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Abstract 
 

Clustering has been widely used as a tool to 
group multivariate observations that have similar 
characteristics.  However, there have been few 
attempts at formulating a method to group similar 
multivariate observations while taking into account 
their spatial location [12, 13, 14].  This paper 
proposes a method to spatially cluster similar 
observations based on their likelihoods.  The 
geographic or spatial location of the observations can 
be incorporated into the likelihood of the multivariate 
normal distribution through the variance-covariance 
matrix.  The variance-covariance matrix can be 
computed using any specific spatial covariance 
structure.  Therefore, observations within a cluster 
which are spatially close to one another will have a 
larger likelihood than those observations which are 
not close to one another.  This results in spatially 
close observations being placed into the same cluster. 
 
 
 
1. Introduction 
 

Cluster analysis has been used as a tool to place 
similar observations in groups or clusters.  Clusters are 
formed based on measures of similarity or 
dissimilarity.  Observations are placed in clusters to 
maximize the similarity among observations within a 
cluster while at the same time maximizing the 

dissimilarity to observations in other clusters [1, 2, 7, 
8, 9]. 

Most of the clustering methods group 
observations based upon a distance calculation and the 
three most prominent are Euclidean distance, 

( ) '( )rs r s r sd x x x x= − −                          (1) 
standardized Euclidean distance, 

( ) '( )rs r s r sd z z z z= − −                          (2) 
 and Mahalanobis distance 

1( ) ' ( )rs r s r sd x x x x−= − ∑ −                 (3)  
In Equations (1) and (3) above, rx  and sx are 
multivariate observations.  In Equation (2) rz and 

sz are the standardized observation values.  Equation 
(3) uses ∑ , the variance-covariance matrix between 
pairs of observations [1].  These distances can be used 
in a variety of hierarchical or nonhierarchical 
clustering methods.  The hierarchical clustering 
methods place observations together in a nested 
sequence of clusterings.  Nearest Neighbor and 
Hierarchical Tree Dendograms are popular forms of 
hierarchical clustering methods [1, 2].   

These clustering methods do not allow one to 
account for spatial structure.  However, there are cases 
for which spatial location is both known (e.g. encoded 
as latitude and longitude) and relevant to the goals of 
the data analysis.  One example is precision 
agriculture technology which has become an important 
aspect of agriculture production in recent years.  
Precision agriculture uses multiple data layers within 
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spatially variable observations to fine-tune cropping 
decisions.  Since conventional coarse grid sampling 
fails to provide adequate representation of spatial 
variability in soils, alternative high-density sensor data 
have been used in many operations.  One of the major 
challenges is to delineate field areas with potential for 
differentiated treatments (management zones).  The 
limited number of guided samples should be collected 
from homogenous areas of the field and away from the 
boundaries or locations where sensor data changes 
significantly over short distances.  The soil samples 
should also uniformly cover the entire range of 
measurements, indicating spots of high, medium or 
low readings [3].  Therefore, a proper clustering 
method should be developed to delineate relatively 
homogeneous field areas while accounting for the 
physical values of high-density observations and their 
spatial distribution.   

In this paper a clustering method is proposed to 
explicitly incorporate the spatial structure.  This is 
accomplished by using likelihoods to form the 
clusters.  The spatial structure is present as part of the 
variance-covariance matrix.  That is, if two points are 
located far apart, their likelihood will be smaller than 
if the points were closer together.   
 
2. Clustering using the likelihood function 
 

The procedure proposed here maximizes the 
likelihood for the multivariate normal distribution at 
every step (hierarchical clustering).  Initially, each 
observation will be considered to form its own cluster, 
resulting in n clusters.  The likelihood is computed for 
each possible pairing of two “clusters”.  The pair 
which yields the largest likelihood is merged together 
to form a new cluster.  After one step there are 1n −  
clusters (one cluster has two observations and the 
remaining 2n −  clusters consist of only one 
observation each).   

During step 2 all possible pairwise groupings of 
the 1n − clusters are evaluated.  The pair which gives 
the largest likelihood is selected as the new merged 
cluster.  This continues until there is only one cluster.  
The optimal number of clusters may be determined by 
plotting the likelihood against the number of clusters 
and looking for a sharp increase.  This would indicate 
the appropriate number of clusters much like a 
dendogram does.   

To account for the spatial structure in the 
likelihood, the variance-covariance matrix is 
computed using any specific covariance function; 
exponential, Gaussian, or spherical are the most 
common.    The spherical covariance function is 

3
2 3 11

( ) 2 2

0

d d if d a
C d a a

if d a

σ
      − + ≤     =       
 >

 

whered is the distance between two points and a is the 
range [4, 5, 6].  The Gaussian covariance function is 

2

2
3

2( )
d
aC d eσ

−
=  and the exponential covariance 

function is
3

2( )
d
aC d eσ

−
= .  The Gaussian and 

exponential covariance functions have a similar 
range, a , but they are not strictly identical, as it refers 
to the rate at which the covariance function 
approaches the sill.  Figure 1 compares the three 
covariance functions [4, 5, 6].   

