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Abstract

The requirements for biodosimetric techniques used at long times after exposure, i.e., 6 months to more than 50 years, are unique compared
to the requirements for methods used for immediate dose estimation. In addition to the fundamental requirement that the assay measures
a physical or biologic change that is proportional to the energy absorbed, the signal must be highly stable over time to enable reasonably
precise determinations of the absorbed dose decades later. The primary uses of these biodosimetric methods have been to support long-term
health risk (epidemiologic) studies or to support compensation (damage) claims. For these reasons, the methods must be capable of estimating
individual doses, rather than group mean doses. Even when individual dose estimates can be obtained, inter-individual variability remains as
one of the most difficult problems in using biodosimetry measurements to rigorously quantify individual exposures. Other important criteria for
biodosimetry methods include obtaining samples with minimal invasiveness, low detection limits, and high precision. Cost and other practical
limitations generally prohibit biodosimetry measurements on a large enough sample to replace analytical dose reconstruction in epidemiologic
investigations. However, these measurements can be extremely valuable as a means to corroborate analytical or model-based dose estimates,
to help reduce uncertainty in individual doses estimated by other methods and techniques, and to assess bias in dose reconstruction models.
There has been extensive use of three biodosimetric techniques in irradiated populations: EPR (using tooth enamel), FISH (using blood
lymphocytes), and GPA (also using blood); these methods have been supplemented with luminescent methods applied to building materials
and artifacts. A large number of investigations have used biodosimetric methods many years after external and, to a lesser extent, internal
exposure to reconstruct doses received from accidents, from occupational exposures, from environmental releases of radioactive materials, and
from medical exposures. In most applications, the intent has been to either identify highly exposed persons or confirmed suspected exposures.
Improvements in methodology, however, have led many investigators to attempt quantification of whole-body doses received, or in a few
instances, to estimate organ doses. There will be a continued need for new and improved biodosimetric techniques not only to assist in future
epidemiologic investigations but to help evaluate the long-term consequences following nuclear accidents or events of radiologic terrorism.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Retrospective dosimetry is the set of methods for estimating
radiation doses that have been received in the past. The type of
dosimetric quantity estimated (e.g., air kerma, organ absorbed
dose, effective dose, etc.), how specific the dose estimate is to
an identifiable person, and the obtainable precision of the esti-
mates can vary widely depending on the purposes of the dose
estimation and the techniques used. Various available assays are
discussed in this paper and for any particular case the choice of
the most appropriate technique to employ will depend on sev-
eral factors. Possibly the most important factor is the elapsed
time between exposure and analysis because the quality of the
data obtained depreciates differentially among the various
assays.

In the context of national security needs, the BiodosEPR-
2006 conference created two consensus committees, this com-
mittee to evaluate methods of retrospective dosimetry suitable
for estimating radiation doses at long times after exposure, and
a second committee to evaluate methods in the very near term
after exposure. As a means of distinguishing the charges of
these committees, we have defined “long times after exposure”
to be 6 months at a minimum, but it can extend to many years.
Experience, thus far, has been limited to about 50 years. More-
over, this committee has focused its analysis on methods of
biodosimetry, which, as commonly understood, are methods of
measurement of biological samples that are used to estimate
doses without resorting to the detection of ionizing radiation.
An exception has been made to include, within the scope of the
discussion, the luminescence techniques (thermoluminescence,
TL, and optically stimulated luminescence, OSL) that are ap-
plied primarily to building materials and artifacts to measure
cumulative external dose. These techniques provide comple-
mentary dosimetry data for dose reconstruction studies. How-
ever, OSL has been applied to tooth enamel and this type of
application is more closely related to the biodosimetric meth-
ods discussed in this paper.

Other measurement techniques used for the purpose of ret-
rospective dosimetry involve the detection of ionizing radia-
tion: they include (1) Bioassay methods, in which biological
samples (e.g., urine and feces) are measured; (2) ex vivo meth-
ods, in which the ionizing radiation emitted by various parts of
the body (e.g., thyroid) is detected; and (3) physical methods,
in which environmental, non-human, samples are measured.
Those methods of retrospective dosimetry are not discussed in
this paper.

Dosimetric methods to estimate radiation exposures that have
taken place in the past can be classified into theory-based
methods (i.e., analytical dosimetry) in which models are ex-
tensively used to relate the dose to the source of exposure, and
measurement-based methods where the individual dose is de-
rived from measurements in man or from a quantity closely
related to the dose. The choice of a method is largely deter-
mined by the circumstances of the exposure including the type
of radiation and the degree of exposure, how long ago the ex-
posure took place, and the type, quality, and amount of relevant
input or measurement data that are available. In addition, it is
frequently the case that both types of methods support each
other, that is, analytical methods use measurements for valida-
tion or calibration purposes, while measurement-based methods
require some analysis to infer the dose from the measurement.
In the context of national security needs, i.e., preparing and
responding to accidents and terrorism events, both analytical
and measurement-based dosimetry methods will undoubtedly
be needed.

The need for biodosimetry stems from societal and technical
needs, and research initiatives including: (1) the estimation of
high doses resulting from past medical, occupational, and en-
vironmental exposures, (2) triage activities following radiation
accidents or terrorist events, and (3) research purposes (e.g.,
epidemiologic studies).

While medical triage of individuals exposed to poten-
tially life-threatening radiation doses is an obvious use of
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retrospective dosimetry, methods suitable for “times shortly
after exposure” will fulfill that function. Biodosimetry at long
times after exposure is typically used for very different pur-
poses, two primary uses are to support long-term health risk
(epidemiologic) studies or to support individual or group com-
pensation claims. At a minimum, epidemiologic studies require
hundreds of study subjects to achieve the necessary statistical
power, and thousands of study subjects is not unusual. Bio-
dosimetry measurements, in theory, could replace analytical
dose estimates in epidemiologic studies, though, typically, it
is not possible to acquire enough biologic samples or too ex-
pensive to make enough measurements to completely replace
model-based dose estimates. For that reason, biodosimetric
measurements seem likely to continue to play supportive
roles in epidemiologic studies, though technical advances may
change that outlook. Biodosimetry also has the potential to
be used to evaluate the presence of bias in model-based dose
estimates, even to the point of possibly suggesting bias correc-
tion factors. Such a function, however, has not yet been widely
applied.

This committee has attempted to consider a wide range of
expertise and literature related to retrospective dosimetry to
evaluate the presently available biodosimetry methods in the
context of dose estimation at long times after exposure. From
that evaluation, a consensus viewpoint of this committee is pre-
sented on the usefulness of the presently available techniques,
as well as the future needs.

2. Methods

Presented here are brief descriptions of the four methods of
retrospective biodosimetery considered in this report: electron
paramagnetic resonance (EPR), cytogenetics (FISH), somatic
cell assays (GPA), and thermal and optically stimulated lumi-
nescence (TL/OSL).

2.1. Electron paramagnetic resonance

Electron paramagnetic resonance (EPR; also known as
electron spin resonance or ESR) spectrometry is a physical
method capable of measuring the concentration of stable
radiation-induced radicals in materials. EPR measurements of
exposed samples can be used for retrospective assessment of the
absorbed dose and are referred to as EPR dosimetry. An intro-
duction to the method and a survey of applications can be found
in Ikeya (1993). The mineral component of bones and teeth
(hydroxyapatite, Ca10(PO4)6(OH)2) is a suitable probe for use
in EPR dosimetry and for reconstruction of individual dose.
Following radiation exposure, stable CO−

2 radicals are created
out of the CO3 impurities in the hydroxyapatite crystals (Moens
et al., 1993). Tooth enamel as a radiation detector has been
known for almost four decades (Brady et al., 1968). It is the
best tissue for dosimetry because no other tissue in the body has
such a high content of the hydroxyapatite (94–97%) (Driessens,
1980).

The application of the EPR technique to the problem of ret-
rospective dosimetry has certain valuable properties:

• Detected EPR signal results only from radiation exposure.
• Dose response is extremely stable with time, more than 106

years (Swartz, 1985; Skinner et al., 2000).
• Dose dependence in the dose range of interest is linear (up

to 100 Gy).
• Readout of signal is non-destructive, allowing for measure-

ments to be repeated an unlimited number of times.
• Little individual variation of radiation sensitivity (Wieser

et al., 2001), which allows a universal calibration for dose
determination.

• Tooth enamel as a dosimeter is sensitive to all types of ioniz-
ing radiation and UV, though it has relatively low sensitivity
to neutrons.

An evident weakness of the method is that the measurement
is currently performed ex vivo, i.e., on extracted or exfoliated
teeth. Consequently, only individuals who have lost teeth as
result of dental disease can be investigated by EPR dose re-
construction. In vivo measurement methods are being devel-
oped, but improvements are still needed (Miyake et al., 2000;
Zdravkova et al., 2003; Swartz et al., 2005). Not all types of
teeth are suitable for EPR dose measurement to the same de-
gree. For example, front teeth can show an overestimated dose
due to the exposure to sunlight (Liidja et al., 1996; Ivannikov
et al., 1997; Nakamura et al., 1998a, b; Sholom et al., 1998;
Nilsson et al., 2001; El-Faramawy, 2005); diseased or restored
parts of teeth present confounding factors (Sholom et al., 2000)
and are usually rejected; teeth with enamel mass smaller than
about 50 mg can be inadequate for reliable dose assessment
and require special procedures (Hayes et al., 2000). If dose of
exposed children has to be measured, naturally lost milk teeth
can be used (El-Faramawy and Wieser, 2006).

An EPR dose measurement protocol consists of several pri-
mary steps (Romanyukha and Regulla, 1996). In particular,
sample collection, classification and selection are important
steps in the dose reconstruction process and require careful
planning. As much information as possible about personal data
(residence, birth date), medical and occupational exposure, and
dental restorations, should be collected. Sample preparation for
EPR measurements starts by isolating enamel (the hard outer
shell of the tooth) from the dentine which comprises the inner
bulk of the tooth tissue. This can be done through chemical
or/and mechanical procedures.

Dose estimates are derived from the measurements of the
EPR radiation-induced signal intensity (or its peak-to-peak am-
plitude) using a calibration in radiation absorbed dose units.
The necessary instrumentation, e.g., the EPR spectrometer and
sample preparation tools, is expensive and requires well-trained
and skilled operators. The applicability of the method presently
is consequently limited to a small number of expert laborato-
ries.

