University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

2011 Bird Strike North America Conference, Niagara Falls

Bird Strike Committee Proceedings

9-2011

Statistical Assessment of Changes in Bird Certification Rules for Aero-Engines Through Time

Julian Reed Impact Engineering at Rolls-Royce., Julian.Reed@Rolls-Royce.com

Follow this and additional works at: http://digitalcommons.unl.edu/birdstrike2011

Reed, Julian, "Statistical Assessment of Changes in Bird Certification Rules for Aero-Engines Through Time" (2011). 2011 Bird Strike North America Conference, Niagara Falls. 24. http://digitalcommons.unl.edu/birdstrike2011/24

This Article is brought to you for free and open access by the Bird Strike Committee Proceedings at DigitalCommons@University of Nebraska -Lincoln. It has been accepted for inclusion in 2011 Bird Strike North America Conference, Niagara Falls by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Statistical Assessment of Changes in Bird Certification Rules for Aero-Engines Through Time

Dr Julian Reed Associate Fellow – Impact Engineering Rolls-Royce plc

© 2011 Rolls-Royce plc

The information in this document is the property of Rolls-Royce plc and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied without the express written consent of Rolls-Royce plc.

This information is given in good faith based upon the latest information available to Rolls-Royce plc, no warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Rolls-Royce plc or any of its subsidiary or associated companies.

Fan Systems Impact Group

Page 1 of 17 Dr J M Reed

Overview

- Aim: to develop a means of assessing potential benefit of engine certification rule changes
- Fleet cycles past and future
- Bird rule changes through time
- Bird strike distribution considerations
- Monte-Carlo method \rightarrow engine capability for different rules
- Fleet risk through time
- Rate of introduction of new products
- Fleet risk in the future
- Conclusions and recommendations
- Note: predictions made regarding future fleet mix are solely the judgement of the author

Page 2 of 17 Dr J M Reed

Fleet Aircraft Cycles Per Year

- Increase is sustained through time and predictable
- Trend seems to recover from major setbacks

Fan Systems Impact Group Page 3 of 17 Dr J M Reed

Rolls-Royce proprietary information

Fleet Cycles Per Year – Looking Forward

- 40 million flights per year by 2030
- Will have doubled since start of century

But what lies behind the curve?

Fan Systems Impact Group

Page 4 of 17 Dr J M Reed

Fleet Cycles Makeup – Data from ASCEND

Fan Systems Impact Group

R

Rolls-Royce

Rolls-Royce proprietary information

Page 5 of 17 Dr J M Reed

Bird Ingestion Certification Rule History

- Section 33.13/19 Feb 1965
 - Original Rule
 - Small, medium, large birds defined
- Section 33.77 A6 Oct 1974
 - Concept of critical areas on engine introduced for large bird
 - Run-on after ingestion mandated
- Section 33.77 A10 Mar 1984
 - Critical areas expanded to all bird sizes
- Section 33.76 A20 Dec 2000
 - Medium bird increased to 2¹/₂lb
 - Ingestion at critical conditions
 - Very significant increase in capability
- Section 33.76 A24 Nov 2007
 - Large Flocking Bird added to address Goose population growth

Page 6 of 17 Dr J M Reed

Fan Systems Impact Group

Page 7 of 17 Dr J M Reed

Bird Population Considerations

- 1.5lb medium bird test accounts for ~67% of bird population
- 2.5lb medium bird test accounts for ~92% of bird population
- To gain a further 1% of bird population (1.1% increase in capability) test mass →2.9lb 16% increase in energy
- Law of diminishing returns applies here

Fan Systems Impact Group

Rolls-Royce proprietary information

Page 8 of 17 Dr J M Reed

Monte-Carlo Technique Summary

- The Monte-Carlo technique depends on several things:
 - Description of a process (such as bird strike) mathematically
 - Weight of bird
 - Location
 - Speeds
 - Geometry of engine etc
 - Distributions describing the input parameters
 - A random number generator
- These parameters can be combined to generate in the case of Rolls-Royce an impact energy
- Repeating the process many times gives a picture of the range of impact energies that an engine is likely to see as it continues to ingest birds
- Comparing the energies to a test standard enables assessment of single/multiple engine power loss rates