 
Figure 1. Comparison of covariance functions 

 
The nugget effect is defined as the vertical jump from 
0 at the origin to the variogram value at extremely 
small distances [4].  An example using only the 
spherical covariance function and assuming no nugget 
effect will be provided in this paper.   

The likelihood of the multivariate normal 
distribution can be written as  

            
)()`(

2
1

2/12/

1

||2
1)(

µXµX −∑−− −

∑
= exf

pπ
  

where p  is the number of variates,  

( )
ccnn xxxx …… 21111 1

'=x  and ikx is the 
(i, k)th observation; i = 1, …, c where c is the number 
of clusters and k = 1, …, ni where ni is the total 
number of observations in the ith cluster [2].  The mean 
vector is ( )cµµµµ …… 211'=µ  where iµ is 
the mean from each cluster with in µ ’s for each 
cluster; i = 1, …, c.  The variance-covariance 
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matrix,∑ , is given by ic ∑⊗Ι=∑  where 

12 1

22

2

1 ( ) ( )

1 ( )

1

( )

i

i

n

n
i i

i jk

sph d sph d

sph d

sph d

σ

σ

 
 
 ∑ =  
 
  
 =  

"

"

% # .        (4) 

In the variance-covariance matrix i∑ is symmetric,  

jkd  = spatial distance from jx to kx  

and
3

2( ) 1 1.5 0.5jk jk
jk i

d d
sph d

a a
σ

    
 = − +        

 where 

2
iσ = sill (for cluster i) = variance of the independent 

observations and a  = range.  Also, note that since jkd  
is the spatial distance between jx  and kx , sph( jkd ) = 
sph( kjd ) because jk kjd d= [4].     

Extending the likelihood to v variates, each 
observation would be ijkx and 

( )
ccvnn xxxx ……… 21111111 1

'=x  

( )ijkx= ; i = 1, …, c where c is the number of clusters, 
j = 1, …, v where v is the number of variates and k = 1, 
…, in where in  is the number of observations in the 
ith cluster.  The mean vector is 

( )cvµµµµ ……… 211111' =µ ( )ijµ= ; 
with in  µ ’s for each variate of each cluster.  The 
variance-covariance matrix becomes 

*
c i∑ = Ι ⊗∑ where 

11 12 1

21 22 2*
'

1 2

i i i v

i i i v
i ijj

iv iv ivv

∑ ∑ ∑ 
 ∑ ∑ ∑   ∑ = = ∑  
 ∑ ∑ ∑  

"
"

# % #
"

.   

'ijj∑ (when 'jj = ) = i∑ from before, but will differ for 
each i.  'ijj∑  (when 'jj ≠ ) will be of the same form as 
Equation (4).  However, there will be a sill value from 
the first variate, 2

jσ  and one from the second 

variate, 2
'jσ .  Therefore, in order to ensure 'ijj∑  is 

positive definite the sill of the cross-covariance matrix 

can be no larger than 2 2
'j jσ σ .   Similarly, there will be 

two different range values for each variate as well, 

say ja and 'ja .  The range used in computing 'ijj∑  can 

be no larger than 'j ja a .   
Also, it will be assumed that observations in different 
clusters are independent even though they may be next 
to each other spatially.  If this assumption is not made, 
all the variance-covariance matrices would not change 
as clusters changed and the spatial structure would not 
add anything to the likelihood.     
 
3. Optimal number of clusters 
 

For determining the optimal number of clusters an 
improvement over plotting the likelihood against the 
number of clusters would be to use Akaike’s 
Information Criteria (AIC) [10].  This criterion also 
uses the likelihood computed using a covariance 
function, while penalizing for the number of 
parameters being estimated.  It is given by: 
        AIC = ( ){ } kxL 2|ˆ,ˆlog2 +∑− µ  

where k is the number of parameters and ˆˆ( , | )L xµ Σ is 
the estimated likelihood given the data.  For each 
cluster there will be three parameters to estimate; sill, 
range, and mean (assuming no nugget effect).  
Therefore, a penalty will be imposed for having more 
clusters, i.e. more parameters to estimate.  Thus, 
smaller AIC values are better.  The AIC will be used 
as one of our deciding factors to determine the 
appropriate number of clusters for the data.  A 
penalization for having a large number of clusters is 
important and is not taken into account when just 
looking at the likelihood.  Thus, both the likelihood 
and AIC values will be given in the examples, but the 
decisions will be made based solely on the AIC 
values.  Although the goal of this paper is to cluster 
using multivariate data, our example will illustrate the 
univariate case which can be extended to the 
multivariate case as shown.      
     