Due to the long signal stability, the tooth maintains a cu-
mulative memory of every exposure that occurred during the
individual’s life. Hence, the dose of a single accidental event
has to be extracted from the lifetime-accumulated dose through
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subtraction of other dose contributions, such as natural back-
ground, occupational, or medical exposures. These other dose
contributions have to be estimated by independent methods,
e.g., the natural background exposure can be evaluated by the
dose rate in the region of residence and the tooth age and medi-
cal or occupational radiation exposures may be estimated by an
interview of the tooth donor about his/her radiation history. If it
is known that bone seeking radionuclides like 90Sr were incor-
porated in teeth tissues to a significant extent, an independent
measurement of the concentration of 90Sr in teeth needs to be
carried out in order to determine the relative contributions from
external exposures and internal contamination (Romanyukha
et al., 2001; Veronese et al., 2006). Göksu et al. (2002a, b) and
Shishkina et al. (2005) have shown that the 90Sr concentration
in dental tissue can be measured using passive beta detectors;
a good correlation with the measured EPR values was obtained
in their experiments.

While the EPR method measures the dose absorbed in tooth
enamel, the conversion from tooth dose to effective or organ
dose is determined mathematically by simulation of the ra-
diation transport in the body, taking the exposure conditions
into account (Takahashi et al., 2002; Ulanovsky et al., 2006).
Knowledge of how the EPR signal depends on the radiation
type and energy is required. This has been widely investigated
for photons and neutrons (Bochvar et al., 1997; Aldrich and
Pass, 1988; Aragno et al., 2000; Wieser et al., 2002; Fattibene
et al., 2003; Ivannikov et al., 2004; Trompier et al., 2004). It
should also be noted that additional irradiation of tooth enamel
may be caused by beta particles emitted by radionuclides in-
corporated into soft tissues of mouth. This factor should be ac-
counted for to achieve correct interpretation of EPR dosimetry
estimates (Stepanenko et al., 2003).

There are possibilities for improvement of EPR dosimetry
technology which could allow dose measurements to be made
in vivo using L-band (1 GHz). It has been also suggested to use
very small amounts of tooth enamel (∼ 2 mg) for the measure-
ments in Q-band (34 GHz) (Romanyukha et al., 2004). Recent
experiments have shown that the dose threshold in Q-band can
be as low as 200 mGy for a 2-mg sample. It is quite possible
that in the near future EPR spectrometers with higher sensitivity
will use smaller sample mass and make measurements faster.

2.2. Cytogenetics

The lymphocyte dicentric assay is the traditional cytoge-
netic method for biological dosimetry, though it has long been
realized that the signal is transitory (Bender et al., 1988). The
dicentric’s persistence is a function of the rate that the exposed
person replaces her or his phytohaemagglutinin-responsive
T-lymphocytes and, inevitably, there are individual variations
related to factors such as age, infections, hemorrhage, lifestyle,
and the magnitude of the exposure itself. Nevertheless, for
persons irradiated to levels below the range that would impair
haematopoiesis, an exponential disappearance of dicentrics
from the peripheral circulating pool occurs. A “rule of thumb”
for the rate of decrease is a half-time of approximately 3 years

(IAEA, 2001). Some cases that have been followed up have
supported that value (e.g., Lloyd et al., 1998) but, especially
where high doses have been received, a more rapid decline in
dicentrics has been reported (Pressl et al., 2000; Sevan’kaev et
al., 2005). Therefore, in general, the dicentric assay is not ap-
propriate for retrospective dosimetry at long times after expo-
sure. For applications of the dicentric assay which tends to be
used soon after exposure, but may also be used with corrections
for elapsed time, and which may be adapted for rapid response
triage, the reader is referred to the report of the BiodosEPR-
2006 Committee on Acute Dosimetry (Alexander et al., 2007).

Some chromosome aberrations, particularly translocations,
pass more readily through cell division and, therefore, persist
longer than dicentrics. Cells bearing translocations were ob-
served in descendant lymphocytes of originally irradiated stem
cells, as shown in the classic follow-up study of ankylosing
spondylitics (Buckton et al., 1967), which led to the designa-
tion of unstable (Cu) and stable cells (Cs), with much longer
persistence of the latter. However, identification of transloca-
tions required karyotyping, and before chromosome banding
was established, this was an impractical approach for biolog-
ical dosimetry. Until the development of fluorescence in situ
hybridization (FISH) with whole chromosome paints, the di-
centric was used for assessing dose in cases involving up to sev-
eral years after exposure or for protracted exposures. In those
cases, the 3 year approximation of the half-time provided cred-
ible dose estimates (Sevan’kaev et al., 1995).

Today the preferred translocation assay uses chromosome
painting in which multiple pairs of chromosomes are labeled,
often in multiple colors. Much effort has been expended to op-
timize protocols for employing chromosome painting as a ret-
rospective biodosimeter and defining its limits of applicability
(Edwards et al., 2005). Full karyotyping or banding by FISH
are still too expensive and time consuming for routine applica-
tion although these techniques markedly improve the detection
of chromosomal insertions and inversions, which can addition-
ally provide a “fingerprint” for exposure to high LET radiation
(Anderson et al., 2003; Hande et al., 2003).

Routinely, a limited number of the larger pairs of chromo-
somes are highlighted in one or a few colors and, depending on
the combinations, this provides efficiency in detecting translo-
cations (Johnson et al., 1999a, b; Moore and Tucker, 1999;
Jones et al., 2002). For example, 20% of the genome painted in
one color provide an efficiency of 32%, and two sets of three
chromosome pairs painted in different colors provides an ef-
ficiency of 56%. If it is required to compare or combine data
from different painting combinations, the formulae of Tucker
et al. (1997a, b) have been shown to give acceptable conver-
sions to full genome equivalence. It is agreed that centromeres
should be clearly visible to distinguish dicentrics from translo-
cations (Nakano et al., 1993); for this purpose, a specific pan-
centromere probe can be included if desired. However, such
probes label the pericentromeric heterochromatic DNA and not
the centromere itself, and their use may lead to the misdiagno-
sis of exchanges if rearrangements occur within the labeled re-
gion. For that reason, many investigators rely on chromosome
morphology for centromere identification.
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Experience has shown that to estimate low doses, as many
as 1000 whole genome equivalents should be scored for each
exposed person. Scoring of fewer cells may be sufficient for
evaluating high doses. The number of cells that should be scored
may also depend on the ages of the subjects and each person’s
smoking history, as both age and smoking are known to increase
the baseline frequency of translocations (Ramsey et al., 1995).

At least two key decisions are important in the analysis
of cells for chromosome aberrations. The first decision con-
cerns whether or not to score a particular cell. Criteria for the
inclusion of cells for analysis have been published (Tucker
et al., 1997a, b) and these criteria should be accepted prior to
reading the slides. At a minimum, the centromeres from all
the painted chromosomes should be present in the metaphase.
Some investigators use a more stringent criterion and include
in the analysis only those cells that contain all the chromoso-
mal material since there is evidence that missing material may
lead to abnormally high translocation yields when considering
low-induced frequencies near control levels (Edwards et al.,
2002). Investigators who elect to include all the abnormal cells
in their analysis (even if, for example, a terminal deletion is
present in one chromosome) do so out of concern that selec-
tive elimination of cells may lead to an underestimate of the
true dose, especially in situations where considerable time has
passed after the exposure. Under these conditions, many of the
cells will have undergone multiple mitoses following the initial
induction of aberrations, leading to loss of some material that
was initially associated with unstable aberrations. This brings
us to the second decision, which concerns determining which
aberrations best relate to retrospective radiation doses. Some
researchers record one- and two-way translocations separately,
because two-way translocations are known to be more stable
with time (e.g., Lindholm et al., 1998; Tucker et al., 2005a, b).
An approach used by other investigators is initially to record
every aberrant chromosome in every cell using an established
nomenclature system such as PAINT (Tucker et al., 1995) and
then, subsequently, use archived photographs to re-code the
cells into one-way and two-way translocations. The re-coding
required in this approach is typically accomplished by a second
experienced cytogeneticist. The recoding step also affords the
opportunity to perform quality control checking of all the cells.

Improvements in the resolution of molecular hybridizations
and the inclusion of telomere probes (Fomina et al., 2000) have
shown that many of the apparently one-way translocations are,
in reality, reciprocal. Hence, both types of translocations may
be utilized for dosimetric purposes. This observation is sup-
ported by an in vitro study on the persistence of translocations
(Tucker et al., 2005a, b). Early investigators recorded only those
aberrations that involved the painted chromosomes. However,
some investigators (e.g., Rodriguez et al., 2004) have also ex-
amined the counterstained chromosomes to distinguish stable
from unstable (Cs from Cu) cells using full genome informa-
tion. Realizing that lymphocytes sampled many years after ir-
radiation are derived from exposed stem cells, it is generally
only the stable daughter cells from the irradiated population
that have survived through subsequent divisions. In practice,
at long times (i.e., many years) after exposure, the frequency

of unstable (Cu) cells will have been reduced to near control
levels but, particularly for shorter time intervals, irradiated Cu
lymphocytes will also be among the scored cells. Those obser-
vations led to the suggestion that translocations in stable (Cs)
cells should be measured. When that was done, translocation
frequencies for an individual showed better constancy with in-
creasing time (Lindholm and Edwards, 2004).

High dose exposures tend to be recognized promptly due to
early clinical signs, and in those situations, the dicentric assay
is appropriate for dose estimation. However, late discovery of
an exposure, of perhaps a month, is not unusual, and by that
time, peripheral lymphocyte counts may have sharply declined
and dicentric persistence is questionable. An accident in Istan-
bul (IAEA, 2000) is an example where FISH painting was used
retrospectively after 1 month and showed that dicentrics under-
estimated the doses by possibly 25%. It is generally expected
that chromosome painting (FISH) is useful for retrospective
discrimination of exposures having taken place at more distant
times in the past and at relatively lower levels, i.e., well be-
low the threshold for overt clinical reactions. In such situations,
there are considerable constraints to its application due to two
factors, the accuracy with which the linear term of the dose
response calibration is known, and the control (background)
frequency of translocations. Currently those two factors are
probably the major limitations to the sensitivity of the FISH
method.