Rolls-Royce proprietary information

Page 9 of 17 Dr J M Reed

Monte-Carlo Technique Output

 Table contains normalized single engine power-loss rates for categories of interest – may be used as probabilities

		Inlet Area (m^2) ►					
		<1.0	1.0-1.35	1.35-2.5	2.5-3.5	3.5-3.9	>3.9
Rule Year ▼	1958-1964	1.000	1.000				
	1965-1974	0.840	0.840			0.855	0.656
	1975-1984	0.387	0.387	0.224	0.224	0.429	0.332
	1985-2000	0.214	0.214	0.082	0.082	0.272	0.170
	2001-2007	0.112	0.112	0.042	0.042	0.077	0.037
	2007-2011	0.112	0.112	0.042	0.040	0.062	0.027
	2011-????	0.112	0.112	0.042	0.040	0.062	0.027

- Note improvement in situation particularly after 2001
- These factors used with fleet cycle data to calculate risk
- Red denotes NTSB area of interest after Hudson River

Rolls-Royce

Page 10 of 17 Dr J M Reed

Calculation Process

- The fleet historical cycles data is maintained in a spreadsheet
 - For each aircraft/engine combination inlet size is known, $1 \rightarrow 6$
 - For each aircraft/engine combination EIS date is known, $1 \rightarrow 7$
- A standard ingestion rate of 1/5000 aircraft cycles is assumed
- A look-up table for inlet size and EIS date is used to return the appropriate engine shut-down (ESD) probability
- Thus for each aircraft/engine combination for each month the number of ESD is calculated
- Data is then summed across the entire fleet for each year to provide a total risk
- Data is then divided by number of flights per year to obtain the 'per cycle' evaluation

Page 11 of 17 Dr J M Reed

Results

- Risk calculated using the fleet cycle data in conjunction with the Monte-Carlo generated power-loss rates
- Rule change dates annotated at date of incorporation

Fan Systems Impact Group Page 12 of 17 Dr J M Reed

Rolls-Royce proprietary information

Observations

- As of 2011 the general trend in risk is downward
 - Due in part to much older engines being retired
 - Due in part to engines designed to more recent rules being introduced
- This means that we are yet to see full benefit for rule changes already made
 - i.e. it takes many years for the full benefit of rules to be seen
 - New products are not introduced immediately there is a rule change
- Introducing new rules does not introduce step changes in risk level
 - i.e. the curve is smoothly transitioning

Looking Forward

In order to assess future trends, need three pieces of information

- Rate at which new aircraft are introduced
- Which aircraft are likely to be retired
- Which engine sizes will be required for replacement aircraft

 Assumed 25% of fleet will have been replaced by 2030; of which, 5% very large, 10% corporate, 10% regional

Fan Systems Impact Group

Page 14 of 17 Dr J M Reed

Risk Prediction for Next Two Decades

- Prediction performed for 3 main cases:
 - 1; Old aircraft retire; replaced with existing fleet mix
 - 2; Old aircraft retire; replaced with 2007 certificated products
 - 3; Old aircraft retire; replaced with 2011 certificated products

Fan Systems Impact Group Page 15 of 17 Dr J M Reed

Rolls-Royce

Observations

- Over the next 20 years the risk curve begins to assymptote
- This is a function of
 - Increased number of fleet cycles year on year
 - A greater proportion of the fleet being certificated to the same rule standard
- The degree of improvement for a rule change is very small
 - This effect will be more marked as yearly fleet cycles increase i.e it becomes more difficult to achieve a significant fleet percentage for new products
- The effect of any rule change is not seen for ~20 years after it is made
 - This effect will be more marked as yearly fleet cycles increase as above

Rolls-Royce

Page 16 of 17 Dr J M Reed

Conclusions

- A method has been developed to enable numerate assessment of risk for different scenarios
- The results show that a change in engine certification bird rules will not deliver a significant risk reduction in the short to medium term
 - More timely measures must therefore take priority
- Risk is a product of engine robustness and number of strikes per aircraft cycle – engine robustness is clearly levelling out
 - The more effective risk reducer must be to reduce the number of strikes
- Product safety remains the number 1 priority within Rolls-Royce; the rule assessment process is properly supported

Rolls-Royce proprietary information

Page 17 of 17 Dr J M Reed

