significantly impacted (15). Therefore, in this study, we chose to remove only the MTS region and develop alternative strategies to improve solubility human PRODH1 by using 0.1-1% Tween-100 during purification and expressing human PRODH1 as a GST-tag fusion protein.

5.4.2 Homology modeling of human PRODH1 catalytic domain

It has been reported that PRODHs share nine motifs that contribute conserved residues in the active site important for FAD and substrate binding (4). Multiple alignment of the protein sequence of PRODHs from Homo Sapiens, Saccharomyces cerevisiae, Drosophila melanogaster, Thermus thermophilus and Bos Taurus indicates that human PRODH1 contains 8 out of the 9 motifs (Figure 5.1B), with motifs 4–6 involved in FAD binding and motifs 1, 3, 7-9 responsible for substrate recognition (4). For instance, Gln413 of motif 4 and Arg443 of motif 5 may be important for hydrogen binding to the FAD O2 and N5, respectively (Figure 5.2B). Also, arginine residues (Arg563 and Arg564) of motif 9 were proposed to form ion pairs with the carboxyl group of the substrate proline (Figure 5.2B) (4). Nucleotide sequencing indicated that there are two mutations found in our human PRODH1 construct, Asn175Ile and Ala454Val. These mutations, Asn175 and Ala454 are not conserved in PRODHs and are not anticipated to impact the activity of human PRODH1.

Secondary structure analysis of human PRODH1 domain 3 revealed 11 α-helixes and 7 β-sheets (Figure 5.1B). Crystal structure of monofunctional PRODH
from *T. thermophilus* and the PRODH domain of *E. coli* PutA established that PRODHs adopt a distorted \((\beta\alpha)_8\)-barrel (4). The typical \((\beta\alpha)_8\)-barrel consists of an eight parallel \(\beta\)-sheet forming a barrel (21). Each \(\beta\)-sheet is followed by one \(\alpha\)-helix, surrounding the \(\beta\)-sheet barrel (21). The catalytic face of \((\beta\alpha)_8\)-barrel is comprised of the C-terminal ends of the \(\beta\) strands and the loops that link \(\beta\) strands with the subsequent \(\alpha\) helices (21).

The amino acid sequence of human PRODH1 domain 3 shares 35.2% sequence similarly with catalytic domain of *T. thermophilus* PRODH. Therefore, we are able to obtain a homology structure of the human PRODH1 catalytic domain by SWISS-MODEL based on the structure of *T. thermophilus* PRODH (PDB:2EKG). Figure 5.2A indicates that human PRODH1 contains all the components of the \((\beta\alpha)_8\)-barrel, except sheet \(\beta2\). Similar to other PRODHs, human PRODH1 has the helix \(\alpha8\) on top of the barrel, whereas typical \((\beta\alpha)_8\)-barrel has that helix alongside sheet \(\beta8\) (4). In addition, helix 8 contains the two arginine residues of motif 9 that are critical for substrate binding (22) (Figure 5.2B). In Figure 5.2B, FAD of PRODHs was placed at the C-terminal ends \(\beta\) strands, where it has been shown to bind in the active site (4).

5.4.3 Purification of human PRODH1 ΔMTS

Tallarita et al. made an attempt to purify human PRODH1 by deleting residues 1-48 (MTS), but this deletion was reported to have extremely low protein expression (<0.1 mg/L of culture) (15). In our case, expression of His-human PRODH1 ΔMTS resulted in a low amount of soluble protein as well (<0.5 mg/L of
culture), whereas expression of GST-human PRODH1 ΔMTS led to a significantly increased amount of soluble protein (~3 mg/L of culture). SDS-PAGE analysis showed a major protein band of about 65-kDa (Figure 5.3A and Figure 5.3C), consistent with the predicted molecular weight of human PRODH1 ΔMTS (63.3 kD). The expression of human PRODH1 ΔMTS was confirmed by Western blot analysis (Figure 5.3 B) and mass spectrometry. Unfortunately, SDS-PAGE (Figure 5.3A) also showed that His-human PRODH1 ΔMTS was not fully purified. Attempts to cleave the histidine tag of His-human PRODH1 ΔMTS were not successful as only 10% of the His-tag PRODH1 ΔMTS appeared to be cleavable by thrombin (10 U/ mg protein with overnight incubation). The inability to effectively cleave the His tag may be due to the N-terminus of PRODH1 being buried. It was observed that His-human PRODH1 ΔMTS binds weakly to the Ni-NTA column as the protein eluted at low imidazole concentrations (10-20 mM), which suggests the N-terminal His tag may have limited solvent accessibility. Purification of GST-human PRODH1 ΔMTS resulted in a single band with apparent molecular weight of 97 kDa (Figure 5.3C). Approximately 90% of histidine tag was estimated to be cleaved by overnight treatment with thrombin (Figure 5.3C). The kinetics studies in this chapter were mainly performed with GST-human PRODH1 ΔMTS except for the pH activity profile and THFA inhibition.