Calibration of the FISH method is made by in vitro irradiation
of blood samples with the assumption that their radiosensitivity
equates to stem cells of the daughter lymphocytes sampled from
the irradiated person. There are now a number of published
dose response curves, albeit not all confined to Cs cells. Few
data sets have well characterized the linear yield coefficients
because of the need for large numbers of cells to be scored
in the low dose range (< 0.5 Gy). There is now a consensus
view that reciprocal translocations and dicentrics are induced
with more-or-less equal frequency (Bauchinger et al., 1993;
Nakano et al., 1993) and so as an interim measure until better
calibration data are available, it has been suggested that one
may infer the low dose-induced translocation frequency from
the better characterized linear coefficient for dicentrics (Finnon
et al., 1995).

Because translocations persist, it is not surprising that their
background frequency rises with donor age as has been effec-
tively shown by Ramsey et al. (1995) and Whitehouse et al.
(2005). Therefore, when undertaking retrospective dosimetry, a
generic age-linked background must be assumed. Even allow-
ing for age, there is still additional variation in translocation
frequencies in unirradiated control subjects. Some of this vari-
ation is probably due to cigarette smoking but, to date, no other
confounding factor has been identified in any convincing way.

2.3. Somatic cell assays

Ionizing radiation can induce mutations in human somatic
cells and accumulation of somatic cell mutations in humans has
been linked to carcinogenesis. While several laboratory-based
assays have been developed to characterize mutations that have
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been linked to carcinogenesis, few of these assays have been
successfully translated into successful biodosimetry tools.

The glycophorin-A (GPA) somatic mutation assay method
was developed to provide a reliable and quick method to de-
tect and measure induced somatic cell mutations in humans
that were exposed to ionizing radiation. GPA was first applied
to the A-bomb survivors and found to be relatively well cor-
related with physically based dose estimates (Langlois et al.,
1987; Kyoizumi et al., 1996; Nakamura et al., 1991). Since that
time, it has been principally applied to populations exposed to
radiation from accidents (Straume et al., 1992; Jensen et al.,
1995; Bigbee et al., 1996, 1997; Jones et al., 2002). Because the
assay requires a small amount of blood and can be performed
relatively quickly, it was thought that GPA would be suitable
for identifying genotoxic exposures in large populations.

Glycophorin-A is a glycoprotein that is expressed on the cell
surface of red blood cells and it occurs in two allelic forms,
M and N. This somatic mutation assay uses a flow cytometric
technique in which the glycophorin-A protein is labeled with
fluorescent monoclonal antibodies that are specific for individ-
ual allelic forms. The assay measures variant frequencies in the
cell types and the variant frequencies serve as a quantitative in-
dicator of radiation dose; the higher the frequency, the higher
the cumulative radiation dose. Several comprehensive reviews
of the GPA assay and its application to radiation-exposed pop-
ulations are available (Nakamura et al., 1991; Albertini and
Hayes, 1997; ICRU, 2002).

The GPA assay has several practical advantages. Only 1 ml
of blood per subject is required. Blood collected from study
subjects can be stored at refrigerator temperature (4 ◦C) up
to 1 week prior to analysis making it useful in studies with
limited field conditions. The GPA assay can be performed on a
commercially available flow cytometer, reducing the amount of
labor and time, which makes it attractive for large population
studies.

A major limitation of the GPA technique is that only 50%
of the general population is M/N heterozygous and, therefore,
eligible for the assay. In a recent review of the usefulness of
the GPA assay as a biological dosimeter of cumulative radia-
tion exposure, the International Commission on Radiation Units
and Measurements (ICRU, 2002) concluded that the GPA as-
say is not suitable for individual dose assessment, because of
the inter-individual variability of variant frequencies at similar
doses, though the assay can be used to determine average doses
in population groups. Although the GPA assay has several prac-
tical advantages as a biological dosimeter, it does not appear to
be useful as a biological dosimeter for external radiation doses
less than 1 Gy. The assay may be useful in studies of popula-
tions exposed to higher radiation doses, especially when used
in combination with other biological markers to characterize
the level of radiation exposure.

2.4. Luminescence

The method of luminescence retrospective dosimetry is based
on the stimulated release of energy acquired and stored in the
dosimetric material during the irradiation phase. The energy is

released as visible light (luminescence). If the stimulation is
by absorption of heat, the process is thermoluminescence (TL),
and if the stimulation is by absorption of light, the process is
optically stimulated luminescence (OSL). Both TL and OSL
are members of a family of stimulated phenomena described in
full in various published texts (e.g., Oberhofer and Scharmann,
1981; Horowitz, 1983; McKeever et al., 1995; BZtter-Jensen
et al., 2003).

The energy is absorbed in the dosimetric material via the
processes of pair production, Compton scattering or the photo-
electric effect (depending upon the radiation type and energy),
resulting ultimately in ionization and the trapping of electrons
and electron holes at defect sites within the material. In this
way, energy is stored in the material proportional to the radia-
tion energy absorbed, i.e., proportional to the dose of radiation
delivered. Subsequent stimulation of the sample (via heat for
TL or light for OSL) leads to a luminescence signal, which, in
favorable circumstances, is proportional to the absorbed dose,
providing a means of dosimetry.

TL is widely applied to measure individual occupational
exposures, using high-sensitivity, artificially grown crystals.
For retrospective dosimetry, however, the choice is limited to
commonly used materials. Suitable dosimetric materials for
luminescence are generally any inorganic (or even organic) in-
sulator. For retrospective dosimetry, the main materials of inter-
est are naturally occurring minerals such as quartz and feldspar
within building materials (bricks, tiles), or other ceramic ob-
jects, such as glass, pottery, porcelain fixtures, etc. (ICRU,
2002; BZtter-Jensen et al., 2003; Young and Kerr, 2005). Suit-
able materials can also include semiconductor devices carried
as personal items (Göksu and Bailiff, 2006). Appropriate prepa-
ration of the materials is required; multiple- or single-aliquot
techniques have been variously used over the years to evalu-
ate the absorbed dose in these materials (BZtter-Jensen et al.,
2003). The dose evaluated is most accurately described as the
“beta dose equivalent”, which is the dose of beta irradiation
that gives the same TL or OSL signal as the signal due to the
natural or “accident” exposure by gamma radiation.

The beta dose equivalent (De) is equal to the natural dose
due to naturally occurring radioisotopes (primarily, uranium,
thorium and potassium) and cosmic rays absorbed over the life-
time of the object, plus the dose due to the accident. Evaluation
of the accident dose, therefore, requires a determination of the
natural dose rate and the age of the object. Thus, the accident
dose (Dx) is given by

Dx = De − t (D′
� + D′

� + D′
� + D′

c)

where t is the time since manufacture of the object, D′
�, D′

� and

D′
� are the dose rates from uranium, thorium and potassium

due to alpha, beta and gamma irradiation, and D′
c is the dose

rate due to cosmic radiation.
Whereas electron EPR is applied to determine the absorbed

dose in a biogenic mineral within humans (i.e., tooth enamel),
luminescence techniques are used to measure the absorbed
dose in artifacts (building materials, household materials, etc.)
associated with human occupation and activity. In these
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circumstances, the primary purpose of the luminescence
method is consequently not to infer the dose to individuals,
but to elucidate the dosimetry of the environment of the irradi-
ated population. In this way, luminescence data derived from
artifacts can contribute to the dose assessment of populations
or groups of individuals by providing benchmark values of
cumulative absorbed dose for computational modeling simula-
tions for dose reconstruction of the Hiroshima and Nagasaki
bombings and settlements contaminated by fallout or acci-
dental exposure to radiation sources (IAEA, 1998; Young and
Kerr, 2005; Cullings et al., 2006; Stepanenko et al., 2006b).

Where the method is applied to brick buildings facing con-
taminated ground, the cumulative dose in brick due to external
gamma radiation can be converted to dose in air for compari-
son with the data employed in the computational modeling re-
ferred to above. Such conversion (Bailiff et al., 2004a, b, 2005)
is usually based on Monte Carlo simulation of the transport of
gamma radiation emitted by radionuclides in soil and the de-
position of energy in the bricks that make up the walls. The
simulations allow coefficients to be derived that relate absorbed
dose in a specified volume of brick to dose in air at a reference
location, leading to the derivation of conversion factors. The
reference location, devised for computational modeling work,
is the dose in air at a height of 1 m above soil that is uniformly
contaminated with radionuclide sources. The simulations also
provide a means of adjusting the conversion factors for the ef-
fects of heterogeneous distribution of fallout in the vicinity of
the sampled building. So far, demonstration of this approach
has been performed for a source energy of 662 keV, but simu-
lations for other source energies have been performed (Bailiff
et al., 2005). The absorbed dose to luminescent minerals within
the sub-surface of a brick in a wall (at a height of 1 m and fac-
ing uniformly contaminated ground) is about half of the dose in
air at the reference location (i.e., similar to that expected on the
basis of irradiation geometry alone). This proportion changes
with depth in the wall due to the effect of attenuation and also
with elevation (ICRU, 2002). The adjustments for heterogene-
ity are based on either dose-rate monitoring in the field or on
the measurement of the residual source activity in soil. Where
the extant source activity cannot be detected, the uncertainty
in past source distribution needs to be assessed when trans-
lating absorbed dose values from wall to a reference location.
However, careful selection of multiple samples can be used
to test assumptions made concerning the source distribution
(Bougrov et al., 1998; Bailiff et al., 2004a, b). The geometry and
configuration of the sampled buildings and walls are very im-
portant for correct Monte Carlo calculations of the conversion
factors from absorbed dose in a specific volume of brick to
dose in air at a reference location. Hence, the careful docu-
mentation of geometry and configuration of sampling buildings
and locations is needed (Young and Kerr, 2005; Stepanenko
et al., 2006c).

The currently developed techniques are capable of deter-
mining cumulative absorbed doses from ∼ 10 mGy to tens
of Gy (i.e., well beyond the range of interest in epidemi-
ologic studies) using quartz extracted from modern bricks.
However, as indicated above, a dose due to gamma radiation

arising from the introduction of artificial sources is obtained
after subtraction of the dose due to natural sources. The re-
solving power of the method depends on the relative size of
each dose contribution. For example, in a 15 year-old brick
where the cumulative dose is 100 mGy and where half the
dose is due to natural background sources, the overall uncer-
tainty in the dose due to artificial sources is expected to be
about ±20%.

Because TL and OSL are most frequently applied to building
and non-biologic materials, they are usually not considered as
biodosimetry techniques. However, OSL can be applied to tooth
enamel (Godfrey-Smith and Pass, 1997; Yukihara et al., 2007).
In a broader context, however, TL and OSL can both supple-
ment analytical dosimetry estimates of individual or group dose
and for that reason are considered in this paper for discussion
and comparison.