4. Example 1 
 

The data for this example has been simulated to 
have no nugget effect, a sill value of 1, and a range of 
20.  A 10×10 grid was generated and the center 6×6 
grid of the data was used.  The smallest number of 
clusters results when all the data falls into just one 
cluster, and the largest number of clusters occurs when 
each point is its own cluster.  Therefore, the largest 
number of clusters for this data set was 36.  Figures 2, 
3, 4, and 5 show which clusters the points fall in when 
there are one, two, three, and four clusters 
respectively. 
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20.78 19.84 18.88 34.56 32.62 33.01
20.85 16.77 33.98 33.96 34.09 34.29
18.88 34.66 33.37 33.19 35.13 33.02
37.33 33.57 34.65 33.79 31.21 18.11
34.13 34.49 34.06 32.6 19.43 17.82
35.43 34.00 33.88 17.63 18.4 17.96

Figure 2. Data values as one cluster 
 

A A A B B B 
A A B B B B 
A B B B B B 
B B B B B A 
B B B B A A 
B B B A A A 

Figure 3. Data in two clusters 
 

A A A B B B 
A A B B B B 
A B B B B B 
B B B B B C 
B B B B C C 
B B B C C C 

Figure 4. Data in three clusters 
 

A A A B B B 
A A B B B B 
A B B B B B 
D B B B B C 
D B B B C C 
D B B C C C 

Figure 5. Data in four clusters 
 

Table 1 summarizes the AIC and likelihood values for 
a number of different cluster sizes. 

 
Table 1. Clustering results 

Number of Clusters Likelihood AIC 
1 5.34×10-49 228.3 
2 9.76×10-43 205.47 
3 9.91×10-43 211.43 
4 5.77×10-43 218.52 
33 3.28×10-47 352.07 
34 2.49×10-47 354.62 
35 1.90×10-47 357.16 
36 1.44×10-47 359.71 

 
Based on the results, the number of clusters with the 
highest likelihood value is three.  However, the 
number of clusters with the lowest AIC is two.  In this 

case, even though three clusters had the highest 
likelihood value, the penalty for adding another cluster 
is enough to result in two clusters being the best fit for 
the data.  Figures 6 and 7 show how the AIC and log-
likelihood values change as a function of the number 
of clusters.   

 
Figure 6. Plot of AIC values   

 
            Figure 7. Plot of log-likelihood values 
 
5. Example 2 
 

The following example used a subset of data (101 
measurements) from a 23-ha field in Kansas which 
consisted of 598 soil pH measurements obtained using 
Mobile Sensor Platform (Veris Technologies, Inc., 
Salina, Kansas, USA) [3].  The data layer used in this 
research was univariate (soil pH only).  No nugget 
effect was assumed when estimating the parameters of 
the variogram.  Therefore, only three parameters were 
estimated for each cluster; sill, range, and mean.   

If there is no idea of what the clustering 
arrangement of the data should be, hierarchical 
clustering methods would be used.  However, in this 
case experts not only used knowledge of the response 
variable, but other qualitative information as well.  
The clusters were assigned on the perceptions of what 
four individuals thought to be appropriate 
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management zones of the data in regards to pH and 
spatial location.  The data are shown below in Figure 
8.   

 

 
       Figure 8. Data values 

 
The data were broken into either three or four 

clusters with four illustrations of each.  The three 
cluster examples were compared and the best was 
chosen based upon the likelihood as well as the AIC.  
Then the four cluster examples were compared and the 
best was chosen based on the likelihood and AIC.  
Finally, all eight variations were compared to see 
which example performed the best, that is which had 
the largest likelihood and the smallest AIC.  The main 
goal was to see which example of the four would be 
better for each cluster size and then to determine 
whether three or four clusters would be more 
appropriate.  Figures 9, 10, 11, and 12 show the 
illustrated examples for three clusters. 

 

              
Figure 9. Variation 1       Figure 10. Variation 2 

 

      
Figure 11. Variation 3      Figure12. Variation 4 
 
Table 2 summarizes the results of the three cluster 
analysis.  
  

Table 2. Three cluster results 
Variation Likelihood AIC 

1 2.02×10-14 81.06 

2 1.01×10-18 100.87 
3 4.08×10-34 171.76 
4 3.56×10-17 93.75 

 
Figures 13, 14, 15, and 16 show the illustrated 
examples for four clusters.   
 