The UV-visible spectra of purified His-PRODH1 and His-GST-human PRODH1 ΔMTS showed very little FAD is present as maxima absorption features for flavin at 355 and 451 nm and a shoulder at 478 nm were not
Figure 5.4. UV-visible spectra of purified PRODH1 proteins. (A) UV-visible spectra of purified His-human PRODH1 and His-GST-human PRODH1. Spectra indicate very little FAD is present in the purified proteins. (B) UV-visible spectrum of uncleaved His-GST-human PRODH ΔMTS (6.7 μM) after incubation with FAD (7 μM) and with spectrum of free FAD (7 μM) for comparison. (C) Spectra of GST-human PRODH 1 ΔMTS with FAD after each addition of proline (0-10 mM).
Table 1. Kinetic parameters using L-proline as substrate

<table>
<thead>
<tr>
<th></th>
<th>H. Sapiens PRODH</th>
<th>T. thermophilus PRODH<sup>a</sup></th>
<th>E. coli PutAb</th>
<th>S. cerevisiae Put1p<sup>c</sup></th>
<th>H. pylori PutA<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>proline:DCPIP assay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_m (mM)</td>
<td>6.6</td>
<td>27</td>
<td>100</td>
<td>36</td>
<td>146</td>
</tr>
<tr>
<td>V_{max} (U/mg)</td>
<td>0.68</td>
<td>20.5</td>
<td>5</td>
<td>4.2</td>
<td>3.6</td>
</tr>
<tr>
<td>k_{cat} (s<sup>-1</sup>)</td>
<td>0.75</td>
<td>13</td>
<td>12</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>k_{cat}/K_m (s<sup>-1</sup> M<sup>-1</sup>)</td>
<td>113</td>
<td>481</td>
<td>122</td>
<td>750</td>
<td>56</td>
</tr>
<tr>
<td>K_I for THFA (mM)</td>
<td>3.4</td>
<td>1.0</td>
<td>0.2</td>
<td>5.3</td>
<td>0.35</td>
</tr>
<tr>
<td>proline:O<sub>2</sub> assay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_m (mM)</td>
<td>7.7</td>
<td>1.3</td>
<td>ND</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>V_{max} (mU/mg)</td>
<td>0.95</td>
<td>335</td>
<td>< 2</td>
<td>144</td>
<td>230</td>
</tr>
<tr>
<td>k_{cat} (min<sup>-1</sup>)</td>
<td>0.06</td>
<td>12.7</td>
<td><0.3</td>
<td>0.8</td>
<td>31</td>
</tr>
<tr>
<td>DCPIP/O<sub>2</sub> activity ratio</td>
<td>750</td>
<td>61</td>
<td>> 2500</td>
<td>2025</td>
<td>16</td>
</tr>
</tbody>
</table>

- a. Data obtained from Whit et al. (18).
- b. Data obtained from Zhu et al. (23) and Krishnan and Becker (25).
- c. Data obtained from Wanduragala et al. (19).
- d. Data obtained from Krishnan and Becker (25).

Figure 5.5 Inhibition of human PRODH1 ΔMTS (semi-purified N-terminal histidine tagged form) activity by L-THFA (0-6 mM).
observed, indicating that these proteins were largely purified in apoforms (Figure 5.4A). His-GST-human PRODH1 was then incubated with increasing amounts of FAD in an attempt to generate a flavin bound protein species. Figure 5.4B shows that the flavin spectrum in the presence of His-GST-human PRODH1 is very similar to that of free flavin as no shoulder at 478 nm was observed which is typical of protein bound FAD. To test whether the FAD could be reduced with proline, which would provide evidence of a His-GST-human PRODH1 bound FAD, the GST-tagged human PRODH1 ΔMTS was incubated with increasing concentrations of proline under aerobic conditions. Figure 5.4C shows no significant reduction of the FAD was observed with proline indicating that FAD was not bound to the His-GST-tagged human PRODH1 ΔMTS protein.