2.5. Emerging biodosimetry techniques

There are several emerging biodosimetric techniques that are
based on previously known markers of exposure, e.g., stable
chromosome aberrations and stable radiation-induced radicals
in tooth enamel or stable radiation-induced defects in quartz
contained in building materials but measured with newer tech-
nologies. To take further advantage of these markers, new mea-
surement technologies are being developed for assessment of
stable-radiation induced radicals in tooth enamel, for in vivo
EPR measurements of tooth enamel using the L-band, and for
OSL of tooth enamel. In addition, there are some techniques
for determining the internal dose contribution to teeth. Each is
briefly described here.

2.5.1. In vivo EPR measurements in teeth using L-band
(1.2 GHz)

L-band EPR systems use a lower microwave frequency than
X-band. The lower frequency makes EPR measurements less
perturbed by high water content in a sample and allows the use
of larger samples, e.g., whole teeth. The first demonstration of
the capability to carry out in vivo EPR measurements in L-band
was reported in 2000. In spite of the existence of some com-
mercial models of L-band EPR spectrometers, in vivo measure-
ments of teeth introduce special design problems; for example,
resonators and a magnet system are needed that can comfort-
ably and effectively encompass the human head. In its current
state, the in vivo EPR dosimeter can measure doses only as low
as 1 Gy.

2.5.2. OSL of teeth and other materials
The OSL technique uses light to stimulate a radiation-

induced luminescence signal from materials previously ex-
posed to ionizing radiation. In general, this luminescence
originates from radiation-induced defects in insulating crystals
and is proportional to the absorbed dose of radiation. The OSL
technique has been successfully used for personnel dosimetry
using high-sensitivity, artificially grown crystals, and for sedi-
mentary dating using natural crystals. Godfrey-Smith and Pass
(1997) first suggested the possibility of using OSL with dental
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enamel. Recently, the detection limit of OSL and human tooth
enamel has been shown under laboratory conditions to be
4–6 Gy (Yukihara et al., 2007), though further improvements
in lowering the detection limit are expected.

2.5.3. Techniques for internal dose
Two new techniques have recently been developed to mea-

sure 90Sr in teeth that allow for the separation of external and in-
ternal dose contributions in total absorbed dose in tooth enamel.
One is based on the OSL measurements of an imaging phos-
phor plate that is attached to the tooth for several hours. This
procedure allows an accurate mapping of the distribution of
90Sr (or other radionuclides) in the teeth. This method can be
used as an individual indicator of radionuclide intake. Its ad-
vantages are its high sensitivity (0.02 Bq/g/mm2 of 90Sr), its
ability to examine small detectable cross-sectional areas of den-
tal tissue (dentin) contaminated with 90Sr (from 0.01 mm2), its
non-destructive aspect, and its simplicity of use. The combined
application of this method with EPR tooth biodosimetry can
provide more accurate dose estimates when there is both inter-
nal contamination and external dose. The second technique uses
a single grain OSL attachment system for assessing the spa-
tial distribution of radionuclides incorporated in human teeth.
Detectors containing arrays of single grains of alpha-Al2O3:C
powder, which can accommodate 100 single grains in 0.3 mm
holes, are positioned on a 10 × 10 grid. This system, however,
is less sensitive than the imaging plate and, therefore, requires
longer time for measurements.

3. Historical use of biodosimetry in dose reconstructions
and epidemiologic studies

Biodosimetry, as discussed, can contribute important, inde-
pendent estimates of cumulative radiation exposure in epidemi-
ologic studies for individuals and population groups, especially
in studies where physical dosimetry measurements are incom-
plete or lacking altogether or where the usefulness of analytical
dosimetry is limited by high uncertainty. The biological markers
that have been applied most frequently to irradiated populations
following environmental, occupational or medical ionizing ra-
diation exposure include the dicentric assay and the fluorescent
in situ hybridization (FISH) method for chromosome transloca-
tions, both using peripheral blood lymphocytes, glycophorin-A
somatic mutation assay (GPA) of red blood cells, and EPR of
tooth enamel. The application of specific biodosimeters in these
populations depends upon the level of exposure (high-dose vs.
low-dose), mode of exposure (acute vs. chronic), time since ex-
posure (recent vs. more distant past), type of radiation (e.g., X,
gamma, beta or neutron), sensitivity and specificity of the as-
say, laboratory requirements, and availability of blood or teeth.
Used less, but still relevant are measurements of TL or OSL in
building materials of residences and workplaces of the exposed
populations.

More than one dosimetry technique has been applied to
A-bomb survivors, Chernobyl clean-up workers, Techa River
residents, populations living near the Semipalatinsk nuclear
test site, and some radiation accident victims (Nakamura et al.,

1998b; Degteva et al., 2005; Sevan’kaev et al., 2006). Com-
binations of two biodosimeters (usually FISH and GPA) have
been applied to nuclear workers and radiation accident victims
with TL/OSL having been primarily applied to populations ex-
posed to radioactive fallout. The circumstances in which the
four biodosimetric techniques have been applied are summa-
rized in Table 1, along with dose estimates based on physical
measurements, biodosimetry, or both.

Each dosimetry technique has unique advantages and limita-
tions depending upon the level and type of radiation exposure.
In some cases, the techniques have been used exclusively for
dose reconstruction; in other cases, the techniques have been
used to support long-term health risk studies. Following is a
more detailed discussion of the published uses of each tech-
nique as applied to epidemiologic studies.

3.1. Use of EPR in epidemiologic studies

EPR dose reconstruction has been used to validate radiation
exposure models, specifically to predict doses from radiation
accidents or to determine environmental exposures. EPR dose
reconstruction has been used for epidemiologic studies of the
atomic bomb survivors (Nakamura et al., 1998a, b), Chernobyl
accident (Ishii et al., 1990; Chumak et al., 1999; Skvortsov
et al., 2000), Techa River population (Romanyukha et al., 1996,
2001; Degteva et al., 2005; Tikunov et al., 2006), Mayak nuclear
workers (Romanyukha et al., 2000; Wieser et al., 2006b), Lilo
accident victims (Cosset et al., 2002), Turkish accident victims
(Gunalp et al., 2002) and the Semipalatinsk population exposed
as a result of nuclear tests (Ivannikov et al., 2006; Stepanenko
et al., 2006c). In the framework of several projects from
all over the world, international intercomparison programs
on EPR tooth dosimetry have been carried out since 1993
(Bailiff and Stepanenko, 1996; Chumak et al., 1996; Wieser
et al., 1996, 2000, 2005, 2006a; Hoshi et al., 2006;
Ivannikov et al., 2007). EPR measurements of tooth enamel
have been recognized as a reliable method for retrospective
assessment of individual doses (IAEA, 2002; ICRU, 2002)
and comparisons of dose in tooth enamel with data from other
sources have been carried out (e.g., SOUL, 2005; Stepanenko
et al., 2006a).

As mentioned previously, the reconstruction of doses ob-
tained by both EPR and FISH for 100 survivors of the atomic
bombs was closely correlated with estimated radiation dose
(Nakamura et al., 1998b) and, thus, demonstrated the useful-
ness of EPR for acute exposures.

With regard to the Chernobyl accident, doses to several
thousand individuals were reconstructed by EPR including dif-
ferent groups of Ukrainians and Russians residing in radioac-
tively contaminated areas, as well as clean-up workers at the
Chernobyl site. The EPR reconstructed doses to individuals
exceeded doses estimated from background levels, e.g., up to
70 mGy for populations of some radioactively contaminated
villages (Stepanenko et al., 2003). EPR also revealed a mean
whole-body dose of 160 mGy for clean-up workers (Chumak
et al., 1999).
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The Techa River population was exposed to radioactive waste
released into the river during the early 1950s. EPR dose recon-
struction with teeth from Techa riverside residents revealed very
high doses (up to 15 Gy) absorbed in tooth enamel for individ-
uals born in 1945–1949 (Romanyukha et al., 2001), whereas
reconstructed doses for tooth donors born in other years were
a factor of 50 lower. The former observation can be explained
by the younger age of the donors born 1945–1949. Strontium-
90 (90Sr), which contributed about 12% of the radioactive re-
leases into the Techa River, accumulates in teeth and bone.
Therefore, individuals who had teeth formation during the ra-
dioactive releases (1945–1949) accumulated a much higher
amount of 90Sr than other exposed individuals in that popula-
tion. This finding suggests the ability of EPR dose reconstruc-
tion in teeth collected from donors of different ages to determine
both the doses and type of radionuclide intake (Romanyukha
et al., 2002a, b).

EPR dose reconstruction with teeth from Mayak nuclear
workers showed relatively good agreement between EPR de-
rived doses and individual dose monitoring (Romanyukha
et al., 2000), depending upon the type of badge and specific
plant at Mayak (Wieser et al., 2006b). The existence of reli-
able dosimetric information for Mayak nuclear workers made
the results of the independent EPR dose reconstruction study
valuable. It established an important bridge between doses
measured by individual dosimeters and dose reconstruction
estimates (Hoshi et al., 2006).

The Semipalatinsk population was exposed to radioactive
fallout as a result of nuclear tests (456 nuclear explosions in
the period between 1949 and 1989) (Mikhailov, 1996). EPR
measurements in teeth of inhabitants near the test site have
been underway for several years (Romanyukha et al., 2002a,b;
Ivannikov et al., 2006; Stepanenko et al., 2006c; Sholom et al.,
2007) in support of epidemiologic investigations and will addi-
tionally provide insights into the reliability of theoretical mod-
els for dose reconstruction (Stepanenko et al., 2006a).

3.2. Use of FISH in epidemiologic studies following
whole-body exposures

Whole-chromosome painting for radiation biological
dosimetry has been applied to many exposed populations.
Among these are the Japanese A-bomb survivors (Kodama
et al., 2001), Chernobyl liquidators (Salassidis et al., 1994;
Moore et al., 1997; Littlefield et al., 1998; Jones et al., 2002),
Sellafield British Nuclear Fuels workers (Tucker et al., 1997a, b;
Tawn et al., 2000, 2004), Mayak nuclear workers (Salassidis
et al., 1998; Bauchinger et al., 2001; Burak et al., 2001), res-
idents living near Techa River (Bauchinger et al., 1998) and
the Semipalatinsk test sites (Stephan et al., 2001; Salomaa
et al., 2002), residents of buildings contaminated with 60Co
in Taiwan (Chen et al., 2000), radiation accident victims in
Goiania (Straume et al., 1991; Natarajan et al., 1998;
Camparoto et al., 2003), astronauts (George et al., 2005), as well
as medical radiation workers (Verdorfer et al., 2001; Montoro
et al., 2005) and patients (Tawn and Whitehouse, 2003).