       
Figure 13. Variation 1      Figure 14. Variation 2 

 

       
Figure 15. Variation 3      Figure 16. Variation 4 
 
Table 3 summarizes the results of the four cluster 
analysis. 
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Table 3. Four cluster results 

Variation Likelihood AIC 
1 1.91×10-9 64.15 
2 7.51×10-14 84.44 
3 3.40×10-4 37.98 
4 1.59×10-16 94.76 

 
6. Summary and future work 
 

Looking at Example 1, it can be seen that two 
clusters performed the best.  The likelihood was 
9.76×10-43 and the AIC was 205.47.  Although the 
likelihood of 9.91×10-43 for three clusters was larger, 
due to the penalty of adding a cluster the AIC value of 
211.43 was also larger.  Thus, choosing two clusters is 
optimal. 

When looking at the results from Example 2 and 
comparing the variations of three clusters, variation 1 
had the largest likelihood, 2.02×10-14 and the smallest 
AIC, 81.06.  When grouping the observations into four 
clusters, variation 3 performed the best.  The 
likelihood was 3.40×10-4 and the AIC was 37.98.  
When determining whether three or four clusters 
would be more appropriate for the data, it appeared 
that four clusters was better.  The likelihood computed 
with four clusters (3.40×10-4) was larger than the 
likelihood for three clusters (2.02×10-14).  Also, the 
AIC was smaller; 37.98 compared to 81.06.  Overall, 
variation 3 using four clusters best suited the data. 

This paper only looks at the AIC as a possible 
way to assign a penalty for having a large number of 
clusters.  Other information criteria will be explored, 
including Schwartz’s Bayesian Information Criterion 
(SBC) which provides a larger penalty for more 
clusters [11]. 

We have shown how to determine which 
clustering variation is more appropriate based on the 
likelihood and AIC, while taking into account the 
spatial distribution of the observations.  However, only 
the univariate case was considered in this paper.  
Therefore, the next step is to extend this work to the 
multivariate case.  When looking at the multivariate 
case the spatial relationship between clusters of 
different variates must be taken into consideration.  
Once this is incorporated into the likelihood, the same 
approach as described in this paper may be taken.   

After incorporating more than one variate into the 
likelihood, the ultimate goal will be to automate this 
process.  The hopes are that a user can input the data 
and the program will systematically find the best 
possible clustering for the data.        

     

7. References 
 
[1] D.E. Johnson, Applied Multivariate Methods for Data 
Analysis, Brooks/Cole Publishing Company, Pacific Grove, 
CA, 1998 
 
[2] R.A. Johnson and D.W. Wichern, Applied Multivariate 
Statistical Analysis, Prentice-Hall, Inc., Upper Saddle River, 
NJ, 2002 
 
[3] V.I. Adamchuk, D.B. Marx, A.T. Kerby, A.K. Samal, 
L.K. Soh, R.B. Ferguson, and C.S. Wortmann, Guided Soil 
Sampling for Enhanced Analysis of Georeferenced Sensor-
Based Data, Geocomputation Conference, 2007 
 
[4] E.H. Isaaks and R.M. Srivastava, An Introduction to 
Applied Geostatistics, Oxford University Press, Inc., New 
York, NY, 1989 
 
[5] O. Schabenberger and C.A. Gotway, Spatial Methods: 
for Spatial Data Analysis, Chapman & Hall/CRC Press, 
New York, NY, 2005 
 
[6] N. Cressie, Statistics for Spatial Data, John Wiley & 
Sons, Inc., New York, NY, 1991 
 
[7] J.A. Hartigan, Clustering Algorithms, John Wiley & 
Sons, Inc., New York, NY, 1975 
 
[8] B. Everitt, Cluster Analysis, Heinemann Educational 
Books Ltd., London, 1974 
 
[9] L. Kaufman and P.J. Rousseeuw, Finding Groups in 
Data An Introduction to Cluster Analysis, John Wiley & 
Sons, Inc., New York, NY, 1990 
 
[10] H. Akaike, “A New Look at the Statistical Model 
Identification”, IEEE Transaction on Automatic Control, AC 
19, 1974, 716-723 
 
[11] G. Schwarz, “Estimating the Dimensions of a Model”, 
Annals of Statistics, 6, 1978, 461-464 
 
[12] R. T. Ng and J. Han, Efficient and Effective Clustering 
Methods for Spatial Data Mining, Proceedings of the 20th 
VLDB Conference, Santiago, Chile, 1994 
 
[13] J. Cuzick and R. Edwards, “Spatial Clustering for 
Inhomogeneous Populations”, Journal of the Royal 
Statsitical Society, Series B (Methodological), Vol. 52, No. 
1, 1990, 73-104 
 
[14] G. C. Simbahan and A. Dobermann, “An algorithm for 
spatially constrained classification of categorical and 
continuous soil properties”, Geoderma, Vol. 136, Issues 3-4, 
2006, 504-523 

642

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on March 12,2010 at 16:26:19 EST from IEEE Xplore.  Restrictions apply. 


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1-1-2007

	Spatial Clustering Using the Likelihood Function
	April Kerby
	David Marx
	Ashok Samal
	Viacheslav Adamchuk