5.4.4 Steady-state kinetics

The kinetic parameters for human PRODH1 ΔMTS using the proline:DCPIP oxidoreductase assay were estimated to be $K_m = 6.6 \pm 0.6$ mM proline, $V = 0.66$ U/mg and $k_{cat} = 0.75 \pm 0.008$ s$^{-1}$ (Table 1). The corresponding values for other monofunctional PRODHs from *T. thermophilus* and *S. cerevisiae*, as well as bifunctional PutAs such as *E. coli* and *Helicobacter pylori* are listed in Table 1. The K_m parameter of human PRODH1 ΔMTS is 20-fold higher than human plasma proline concentration (0.2-0.3 mM)(16), and 4-5 and 15-20 times lower than those of the monofunctional PRODHs and the PutAs, respectively. This is consistent with a previous observation that monofunctional PRODHs have lower K_m values for proline than bifunctional PutA enzymes (19). Compared with previous studies of
human PRODH, our estimated K_m value is similar to Krishnan et al. data ($K_m = 15$ mM) (14), and 2 orders of magnitude lower than that reported by Tallarita et al. ($K_m = 0.47$ M) (15). The specific activity of human PRODH1 ΔMTS determined here (0.68 U/mg) is 7- and 20-fold higher than that reported previously by Krishnan et al. (0.1 U/mg) (14) and Tallarita et al. (0.032 U/mg) (15), for full-length and truncated human PRODH1, respectively. The turnover rate of truncated human PRODH 176-572 (44.6 kD) is estimated to be 0.023 s$^{-1}$, which is > 30-fold lower than that of human PRODH1 ΔMTS (0.75 s$^{-1}$). Therefore, human PRODH1 ΔMTS has significantly higher activity than that obtained previously with other purified human PRODHs. However, the turnover number of human PRODH1 ΔMTS is 10-20 times lower than that of PutAs and PRODHs. The k_{cat}/K_m for human PRODH1 is similar to bifunctional PutAs but is significantly lower than that reported for PRODHs from *T. thermophilus* and *S. cerevisiae*. The k_{cat}/K_m for human PRODH1 is the first time this kinetic parameter has been reported for human PRODH1.

The inhibition of human PRODH1 activity with L-THFA, an isostructural analog of proline, was next investigated. Figure 5.5A shows a Lineweaver Burk plot of the inhibition of human PRODH1 ΔMTS activity by L-THFA. The plot shows that L-THFA acts as a competitive inhibitor of human PRODH1 ΔMTS with K_i of 3.4 ± 0.4 mM. The K_i of human PRODH1 ΔMTS for L-THFA is similar to that of monofunctional PRODHs ($K_i = 1 – 5.3$ mM) but higher than bifunctional PutAs ($K_i = 0.2 – 0.3$ mM) (Table 1).

Since deprotonating of the proline amine group is a crucial step in PRODH reaction, and pK_a reflects the ionization of a group on the enzyme or substrate, we
then measure the pH activity profile of human PRODH1. The pH-activity profile of human PRODH1 ΔMTS was measured by following proline:DCPIP oxidoreductase activity over the pH range 6–9.5 and the pH dependence of the kinetic parameters k_{cat}, K_m, and k_{cat}/K_m of PRODH was determined (Figure 5.6). The k_{cat} and k_{cat}/K_m of the enzyme followed a bell-shape curve, with the pH optimum at 7.9, which is relatively lower than that of Put1p ($pH_{optimum} = 8.6$) (19). The values of pK_a were estimated to be 6.2 ± 0.16 and 6.1 ± 0.08 for k_{cat} and k_{cat}/K_m, respectively. Human PRODH1 also has lower pK_a, compared with $E.coli$ PutA (pK_a of 7.4 (k_{cat}/K_m) and pK_a of 7.3 (k_{cat}). The K_m values for proline for human PRODH1 appear to be insensitive to pH alteration.