Several of these investigations are worth highlighting. In
the Sellafield workers, it was shown that chronic exposures
produced approximately six-fold fewer chromosome aberra-
tions per unit dose compared to the acute exposures received
by the A-bomb survivors (Tucker et al., 1997a, b). However,
these results do provide solid evidence for the accumulation of
translocations under conditions of chronic occupational expo-
sure, and also indicate that translocations persist for decades.
Chronic radiation exposure from internal irradiation from plu-
tonium in former Rocky Flats workers induced elevated rates of
stable chromosome aberrations indicating that FISH-based
chromosome analysis can be a reliable method for detecting
exposure to internal alpha irradiation (Livingston et al., 2006).
In contrast to numerous studies that report the persistence of
translocations over time following exposure to low LET ra-
diation, a recent study based on only 6 astronauts reported a
decrease in the frequency of translocations over 10–58 months
after spaceflight, which included exposure to high-LET radi-
ations (George et al., 2005). The investigators have suggested
that space radiation is sufficiently different than terrestrial ra-
diation that some cells with translocations may have become
unstable with time following traversal by a high-LET particle.

In a study of thyroid nodularity and cancer among Chernobyl
workers from Estonia (Inskip et al., 1997), nodularity showed
a non-significant positive association with the proportion of
lymphocytes with chromosome translocations. The mean docu-
mented population dose was 10.8 cGy, which was substantially
lower than expected (Littlefield et al., 1998). This result was
subsequently confirmed in an independent study (Jones et al.,
2002) which demonstrated the ability to detect a significant in-
crease in translocations as a result of radiation exposure in the
presence of two modifying factors, aging and cigarette smok-
ing. Providing dosimetry for such low doses is possible on
a population basis as many of these studies show, but it may
not be possible to obtain data with sufficient accuracy for
individual subjects.

The most notable feature in common among these studies
is that all involved retrospective biological dosimetry, which
was made possible, or significantly enhanced, by the analysis
of translocations identified by chromosome painting. These
papers as well as many others reporting on the use of FISH for
translocation analyses have made major contributions to our
understanding of the long-term risks of exposure to ionizing
radiation.

3.3. Use of GPA in epidemiologic studies

Past studies of the atomic bomb survivors have demonstrated
a linear relationship between estimated dose and variant cell
frequencies (GPA) following acute, high dose, whole-body
exposures (Langlois et al., 1987; Kyoizumi et al., 1996,
2005). Exposure to cesium-137 following the Goiania accident
revealed excellent linear correlation of GPA with dicentric
chromosome aberrations (Straume et al., 1991). In contrast
to these studies, exposure to radiation from the Chernobyl
accident for 625 Russian workers and 182 controls was not
associated with an increase in the GPA assay after adjustment
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Table 1
Characteristics of principal dose reconstruction and epidemiologic studies that have used retrospective biodosimetry, grouped by analytic method (EPR, FISH, GPA, TL/OSL) and circumstances of exposure
(accident, occupational, medical, and environmental)

Population Literature references Type of
exposurea

Type of
radiation

No. of subjects
studied

Dose, Gy
(mean, range)b

Time since
exposure (yr)

Comments

EPR: accidents
Atomic bomb
survivors: adult
health study

Nakamura et al. (1998b) Acute Gamma,
neutron

100 teeth < 0.005 to > 3 40 EPR signal intensity was well correlated with chromosome
aberration frequency (R = 0.87)

Chernobyl
liquidators

Chumak et al. (1999) Fractionated Gamma,
beta

> 300 0.035–2.220 < 10 Doses in excess of 100 mGy were reconstructed with
uncertainty ±40%

Lilo (Georgia)
accident victims

Cosset (2002), IAEA (2002) Protracted,
partial
body

137Cs, eight
other Cs
sources with
lower activ-
ity; 60Co,
226Ra

8 25–30, local
doses; 0.1–4.5
by EPR

< 4 Tooth enamel and bone used for EPR

Russian Navy and
Chernobyl victims

Sevan’kaev et al. (2005) Acute Beta/gamma,
neutron

34 0.1–10 10–40 Both persistent stable translocations and EPR spec-
troscopy signals are suitable with similar efficiencies
for retrospective biodosimetry after acute whole-body
exposure

EPR: occupational exposures
Mayak nuclear
workers

Romanyukha et al. (2000) Protracted Gamma,
plutonium

24 0.078–3.45 50 Two independent laboratories evaluated each tooth. Close
agreement between official film-badge and official doses
for workers after 1961; official doses were higher than EPR
doses for earlier workers, suggesting an overestimation of
dose for high dose exposed workers

Mayak nuclear
workers

Wieser et al. (2006b) Protracted Gamma,
plutonium

44 5.7 50 Differences in occupational lifetime dose estimates from
film badges and from teeth enamel depended on type of
film badge and plant. Radiochemical processing plant: dose
was0.57 Gy larger than estimated from EPR. Reactor and
isotope processing plants: average difference in doses was
−4 and 6 mGy, respectively

EPR: environmental exposures
Public living in
Bryansk areas
(Russia) exposed
to Chernobyl
contamination

Skvortsov et al. (2000) Protracted Gamma,
137Cs, 134Cs

2970 0.03 ± 0.01 to
0.22 ± 0.09

10–13 Large scale dosimetry investigation of population in order
to validate analytical methods of dose reconstruction in
support of epidemiological studies

Public near the
Semipalatinsk
Nuclear Test Site

Ivannikov et al. (2002) Protracted Gamma
(fallout),
90Sr, 137Cs,
239,240Pu

26 < 0.25 40 Increased dose values were significantly larger than those
obtained for a group of younger residents from heavily
exposed territories and residents not exposed to radioactive
fallout

Public near the
Semipalatinsk
Nuclear Test Site

Romanyukha et al. (2002a) Protracted Gamma
(fallout),
90Sr, 137Cs,
239,240Pu

9 (Kainar) 23
(Znamenka)

0.39 ± 0.070
0.095 ± 0.040

35 Long-term storage of teeth up to 35 yrs had no significant
effect on EPR dose reconstruction. Kainar teeth showed a
strong radiation-induced signal, and mean dose for Zna-
menka was consistent with background exposure for 50–65
yrs of age

Public near the
Semipalatinsk
Nuclear Test Site

Ivannikov et al. (2006) Protracted Gamma
(fallout)

39 From back-
ground to
0.44 ± 0.11

> 50 Dosimetry investigation of population in order to validate
analytical methods of individual dose reconstruction in sup-
port of epidemiological studies
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Table 1 Continued

Population Literature references Type of
exposurea

Type of
radiation

No. of subjects
studied

Dose, Gy
(mean, range)b

Time since
exposure (yr)

Comments

Public in nine
villages near the
Semipalatinsk
Nuclear Test Site

Sholom et al. (2007) Protracted Gamma
(fallout)

102 Mean values
(±1 SEM):
Bolshaya
Vladimirovka:
0.98 ± 0.22

> 50 Dosimetry investigation of population in support of epi-
demiological studies. Data presented are for lateral teeth

Dolon: 2.2
± 1.3
Kainar: 0.69
± 0.41
Kanonerka:
2.3 ± 1.7
Karaul: 1.3
± 0.28
Korosteli:
0.71 ± 0.18
Novopokrovka:
0.63 ± 0.17
Sarzhal: 1.6
± 0.86
Semipalatinsk:
0.25 ± 0.20

Public near the
Semipalatinsk
Nuclear Test Site

Stepanenko et al. (2006a) Protracted Gamma
(fallout)

16 0.14 ± 0.039,
Mean value,
Dolon village,
Kazakhstan

> 50 Intercomparison of EPR method with analytical calcu-
lations. Comparison of EPR dosimetry data with calcu-
lated dose in the air provide the value of “shielding and
behavior” dose reduction factor for inhabitants in Dolon to
be 0.28 ± 0.068

Public exposed
to Techa River,
(Urals, Russia)
contamination

Romanyukha et al. (2001) Protracted,
internal

Gamma,
90Sr, 137Cs

35 0.1 ± 0.08 to
15.0 ± 1.0

50 No dependence of dose in tooth enamel on distance from
site of release for residents downstream from Muslyumovo
who received internal exposures from consumption of Techa
River water. Residents born 1946–1949 have high doses
detected in enamel of teeth due to permanent teeth in
developmental stages

FISH: accidents
Atomic bomb
survivors: adult
health study

Kodama et al. (2001) Acute Gamma,
neutron

3042 < 0.005 to > 3
0.9, Hiroshima
0.83, Nagasaki

23–45 A highly significant and non-linear dose response with a
modest degree of upward curvature for dose up to 1.5 Gy,
with some leveling off at higher doses. Dose response
significantly steeper in Hiroshima than Nagasaki. Type of
shielding modified the dose response

Chernobyl
liquidators

Littlefield et al. (1998) Fractionated Gamma,
beta

118 0.10 9 No correlation between translocation frequencies and
recorded measurements of physical doses. Translocation
frequency was lower in exposed workers compared to
controls

Chernobyl
liquidators

Moore and Tucker (1999) Fractionated Gamma,
beta

192 0.25
(0.02–2.7)

5–10 Increased frequency of stable chromosome aberrations is a
significant qualitative biodosimeter

Chernobyl
liquidators

Jones et al. (2002) Fractionated Gamma,
beta

341 0.09 6–13 Radiation exposure at Chernobyl was a statistically signif-
icant factor for translocation frequency

Chernobyl reactor
crew

Sevan’kaev et al. (2005) Acute Gamma,
beta

10 1.0–10.0 10–13 Good agreement for those victims with dose estimates up to
3 Gy. Translocation frequencies were lower than expected
between 3 and 10 Gy
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Goiania accident
victims

Straume et al. (1991) Protracted Gamma and
beta from
137Cs source

3 0–7 1 Intercomparison of FISH and GPA. Dose estimation based
on translocations underestimate doses at time of accident

Goiania accident
victims

Natarajan et al. (1998) Protracted Gamma and
beta from
137Cs source

24 0.1–0.9 5–8 Translocation frequencies were lower than dicentric fre-
quencies, especially at > 1 Gy. Multiple samples collected
per subject over time

