University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Faculty Publications, Department of Mathematics

Mathematics, Department of

1920

A Set of Completely Independent Postulates for the Linear Order \mathbf{n}^{\star}

M. G. Gaba University of Nebraska - Lincoln

Follow this and additional works at: https://digitalcommons.unl.edu/mathfacpub

Part of the Mathematics Commons

Gaba, M. G., "A Set of Completely Independent Postulates for the Linear Order η^* " (1920). *Faculty Publications, Department of Mathematics*. 24. https://digitalcommons.unl.edu/mathfacpub/24

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

158

POSTULATES FOR LINEAR ORDER.

[Jan.,

A SET OF COMPLETELY INDEPENDENT POS-TULATES FOR THE LINEAR ORDER η^* .

BY PROFESSOR M. G. GABA.

(Read before the American Mathematical Society September 4, 1919.)

PROFESSOR E. V. HUNTINGTON has published[†] three sets of completely independent postulates for serial order. His set A involves four postulates, which is as high a number of postulates as had been proved completely independent. In the present paper are given seven postulates which form a categorical and completely independent set for the linear order.

Our basis is a class of elements [p] and an undefined dyadic relation (called 'less than') among the elements. If we are given two elements p_1p_2 and if the relation p_1 less than p_2 holds, we will symbolize it by $p_1 < p_2$. If the relation p_1 less than p_2 does not hold, we will symbolize it by $p_1 < p_2$.

Our postulates are:

- I. If $p_1 < p_2$, then $p_2 < p_1$.
- II. If $p_1 \ll p_2$, then $p_2 \lt p_1$; p_1 , p_2 distinct.
- III. If $p_1 < p_2$ and $p_2 < p_3$, then $p_1 < p_3$.
- IV. If $p_1 < p_2$, then there exists a p_3 such that $p_1 < p_3$ and $p_3 < p_2$.
- V. For every p_1 there exists a p_2 such that $p_2 < p_1$.

VI. For every p_1 there exists a p_2 such that $p_1 < p_2$.

VII. The class of elements [p] form a denumerable set.

That the set is categorical follows from the fact that the seven postulates stated are the necessary and sufficient conditions for the linear order η . To show complete independence it will be necessary to cite 128 (2⁷) examples showing all possible combinations ($\pm \pm \pm \pm \pm \pm \pm \pm$) of our postulates holding and not holding. This is done by giving eight definitions of <, and sixteen sets of points such that each definition is applicable to every one of the sets, and every combination

^{*} The linear order η is an ordered set equivalent to that of all the rational numbers.

^{† &}quot;Sets of completely independent postulates for serial order." This BULLETIN, March, 1917. This paper contains a bibliography of complete independence.

--- -- --- ----

of definition of < and set yields a different example. The eight definitions give the eight $(\pm\pm\pm)$ groups of cases for the implicational postulates I, II and III, whereas each of the sixteen sets gives all the eight cases where any particular set $(\pm\pm\pm\pm)$ of the existential postulates IV, V, VI and VII hold or do not hold.

For the independence examples, the set [p] consists of points on a line such that

IV V VI VII				
1)	p = -3,	$-2 \leq p \leq 2$,	p = 3	and p real.
2) +	p = -3,	$-2 \leq p \leq 2$	p=3	and p rational.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p = -3,	$-2 \leq p < 3$	-	and p real.
4) + +	p = -3,	$-2 \leq p < 3$		and p rational.
5) - +	•	-3	p = 3	and p real.
6) - + - +		$-3 ,$	$\dot{p} = 3$	and p rational.
7) - + + -	-3	$2 \leq p < 3$	•	and p real.
8) - + + + + + 9) +	-3			and p rational.
9) +	• •••	$-3 \leq p \leq 3$		and p real.
10) + +		$-3 \leq p \leq 3$		and p rational.
11) + - + -		$-3 \leq p < 3$,		and p real.
12) + - + +		$-3 \leq p < 3$		and p rational.
13) + +		$-3 ,$		and p real.
14) + + - +		$-3 ,$		and p rational.
15) + + + -		-3		and p real.
16) + + + +		$-3 ,$		and p rational.
		с · р • • •,		r - with the second

A definition of < requires that whenever we are given two numbers of our set p_1p_2 we have a criterion whereby we can tell whether the relation $p_1 < p_2$ holds or does not hold. In all the eight definitions of < the relation holds for any pair of numbers p_1p_2 if it holds in the case of ordinary linear order,

	I	II	ш	
1')	-			except $0 \leq 1, -1 \leq -2, 0 \leq -1$ and $0 \leq -2$.
2'	-		+	except $1 < -1$, $1 < 0$, $0 < -1$, $p_1 < -1$, $p_1 < 0$, $p_1 < 1$,
-				$-1 \leq p_2, 0 \leq p_2$ and $1 \leq p_2; p_1 \neq -1, 0, 1; p_2 \neq -1,$
				0, 1.
3′)		+		except $0 < -m/2^n$, n positive integer and m odd positive
				integer.
4')	-	+	+	except $p_1 < -1$, $p_1 < 0$, $p_1 < 1$, $-1 < p_2$, $0 < p_2$, and
				$1 < p_2; p_1 \neq 3; p_2 \neq -1, 0, 1.$
				and $p_2 - p_1 < 1/3$.
6')	+	-	+	and $p_2 - p_1 = m/2^n$, n positive integer and m odd integer.
7')	+	+		except $0 < -m/2^n$ and $-m/2^n < 0$, n positive integer and
				m odd positive integer.
8')	+	+	+	with no exceptions.
n	•	:11	•••	note. The independence exemple where postulater
To illustrate: The independence example where postulates				
II III V and VII hold and negtulated I IV and VI do not				

II, III, V, and VII hold and postulates I, IV and VI do not hold (-++-+-+) is definition 4' used on set 6.

UNIVERSITY OF NEBRASKA.