Human PRODH1 ΔMTS activity was also characterized using CoQ$_1$ as an electron acceptor and proline as a substrate (Figure 5.6A). By holding CoQ$_1$ fixed, the kinetic parameters for proline were estimated to be $k_{cat} = 0.35 \pm 0.01$ s$^{-1}$ and $K_m = 3.3 \pm 0.6$ mM proline. Adding flavin to the assay increased k_{cat} by 2-fold ($k_{cat} = 0.75 \pm 0.01$ s$^{-1}$) but the K_m remained the same. The k_{cat}/K_m for Human PRODH1 ΔMTS using CoQ$_1$ as an electron acceptor was 227 M$^{-1}$ s$^{-1}$ which is about 2-fold higher than that determined by the DCPIP assays. When compared with Put1p ($k_{cat}/K_m = 750$ M$^{-1}$ s$^{-1}$), however, the activity of human PRODH1 ΔMTS is about 3-fold lower (19).

5.4.5 Reactivity of human PRODH1 ΔMTS with molecular oxygen

We next characterized the reactivity of human PRODH1 ΔMTS with oxygen by following the production of production of H$_2$O$_2$ in air-saturated buffer during turnover with proline. SOD is included in these assays so that any
Figure 5.6 pH profiles of steady-state kinetic parameters of human PRODH1 ΔMTS (semi-purified N-terminal histidine tagged form). Measurements were performed in a 80 mM mixed buffer from pH 6–9.5 at 25 °C. (A) Plot of kcat vs pH, (B) plot of kcat/ K_m vs pH, and (C) plot of pK_m for proline vs pH for human PRODH1 ΔMTS.
superoxide anion generated during catalytic turnover in the PRODH1 active site is quickly converted into H$_2$O$_2$. The H$_2$O$_2$ production rate of the reaction increases with proline reaching a maximum rate around 15 mM proline (Figure 5.6.B). Addition of THFA (10 mM) significantly attenuated H$_2$O$_2$ production consistent with H$_2$O$_2$ being generated by human PRODH1 ΔMTS activity. The kinetic parameters for human PRODH1 ΔMTS oxidase activity (proline:O$_2$ assay) were $k_{cat} = 0.06$ min$^{-1}$ and $K_m = 7.7$ mM (Table 1). Clearly proline:O$_2$ activity is significantly lower than proline:DCPIP or proline:CoQ$_1$ activity. When comparing the activity ratio of DCPIP versus O$_2$ as an electron acceptor, the ratio for human PRODH1 ΔMTS is 10-50 fold higher than that of *T. thermophilus* PRODH and *H. pylori* PutA, but 3 times lower than that of Put1p and *E. coli* PutA (Table 1). These results show that O$_2$ is highly unfavored as a electron acceptor for human PRODH1 ΔMTS, indicating that CoQ is the physiological electron acceptor and that proline-dependent ROS is derived from the ubiquinone pool and the mitochondrial respiratory electron transport chain.

5.5 DISCUSSIONS

Multiple PRODH missense mutations have been identified in patients with hyperprolinemia type I or schizophrenia. Five of these mutations were shown by assays of cell lysates to result in reduced human PRODH1 activity when expressed in CHO cells (12-13). Purification of a soluble and active human PRODH1 is a crucial step to understand the structure–function relationships of this enzyme. In this study, we were able to purify a soluble and active GST-human
The PRODH1 enzyme which lacked the N-terminal mitochondria targeting sequence. To the best of our knowledge, GST-human PRODH1 ΔMTS is the first purified human PRODH1 that is active, soluble and contains all three domains. However, why our enzyme preparation resulted in a low amount of bound FAD in human PRODH1 ΔMTS, namely the apoform, remains unknown and will require further attempts to improve flavin incorporation.

Human PRODH1 contains 8 out of 9 motifs that contain conserved residues responsible for proline and flavin binding (Figure 5.1B). The catalytic domain of human PRODH1 is predicted to share 35% sequence similarity with that of *T. thermophilus* PRODH, which represents the minimalist PRODH enzyme and has provided the only structure thus far of a monofunctional PRODH enzyme. The sequence similarity of human PRODH1 with *T. thermophilus* PRODH highly suggests that human PRODH1 shares the active site structure and (βα)_8 catalytic core of that in bacterial monofunctional PRODHs. Monofunctional PRODHs and PRODH domains of bifunctional PutAs share a distorted (βα)_8-barrel (4). The secondary structure analysis (Figure 5.1B) and homology modeling (Figure 5.2) of the human PRODH1 catalytic domain (domain 3) indicate it contains all the components of (βα)_8-barrel except sheet β2. Whether the β2 sheet is actually missing in human PRODH1 will require a crystal structure of the enzyme. In addition, human PRODH1 has two additional domains that are not present in *T. thermophilus* PRODH. A crystal structure would also help with determining the function of these domains. These domains, however, appear to be important for activity as deletion of the domains in the truncated PRODH1 reported previously,
Figure 5.7 Oxidative half-reaction of human PRODH1 ΔMTS using CoQ1 and oxygen as electron acceptors. (A). Activity of human PRODH1 ΔMTS (33 nM) using CoQ1 (100 µM) as electron acceptor in the presence and absence of 2 µM FAD. (B). Oxygen reactivity of human PRODH1 ΔMTS was measured by following the production of H$_2$O$_2$ in the presence and absence of 10 mM THFA.
resulting in lower activity than what we found here for the full-length enzyme (15).