Goiania accident
victims

Camparoto et al. (2003) Acute Gamma and
beta from
137Cs source

10 0.3–1.9 10 Increase in translocations only for exposures < 0.5 Gy,
whereas doses > 0.5 Gy are underestimated by transloca-
tion frequency

Industrial accident
victims

Sevan’kaev et al. (2002) Fractionated Gamma
from 192Ir
source

3 1.0–3.0 0.1–1.0 Intercomparison of physics calculations, the levels of blood
neutrophils, ESR and FISH; all showed good agreement

Russian Navy Sevan’kaev et al. (2004) Acute Gamma,
beta, neutron

24 0.1–4.0 16–40 Intercomparison of FISH, ESR and early blood counts.
Good correlation between translocation frequencies and
recorded measurements of physical doses

FISH: medical exposures
Cancer patients Tawn and Whitehouse (2003) Fractionated,

partial
body

X-ray,
gamma

8 40–80 5 G-banding; persistent increase in translocations over time

FISH: occupational exposures
Astronauts George et al. (2005) Protracted Space

radiation,
high-LET

6 Not given Pre-flight and
5 to 58 months
post-flight

Frequency of total exchanges (mainly translocations) de-
creased after flight to pre-flight baseline levels for 5 of 6
subjects

Interventional
radiologists

Montoro et al. (2005) Scattered,
non-
uniform

X-rays 9 0.069 ± 0.025 8–28 Doses estimated by translocations were 4-times larger than
the physical (badge) doses

Mayak nuclear
workers

Salassidis et al. (1998) Protracted,
internal

Gamma,
plutonium

75 0.02–9.91 Gy
gamma and
0.26–18.5 kBq-
plutonium

35–40 Translocation frequencies showed a significant dependence
on gamma doses. Plutonium uptake had no substantial influ-
ence on translocation frequency. Individual dose estimates
based on FISH were lower than registered doses

Mayak nuclear
workers

Burak et al. (2001) Protracted,
internal

Gamma,
plutonium

27 0–8.5 gamma;
0–16.65 kBq
plutonium

35–40 Translocation frequencies were related to gamma but not
plutonium doses. Stable aberration frequency increased
0.7% per Gy

Mayak nuclear
workers

Bauchinger et al. (2001) Protracted,
internal

Gamma,
plutonium,
neutron

69 0.012–6.1 40 Translocation frequencies were highly variable among
individuals and were lower than predicted by in vitro cal-
ibration curves, especially at the higher dose levels

Medical radiation
workers

Verdorfer et al. (2001) Scattered,
non-
uniform

X-rays 56 (30
radiology, 6
physicists, 20
nuclear
medicine)

< 0.015 Sv 6–12 Incidence of aberrations (mostly translocations) in individ-
uals working in radiology did not differ from control sub-
jects. Broad inter-individual variation of aberrations

Sellafield nuclear
workers

Tucker (1997b) Protracted Gamma 81 �0.050 (n =
23), 0.17–1.1
(n = 58)

45 Significant positive dose response with mean stable aber-
ration frequency. Slope for dose response for stable aber-
rations is 0.79 ± 0.22 aberrations per 100 cells per Gy

Sellafield nuclear
workers

Tawn et al. (2000) Protracted Gamma 61 > 0.50 45 G-banding: significant positive dose response for stable
chromosome aberrations. Parallel analysis to Tucker et al.
(1997a)

Sellafield nuclear
workers

Tawn et al. (2004) Protracted Gamma 295 retired
workers

< 0.050
(n = 95),
0.050–0.499
(n = 108),
> 0.5 (n = 91)

45 External dose and age were significantly associated with
translocation frequency, but no effect for smoking status.
Slope = 0.017 translocations per cell per year of age (p =
0.024), and 1.11 translocations per cell per Sv
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Table 1 Continued

Population Literature references Type of
exposurea

Type of radi-
ation

No. of subjects
studied

Dose, Gy
(mean, range)b

Time since ex-
posure (yr)

Comments

Sellafield nuclear
workers

Tawn et al. (2006) Protracted Plutonium,
internal,
external

34 retired
workers

0.556
(0.04–1.4)
internal; 0.156
(0.6–0.55)
external

20 Simple translocation frequency = 17.6 ± 1.96 × 103 per
genome equivalent. Significantly increased compared to
unirradiated control group and group with
similar gamma ray external exposure. Cytogenetic
analysis can contribute to validation of internal
plutonium

Rocky flats
workers

Livingston et al. (2006) Protracted Plutonium,
internal,
external

30 High dose
group: 0.28 Sv
external
(0.010.0.73)+
0.168 Sv
internal
(0.029–20.9);

10–50 Frequency of total translocations was correlated with
internal, but not external, dose

17 Low dose
group:
0.022 Sv
external
(0.010.0.076)+
0.0 internal

FISH: environmental exposures
Istanbul, Turkey
accident victims

Gunalp et al. (2002), IAEA (2002) Protracted,
partial
body

Gamma
from 60C0
source

5 2.7–3.9 1–2 ARS in 10 adults; dose estimates by translocations were
20% higher than those by dicentrics

Public in Marshall
Islands

Lisco and Conard (1967) Protracted Gamma
(fallout)

43 1.75 (n = 30),
0.7 (n = 13)

10 Exchange type chromosome aberrations were found only
in exposed persons and not controls (classical cytogenetics)

Public near the
Semipalatinsk
Nuclear Test Site

Stephan et al. (2001) Protracted,
internal

Gamma
(fallout),
90Sr, 137Cs,
239,240Pu

10 3 50 Translocation frequency of subjects irradiated in childhood
did not differ from controls. Calculated physical doses are
too high

Public near the
Semipalatinsk
Nuclear Test Site

Salomaa et al. (2002) Protracted,
internal

Gamma
(fallout),
90Sr, 137Cs,
239,240Pu

59 < 0.5 50 Translocation frequencies in exposed (both older and
younger generation) did not differ from controls. These
data do not confirm previous physically reconstructed ef-
fective doses of > 1 up to 4.5 Gy

Public near the
Semipalatinsk
Nuclear Test Site

Chaizhunusova et al. (2006) Protracted,
internal

Gamma
(fallout),
90Sr, 137Cs,
239,240Pu

10 (Dolon) 5
(Chekoman)

0.18 Not de-
tectable

50 Translocations were 1.6±0.2 for whole genome equivalent
for Dolon and 0.6 ± 0.18 for Chekoman, consistent with
greater radiation exposure in Dolon

Public in Taiwan
exposed to 60Co
in building
materials

Chen et al. (2000) Protracted Gamma
from 60Co
source

56 0.19–3.4 16 Translocation frequency was 5-times higher in exposed
residents ofcontaminated buildings compared to
controls

Public in Taiwan
exposed to 60Co in
building

Hsieh et al. (2001) Protracted Gamma
from 60Co

10 0.052–0.990 3–7 Good correlation between physical measurement-based and
doses estimated from translocations

Public exposed
to Techa River,
(Urals, Russia)
contamination

Bauchinger et al. (1998) Protracted,
internal

Gamma,
90Sr, 137Cs

73 0.4 40 Significantly elevated mean frequency of translocations in
study group compared to controls, yielding a collective
dose estimate of 0.24 Gy
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GPA: accidents
Atomic bomb
survivors: life
span study

Langlois et al. (1987) Acute Gamma,
neutron

43 0.14–8.8 40 Significant positive association of heterozygous (but not
homozygous) variant frequencies (VFs) with dose; mini-
mum detectable dose was 0.24 Gy

Atomic bomb
survivors: life
span study

Kyoizumi et al. (1996) Acute Gamma,
neutron

1226 �0.01 40 Mutant frequency increased with age at testing and no.
of cigarettes smoked. The minimum dose for detecting a
significant increase in mutant frequency was 0.24 Sv (95%
CI: 0.041–0.51)

Atomic bomb
survivors: life
span study

Kyoizumi et al. (2005) Acute Gamma,
neutron

1723 �0.004 40–50 Steeper dose response for cancer vs. cancer-free patients
in Hiroshima; no difference in Nagasaki

Chernobyl
liquidators

Bigbee et al. (1996) Fractionated Gamma,
beta

453 0.011 Estonia 9 No significant differences in frequency of VFs in three
groups compared with controls. Average dose for all 782
workers was 0.04–0.08 Gy based on GPA assay

281 0.096 Latvia
48 0.16 Lithuania

Chernobyl
liquidators

Moore and Tucker (1997) Fractionated Gamma,
beta

192 0.09 5–10 GPA variant cells did not differ between exposed and con-
trol population, adjusted for age and smoking

Chernobyl
liquidators

Jones et al. (2002) Fractionated Gamma,
beta

370 0.09–0.20 6–13 Radiation exposure did not affect GPA variant frequencies

Goiania accident
victims

Straume et al. (1991) Protracted Gamma and
beta from
137Cs source

5 0–7 1 Excellent linear correlation between GPA and dicentrics

GPA: occupational exposures
Hospital radiation
workers and nu-
clear power plant
workers

Ha et al. (2002) Protracted Gamma,
X-ray

32 (hospital),
144 (power
plant)

0.0092(0–0.068)
(hospital),
0.021 (0–0.12)
(power plant)

1–20 Significant dose responses found

Sellafield nuclear
workers

Tucker et al. (1997b) Protracted Gamma 27 0.0088–0.867 45 No significant increase in VFs with dose

Sellafield nuclear
workers

Tawn et al. (2003) Protracted Gamma 151 0.16 (0–0.50) 45 GPA is insufficiently sensitive to be used for low-dose
chronic exposure

110 1.6 (0.53–5.0) 45 No correlation with dose
32 7.4

(5.00–16.56)
45

GPA: environmental exposures
Public near the
Semipalatinsk
nuclear test site

Lindholm et al. (2004) Protracted Gamma
(fallout)

113 0.2–1.0 43–50 VFs (]N) slightly elevated in exposed subjects compared to
controls living in a non-contaminated area, but no increase
in NN variant frequencies

GPA: medical exposures
Medical patients
administered
Thorotrast

Akiyama et al. (1995) Protracted Alpha, inter-
nal

21 Not given 45–50 VFs not increased with increasing internal dose from
thorium

TL and OSL: environmental exposures
Atomic bomb
exposures

Ichikawa et al. (1996) Acute Gamma,
neutron

NAc > 20 Samples from Hiroshima and Nagasaki

Atomic bomb
exposures

Ichikawa et al. (1987) Acute Gamma,
neutron

NA > 40 Samples from Hiroshima from five buildings located at
distances between 1.27 and 1.46 km from the hypocenter