Human PRODH1 was shown to highly prefer DCPIP or its physiological electron acceptor CoQ over molecular oxygen. This result demonstrates that human PRODH1 is a flavoenzyme dehydrogenase and that the prevalent use of proline oxidase in the literature is a misnomer. Clearly, proline oxidation–induced superoxide/hydrogen peroxide production is critical to the ability of human PRODH1 to function in mediating cellular signaling and processes (6-8). The main source of proline-derived ROS, however, is not at the flavin active site, but rather from the ubiquinone pool and electron transport events in the respiratory chain of the mitochondrion. Those results are consistent with our data of fibroblast cells and isolated mitochondria (Chapter 4) and from a recent study of isolated mitochondria from human breast cells examining superoxide/hydrogen peroxide production by proline oxidation (24). A previous study of oxygen reactivity in PutAs identified a tyrosine residue (Tyr437 in E. coli PutA) of motif 5 having a role limiting solvent accessibility to the active site and therefore limiting reactivity with molecular oxygen (25). H. pylori PutA, which exhibits significant reactivity with molecular oxygen, has an asparagine residue (Asn291) at the same position in motif 5 suggesting the active site of H. pylori PutA is more exposed to solvent. The sequence of alignment shown in Figure 5.1B shows human PRODH1 has a tyrosine residue (Tyr452) in motif 5. This may explain the low reactivity of human PRODH1 with oxygen similar to that proposed for E. coli PutA. However, several monofunctional PRODHs, including T. thermophilus PRODH and Put1p all share the tyrosine residue at motif. Put1p fails to react with oxygen but T. thermophilus
PRODH has high reactivity of oxygen (Table 1). It has also been proposed that the flexibility of α8 helix of PRODH may determine its O₂ reactivity (4). Structure determination of human PRODH1 will be beneficial to understanding the difference of oxygen reactivity between human and *T. thermophilus* PRODH1 enzymes.
REFERENCES:

and schizophrenia risk. *Genetics and molecular research* : *GMR* 14, 11681-11691

SUMMARY AND FUTURE DIRECTIONS

The catabolism of proline has been shown to regulate many cellular processes, such as energy utilization, programmed cell death, cell reprogramming and development, oxidative stress resistance, and aging (1-4). ROS is implicated in all of these processes. For instance, oxidative stress limits the energy generation by the TCA cycle by inhibiting aconitase (7). In addition, according to the free radical theory of aging, ROS may induce the aging process or delay aging progression depending on the level of intracellular ROS (8). In many proline catabolic affected cellular processes, ROS induced by proline oxidation has been found to play a regulatory role (5). As discussed in chapter 1 and 2, a low amount of proline oxidation-induced ROS serves as a pro-survival signal, whereas a high concentration of proline oxidation-dependent ROS is deleterious to cells. This dissertation sought to gain further understanding of the relationship between proline-mediated ROS production and the effect of proline oxidation on cell survival during oxidative stress.

In Chapter 3, we explored the mechanism of proline oxidation-mediated protection against oxidative stress in *E. coli*. We first observed that proline pre-treatment of wild-type *E. coli* cells, but not *putA* mutant cells resulted in significantly higher survival rates in oxidative stress assays than in cells without proline
treatment. This indicates PutA is required for proline-mediated protection against oxidative stress. We than found that proline catabolism generates ROS as a signaling molecule which activates the OxyR regulon, including \textit{katG}, thereby induces increased oxidative stress tolerance in \textit{E. coli}. The source of proline oxidation-induced \(\text{H}_2\text{O}_2 \) was found to be potentially cytochrome \textit{bo} terminal oxidase of the \textit{E. coli} respiratory chain. In the future, the function of cytochrome \textit{bo} in generating proline-induced ROS should be further studied using \textit{E. coli} with impaired of cytochrome \textit{bo} terminal oxidase. For example, if the proline oxidation-induced ROS formation is lower in cells with impaired cytochrome \textit{bo} terminal oxidase, then the role cytochrome \textit{bo} oxidase in generating proline-dependent ROS may be confirmed. In addition, inhibitors, such as aurachin C and D that have been shown to inhibit the activity of cytochrome \textit{bo} oxidase may also be used (9).

Another aspect that needs to be further studied is whether proline oxidation is capable of increasing oxidative stress resistance and/or promoting the infection process of bacterial pathogens. ROS was found to induce the infection process of many bacterial pathogens, such as \textit{Porphyromonas gingivalis}, \textit{Mycobacterium abscessus}, \textit{Helicobacter pylori} and \textit{Bacillus anthracis} (6). Proline-oxidation may increase the tolerance of these bacteria pathogens to oxidative stress, thereby pathogens may have a higher tendency to survive when attacked by the human immune system. Furthermore, studying the role of proline oxidation in regulating
oxidative stress resistance and pathogenesis in these bacteria may benefit the discovery of antibiotics specifically targeting bacteria with increased pathogenesis under oxidative stress.

In Chapter 4, the proline-induced ROS production was studied in human cell line, as well as isolated human and pig mitochondria. With proline supplementation, increased ROS production was observed in both human and pig mitochondria, suggesting proline-induced ROS production is a common occurrence in mammals. In CRL2429 and WM35 cells, we found cells with a higher ROS formation rate have an increased survival rate under \(\text{H}_2\text{O}_2 \) stress. We also found that the amount of ROS formed during proline oxidation is too low to cause oxidative stress, but is sufficient to activate pro-survival signaling pathways (e.g., Akt pathway). Therefore, it is highly plausible that proline oxidation-induced ROS may activate the Akt pathway and thereby enhance oxidative stress resistance. Using a human cell line with Tet-regulated MnSOD may be helpful to study the effect of proline-induced ROS on Akt activation. Phosphorylation of Akt could be analyzed with proline treatment in the absence and presence of MnSOD overexpression. Fluorescent western blotting may have to be used in order to capture proline oxidation-induced phosphorylation of Akt. In Chapter 4, we also noticed that mitochondria using proline as a substrate have lower respiration
efficiency, suggesting proline may have a unique effect on inducing ROS signalling. Because decreased mitochondrial potential or reduced expression of mitochondrial ETC enzymes may explain the low mitochondrial efficiency, two preliminary experiments can be done to understand the mechanism of proline in lowering mitochondrial efficiency. Last but not the least, it is an open question as to whether all the eukaryotes share the same sources of proline oxidation induced mitochondrial ROS. Future studies should explore the source of ROS production by proline catabolism in different organisms.

In Chapter 5, we expressed and purified human PRODH1, which specifically catalyzes the first and rate limiting step of proline oxidation. We made a human PRODH1 construct with a deleted mitochondria targeting signal (human PRODH1 ΔMTS). Purified human PRODH1 ΔMTS appeared to be a soluble apoprotein. However, with limited supplementation of flavin, the enzyme was active. The activity of human PRODH1 ΔMTS can be inhibited by L-THFA (Ki= 3.4 mM). We also found that molecular oxygen is not preferably used by human PRODH1 ΔMTS as electron acceptor, suggesting proline-induced ROS is not generated by a direct reaction between PRODH and oxygen. In the future, it will be critical to purify a form of human PRODH1 with fully incorporated flavin. It is also necessary to determine the structure of human PRODH1 ΔMTS. This may not only provide an answer to the incapability of the enzyme to bind flavin, but also provide the critical
piece of knowledge about the \((\beta\alpha)\) catalytic core of this enzyme. Secondary structure analysis of human PRODH1 ΔMTS indicated its catalytic domain has all the components of \((\beta\alpha)\) barrier, except sheet β2. Besides the catalytic domain, human PRODH1 ΔMTS also contains two additional domains with unknown function. It will be useful to understand the function of these domains since several missense mutagenesis in these domains are associated with the onset of schizophrenia.
References:
1. Xinwen Liang, Lu Zhang, Sathish Kumar Natarajan, and Donald F. Becker. Antioxidants & Redox Signaling. September 20, 2013, 19(9): 998-1011