Atomic bomb
exposures

Nagatomo et al. (1988) Acute Gamma,
neutron

NA > 40 Samples from Hiroshima from five buildings located at
distances between 1.27 and 2.05 km from the hypocenter

Atomic bomb
exposures

Hoshi et al. (1989) Acute Gamma,
neutron

NA > 45 Samples from Hiroshima from five buildings located at
distances between 1.91 and 2.05 km from the hypocenter
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Population Literature references Type of
exposurea

Type of
radiation

No. of subjects
studied

Dose, Gy (mean,
range)b

Time since ex-
posure (yr)

Comments

Atomic bomb
exposures

Nagatomo et al. (1991) Acute Gamma,
neutron

NA 0.1 (ceramic
samples)

> 40 Discrepancy between measurements from Hiroshima and DS86
doses (later resolved, see Young and Kerr, 2005)

Public in Bryansk
areas (Russia)
exposed to
Chernobyl
contamination

Bailiff et al. (2005) Protracted Gamma,137Cs,
134Cs

NA 0.051 ± 0.019 to
0.179 ± 0.033

12–13 Dose to quartz in brick, converted to dose in air at reference
location. Methodology developed to evaluate cumulative absorbed
dose in brick of less than 20 mGy

Public exposed
to Chernobyl
contamination

Bailiff et al. (2004a) Protracted Gamma NA 0.140 ± 0.005 to
0.85 ± 0.04

15 Dose to quartz in brick, converted to dose in air at reference
location. Comparison of luminescence and modeling estimates of
dose in two highly contaminated settlements

Public exposed to
Nevada Test Site
fallout

Haskell et al. (1994) Protracted Gamma
(fallout)

NA 0.038 ± 0.15 > 35 Dose to quartz crystals in bricks. Independent measurement of
fallout radiation doses to selected communities in Utah

Public near the
Semipalatinsk
Nuclear Test Site

Bailiff et al. (2004b) Protracted Gamma
(fallout)

NA 0.182 ± 0.038
(Dolon)

> 50 Dose to quartz crystals in bricks, converted to dose in air at
reference location. Samples include former church in Dolon village.
Interlaboratory comparison yielded agreement within ±10%

Public near the
Semipalatinsk
Nuclear Test Site

Göksu et al. (2006) Protracted Gamma
(fallout)

NA 0.204 ± 0.038 > 50 Dose to quartz crystals in bricks. Samples from buildings in Dolon
village. Part of international intercomparison of TL/OSL. No sys-
tematic difference found between TL and OSL, 4 labs from dif-
ferent countries found to be within ±10%

Public near the
Semipalatinsk
Nuclear Test Site

Gordeev et al. (2006) Protracted Gamma
(fallout)

NA 0.48–1.4
(Dolon), 0.24
(Kanonerka)

> 50 Intercomparison of various methods

Public near the
Semipalatinsk
Nuclear Test Site

Sato et al. (2006) Protracted Gamma
(fallout)

NA 0.249 ± 0.045 > 50 Dose to quartz crystals in bricks from former churches and school
in Dolon village. Part of international intercomparison (5 labs)

Public near the
Semipalatinsk
Nuclear Test Site

Stepanenko et al. (2006c) Protracted Gamma
(fallout)

NA 0.460 ± 0.092 > 50 Dose to air recalculated from measurements in bricks from build-
ings in Dolon village. Dose in air estimated by luminescence data
comparable with analytical calculations of dose in air: 0.460 ±
0.092 Gy (luminescence) vs. 0.645 ± 0.070 Gy (calculation)

Public near the
Semipalatinsk
Nuclear Test Site

Takada et al. (1999) Protracted Gamma
(fallout)

NA Background to
1.0

> 50 Estimates in Semipalatinsk very high compared with the previously
reported values based on military data

Public exposed
to Techa River,
(Urals, Russia)
contamination

Göksu et al. (2002a) Protracted Gamma
(137Cs
release)

NA 0.15–0.2 > 50 Interlaboratory comparison of determinations of dose to quartz in
brick from the lower Techa river valley settlement of Muslymovo
(4 labs). Agreement within ±21%

Public exposed
to Techa River,
(Urals, Russia)
contamination

Tarenenko et al. (2003) Protracted Gamma
(137Cs
release)

NA ∼ 3.4 Gy > 50 Dose to quartz in brick, using luminescence techniques, converted
to dose in air and compared with modeling estimates of dose for
a building in the upper Techa riverside settlement of Metlino

Tammiku, Estonia
accident victims

IAEA (1998) Protracted Gamma
(137Cs
source)

NA 0.1–25 > 2 Use of luminescence to determine the absorbed dose to ceramics
taken from various locations in an occupied house to identify
probable storage (∼ 1 month) location of a stolen 137Cs source
(2 ± 0.4 TBq)

aAssume external whole-body exposure unless otherwise noted.
bNA is not applicable.
cDoses are based on physical measurements, biodosimetry or both.
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for smoking and age (Moore et al., 1997; Jones et al., 2002). The
GPA assay was also applied to 734 Chernobyl clean-up work-
ers and 51 controls from the Baltic countries to validate dose
records for the workers based on prior physical measurements
(median dose, 9.5 cGy). Again, no differences in variant fre-
quencies of GPA between exposed and non-exposed clean-up
workers were detected, most likely due to the low doses of radi-
ation received by the workers (Bigbee et al., 1996). To evaluate
the utility of GPA as a biodosimeter of radiation doses accu-
mulated over a long period of time, the GPA assay was applied
to 36 radiation workers at the Sellafield Nuclear Facility who
had received > 50 mGy cumulative dose based on previously
recorded doses. No correlation was evident between variant
frequency measured by GPA and radiation dose (Tucker et al.,
1997b; Tawn et al., 2003). GPA ]N variant frequencies, but
not NN Vf , were only slightly elevated among the population
living near the Semipalatinsk nuclear test site, but were not sig-
nificantly greater compared with matched controls living in a
non-contaminated area (Lindholm et al., 2004). These results
suggested that the GPA assay was not a reliable predictor of
moderate or low-dose radiation exposure accumulated over a
long period of time. Moreover, Lindholm et al. (2004) point out
that the long-term stability and persistence of radiation-induced
GPA erythrocyte variants is unclear (Lindholm et al., 2004).
A significant dose response of variant frequencies related to
cumulative dose among hospital workers was noted in one
study, but the results were likely influenced by a few persons
with high cumulative doses (Ha et al., 2002).

3.4. Use of TL/OSL in epidemiologic studies

TL and OSL have been used in a limited number of epidemi-
ologic studies including many of the major dose reconstruc-
tions carried out to date, e.g., for A-bomb survivors (Young and
Kerr, 2005; Ichikawa et al., 1996, 1987; Nagatomo et al., 1988,
1991; Hoshi et al., 1989), Nevada test site exposures (Haskell
et al., 1994), for the Chernobyl accident (Stepanenko et al.,
2003; Bailiff et al., 2004a, 2005) and more recently, for Semi-
palatinsk nuclear test site exposures (Bailiff et al., 2004b;
Stepanenko et al., 2006a–c. Göksu et al., 2006; Sato et al.,
2006; Simon et al., 2005; Takada et al., 1999). In all cases,
building materials were evaluated for TL or OSL signals.

An international intercomparison of retrospective TL/OSL
dosimetry, performed in 2006 using four brick samples
collected from three buildings in Dolon village (Kazakhstan),
located in the vicinity of the Semipalatinsk nuclear test site
(Sato et al., 2006; Stepanenko et al., 2006a, c; Simon et al.,
2005; Göksu et al., 2006), obtained results that were in good
agreement among the six participating labs (Hoshi et al., 2006).

At the time of this report, there are no published reports on
the application of TL or OSL to biologic samples as part of an
epidemiologic study.

4. Summary and conclusions

This committee has evaluated the primary methods of bio-
dosimetry that have been used in retrospective dose estimation

over the last two decades, though no pretense is made that
every technique has been considered. Historically, FISH has
been the most widely applied biodosimetry technique in epi-
demiologic studies and results of those investigations provide
evidence that dose-related translocations persist for decades. At
the molecular level, free radical interactions may cause DNA
lesions, a proportion of which fail to repair or mis-repair. These
rearrangements can be visualized at the cellular level as
chromosomal aberrations. Such alterations, particularly, the
so-called stable types (translocations that can pass unimpeded
through cell divisions), are recognized to be a very early step in
the processes leading to cancer. As FISH is particularly suited
to the detection of persisting translocations, this method has
been widely applied as a retrospective biodosimetry technique
in epidemiological studies, and is considered the most relevant
metric of carcinogenesis of any of the methods discussed.
Despite these strengths, rates of translocations are known to
vary significantly among individuals, to vary with increas-
ing age and possibly with other exogenous conditions, e.g.,
smoking or exposure to environmental mutagens. This vari-
ation suggests, as numerous authors have, that FISH is most
amenable to estimating group average dose. FISH is also a very
expensive technique, and cost is almost always a limiting fac-
tor in applying it. EPR tooth dosimetry has been successfully
used to validate dose models of acute and chronic radiation
exposure and in some cases, to estimate individual doses. Be-
cause the EPR signal is generally stable with time (though it
can be confounded by UV radiation and medical exposure)
and because inter-individual variability is relatively low, it re-
mains as possibly the strongest technique for individual dose
assessment. Until recently, one great disadvantage of EPR
was the necessity of obtaining extracted teeth. The promise of
an in vivo measurement capability with a detection limit low
enough to be of value in epidemiologic studies (say 0.1 Gy)
makes EPR a more attractive technique in the future. Somatic
cell assays, e.g., GPA, have been correlated with physically
based radiation dose following high-dose, acute exposures,
but not low-dose, chronic exposures. A major limitation of the
GPA technique is that only 50% of the general population is
eligible for that assay. Another limitation for GPA (as well as
for FISH) is the inter-individual variability. As explained, both
of these techniques can be used to estimate the level of past ra-
diation exposure to a population, whereas EPR can potentially
provide individual dose estimates of past exposure. TL and
OSL, as noted earlier, may be considered as a biodosimetry
technique if applied to tooth enamel or bones. When used as a
complementary method with building materials and artifacts, it
has the advantage that biological variability is not present. It is
important to note that when applied to such materials its pur-
pose is not related to an assessment of the dose to individuals.
However, when applied to buildings in settlements, determi-
nations of cumulative gamma dose in air can be used to pro-
vide benchmark values in calculations to reconstruct doses to
populations.

The focus of this discussion on EPR, FISH, GPA and
TL/OSL agrees with the evaluation of ICRU (2002) that these
four techniques are the most suitable ones for time periods



964 S.L. Simon et al. / Radiation Measurements 42 (2007) 948–971

greater than a few months after exposure and that other
measurement-based methods presently available are primar-
ily suitable for short times after exposure (ICRU, Table 6.1).
ICRU also considered the laboratory effort required per mea-
surement as measured in person-days per analysis. It con-
cluded that GPA required the least time (∼ 0.2 person-day
per measurement), EPR considerably more (∼ 1 person-day
per measurement) and similar, but longer times for lumi-
nescence and FISH analyses (2–2.5 person-days per mea-
surement). These estimates have not likely changed to any
great extent since that publication, though the number of
samples that can be analyzed per unit time (throughput) in
any specific laboratory can vary considerably depending on
organization of the laboratory and whether strategies have
been implemented for preparation steps of many samples in
parallel.

Table 2 is provided as a means to summarize these and other
characteristics of the techniques considered here. Several points
can be concluded from the information presented there. For
example, the minimum detectable dose for EPR (∼ 0.03 Gy)

and TL/OSL (∼ 0.01 Gy, using building materials, not tooth
enamel) are roughly comparable, with GPA and FISH being
about one order of magnitude, or more, greater (∼ 0.3.0.5 Gy
for FISH). The range of minimum detectable dose for FISH is
based on in vitro dose–response curves and available data on
unexposed subjects leading to estimates of ∼ 0.3 Gy for per-
sons less than 40 years of age to 0.5 Gy for individuals from
40 to 50 years of age (Pressl et al., 2000; Moquet et al., 2000;
Edwards, 2000). Although there is considerable uncertainty
in the estimation of individual doses by the FISH technique,
cytogenetic dosimetry can potentially be improved for groups
of subjects and with the scoring of more cells. Thus, it may
be possible to detect doses as low as 0.18–0.25 Gy (Edwards,
1997; Darroudi and Natarajan, 2000).

The four techniques (FISH, EPR, TL/OSL) appear to have
stable signals for many decades making them potentially use-
ful at long times after exposure. At this time, laboratory costs
differ considerably with FISH generally the most expensive
on a per sample basis, though the equipment needed for EPR
and TL/OSL is probably greater when considered as an initial
investment. Sensitivity (detection limits), ability to estimate
doses to individuals as opposed to groups, low cost to imple-
ment, and resistance to confounding factors are four important
determinants of the usefulness of biodosimetric techniques.
Certainly, any new techniques that are developed need to
address these needs.

One capability that is not yet well developed is for biodosi-
metric techniques to quantify internal exposures to radionu-
clides. There have been some possibilities demonstrated, but
not all with equal success or development. For example, it may
be possible to discern 90Sr exposure using a photostimulable
phosphor imaging detector (Romanyukha et al., 2002b) and
dose to bone marrow from internal plutonium exposure using
mFISH (Hande et al., 2003) has been demonstrated. In addi-
tion, FISH has been shown to work well for a limited number
of incorporated radionuclides e.g., for 137Cs, where it was used
following the Goiania accident (Camparoto et al., 2003) and for

tritiated water, where it was used 6 and 11 years after an indus-
trial accident (Lloyd et al., 1998). In both of those cases, the
body received generally uniform exposure due to the tendency
of those specific nuclides to distribute themselves uniformly. In
general, however, the methods amenable to evaluating the often
more common and sometimes more important historical expo-
sures, e.g., ingestion or inhalation or short-lived radioiodines or
most other fission products, do not exist. The need to evaluate
past internal doses transcends needs of epidemiologic studies
as there are also national defense needs for such techniques, as
well as the need to provide information in radiation exposure
litigation.

Epidemiologic studies of radiation related cancer usually
focus on the cancer risk for specific organs or tissues of the
body, except those designed as mortality studies or studies of
overall cancer incidence, usually focus on the cancer risk for
specific organs or tissues of the body. To quantify the risk to a
specific organ, relatively precise doses estimates to that organ
are needed for all individuals in the cohort and there should
be minimal bias in estimated dose with exposure status. As
discussed here, the three most useful retrospective dosimetry
techniques, i.e., FISH, EPR, and OSL/TL, all have one lim-
itation in common, that is, none truly estimate the radiation
absorbed dose to all the tissues/organs of interest and in some
cases, do not estimate the actual dose to any organ. Hence,
none of these techniques completely satisfy the requirements
of epidemiologic investigations to estimate the absorbed dose
to all organs of interest. Presently available techniques should
be viewed as indicators of a particular metric of radiation
exposure or dose, but one that usually requires refinement
for use in epidemiologic studies. New techniques that may
be developed will hopefully address some of the present
weaknesses.

Of the techniques considered, FISH may best reflect the dose
as averaged over the body, while EPR reflects, without any ar-
gument, absorbed dose in tooth enamel. Both methods likely re-
quire that techniques of analytical dosimetry (i.e., model-based
methods) be used to estimate dose to the organ(s) of interest.
Hence, the precision of the measurement may be of consider-
ably less importance than imagined because extrapolation to
other body organs is necessary and that can introduce large
uncertainty.

It seems clear that biodosimetry has and should continue
to play an important role in long-term health risk studies as
well as any circumstances where dose estimation is needed at
long times after exposure. Uncertainty of analytical dose esti-
mation has been widely recognized (Hoffman et al., 1997) and
generally attributed to lack of knowledge about individual ex-
posure conditions, simplistic assumptions necessary to model
radiation transport and environmental transfer and, often, the
lack of appropriate model input data or the questionable rele-
vance of available data. The clear and obvious value of biodosi-
metric techniques, at least in the immediate future, is to help
reduce uncertainty in retrospective dose estimation obtained by
analytical or model-based estimations. This reduction in uncer-
tainty can either be a result of individual biodosimetric mea-
surements replacing analytical dose estimations or by the use
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Table 2
Characteristics of selected biological and physical dosimetry methods useful for retrospective dose assessment and epidemiologic studies of irradiated populationsa

Characteristic Method

Electron paramagnetic resonance
(EPR)

Cytogenetic analysis (FISH) Glycophorin-A mutation assay
(GPA)

Luminescence (TL/OSL)

Radiation type Gamma, X-rays, beta Gamma, X-rays, neutrons Gamma Gamma, X-rays, beta
Minimum detectable dose ∼ 0.03 Gy 0.3–0.5 Gy depending on age and

other factors
∼ 0.1.0.2 Gy, most useful at �1 Gy ∼ 0.01 Gy for TL and OSL in build-

ing materials, 4–6 Gy for OSL in
teeth

Time limitation Up to several decades after exposure,
cumulative

Up to several decades after exposure,
cumulative

Up to several decades after exposure,
cumulative

Up to many decades after exposure

Individual dose assessment Yes Yes, but inter-individual variation
may be high

Yes, but inter-individual variation is
high

Indirectly only (when using building
materials), Yes, for teeth

Modifiers of dose response UV exposure Age and tobacco smoke None Contamination of retrospective signal
with natural radioactivity

Application to irradiated populations
(whole-body exposures)

A-bomb survivors, radiation
workers, Chernobyl clean-up
workers, residents near nuclear test
sites and
nuclear facilities, Naval crew

A-bomb survivors, accident victims,
Chernobyl clean-up workers, radia-
tion workers, residents near nuclear
test sites and nuclear facilities, med-
ical radiation workers, medical pa-
tients, industrial accidents, Naval and
air crew

A-bomb survivors, radiation workers,
Chernobyl clean-up workers, hospital
workers, residents near nuclear test
sites

Relevant for locations exposed to
fallout or atmospheric deposition,
exposures from accidents, etc.

Primary use Validate radiation exposure models
and determine individual cumulative
radiation dose

Provide evidence of past radiation
exposure level on a population basis

Provide evidence of past radiation
exposure level

Provide exposure estimates (or air
kerma) at location of buildings inhab-
ited or used by exposed populations

Advantages Individual dose assessment, low
minimum detectable dose

Well characterized dose-response
curves

Practical to use in field conditions,
small amount of blood required

Low detection limits, samples
(except for teeth) are not biologically
invasive

Disadvantages Usually requires teeth for ex vivo
measurement, inability to distinguish
radiation type (gamma, beta and
X-rays) and difficulties in separating
UV radiation from ionizing radiation
contribution

Inter-individual variability in the
background control frequency
affects usefulness as an individual
biodosimeter

Only 50% of the population is eligi-
ble for assay; no in vitro assay

Measurements primarily reflect liv-
ing and working environments rather
than individual

Practical considerations Reliable, can require considerable
laboratory time, moderately
expensive

Reliable, requires considerable labo-
ratory time, most expensive of
techniques

Not useful for exposures < 1 Gy;
inexpensive

Careful sample extraction needed;
modeling required to give air kerma,
less expensive than cytogenetics and
EPR

aAdapted and modified from Kleinerman et al. (2006, p. 288).
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of biodosimetry in a supportive role to adjust for bias or to
corroborate model-based dose estimates.

The analysis here does not suggest that any of these
techniques, except possibly GPA, be eliminated from research
programs on retrospective dosimetry or from availability in
biodefense initiatives. But it seems clear that certain im-
provements would be extremely valuable, namely reduction
in throughput time and cost, low invasiveness to individuals,
verifiable precision (obtained through international intercom-
parison exercises) and an increase in sensitivity (lower de-
tection limits). Radiation epidemiology and other long-term
studies, unlike emergency response programs, collect sam-
ples many years after exposure and can allow for moderately
time-consuming laboratory analyses. And unlike medical
triage activities that seek to classify individuals into gross
categories of exposure, health risk analyses depend on elim-
inating misclassification of dose by obtaining the highest
precision dose estimates possible for individuals. These argu-
ments suggest that the challenges of retrospective dose esti-
mation for epidemiologic studies are somewhat unique. Future
radiation epidemiologic studies, particularly those where
model-based estimates of dose are highly uncertain, will un-
doubtedly benefit from continued improvements in biodosime-
try methods.
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