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Purification of immunoglobulins from Serum Using  

Thiophilic  Cellulose Beads 

ANURADHA SUBRAMANIAN and BLANCA C. MARTINEZ 

 

This study evaluates the chromatographic performance of a support obtained by the re-

action of mercaptoethanol with cellulose beads activated with divinyl sulfone. Cellulose beads 

500-800 microns (pm) in diameter and with a solids content of 3.5% were selected for this 

study. A two-step sequence of permeation and reaction was used to install thiophilic sites 

throughout the cross section of the bead. The distribution of thiophilic sites was visualized by 

immobilizing fluorescent antibodies. Human and porcine serum proteins were separated on the 

thiophilic support at different linear velocities. Thiophilic cellulose beads were observed to bind 

human and porcine immunoglobulins (IgG) selectively from serum. Overall total protein recov-

eries in the range of 85%-99% were obtained with human serum, porcine serum and cell su-

pernatant. Human TgG yields of 75% and 50% were obtained at linear velocities of 1 cmlmin 

and 3 cmlmin, respectively. Thiophilic cellulose beads were observed to bind monoclonal anti-

bodies from cell culture supematant but yields in the range of 40-508 were obtained. Purity of 

the products, obtained from a single chromatographic tep, as judged by electrophoretic analy-

sis was estimated to be greater than 80%.  

 

INTRODUCTION 

 

Recent unexpected shortages of immunoglobulins (IgG's) fractions from human plasma, 

in the United States, have contributed to a growing health care crisis and has forced doctors to 

cut dosages for some patients, postpone treatment for others or switch brands, which all affect 



patients differently. There is a demand in the current market place to design and develop 

methodologies for the purification of human IgG (hIgG) from plasma or from genetically engi-

neered sources. Purification schemes for IgG's from the cell culture supernatant matrix include 

precipitation with ammonium sulfate [1,2], ion-exchange chromatography [3-61, thiophilic 

chromatography [7-101, and affinity separations using immobilized protein-A [2,3,11-131. Affin-

ity based methodologies are scaleable technologies important to protein purification. Of par-

ticular interest is the use of protein A or protein G immunosorbents to purify IgG's. Protein A/G 

columns have been widely used to purify mouse IgG's from ascities fluid and cell cultitre su-

pernatants on a laboratory scale [ll]. This method usually results in a product with high purity 

and in good recovery, but the varying avidity of protein-A for IgG from different species and the 

possible contamination of the IgG product with leached protein-A makes it less attractive for 

preparative applications [3,11,12]. Moreover, the low pH (pH -3.0) often used to elute the 

bound IgG's from a protein- A column can induce denaturation and loss of biological activity. 

The limitations of protein AIG technology necessitate the development of novel pseudo-

bioaffinity chemistries that will yield a product with high purity and functionality with minimized 

operating complexities like ligand leakage and proteolytic degradation. Thus there is a need for 

the development of new matrix technologies or purification protocols which are amenable to 

scale up without presenting excessive operational complexities. Thiophilic adsorption has been 

shown to selectively purify IgG's from complex biological fluids like serum, cell culture super-

natant, and colostrum milk under mild elution conditions [4,7,8]. In addition, thiophilic matrices 

(T-gels) have shown to bind three major classes of IgG's and their sub-classes 1101. The 

mechanism  of thiophilic adsorption can be used to selectively deplete and purify IgG's from 

biological fluids. Thiophilic matrices show selective binding of IgG's in the presence of lyotropic 

salts like ammonium or potassium sulfate [l 4-1 71. In comparison to typical hydrophobic matri-

ces like octyl-sepharosei, thiophilic matrices have a greater affinity for IgG's than albumin [17-



191. Usually T-gel matrices are beta-mercaptoethanol derivatives of divinyl sulfone (DVS) acti-

vated agarose and have the following general formula: (Matrix)-O-CH2-CH2-SO2-CH2-CH2-S-

CH2- CH2-OH. 

Current commercially used beaded matrices range in 20-80 microns (pm) in diameter 

thus providing high surface area beads. In this study we seek to evaluate a macroporous ma-

trix derived from cellulose, a naturally occurring polysaccharide.  The mechanical and flow 

properties of cellulose beads have been detailed elsewhere [20, 21]. In brief, cellulosic beads 

have shown to possess greater mechanical strength, offer low pressure drops, resist crushing 

under high column flow rates and are cheaper to produce than agarose or dextran beads [20]. 

Here we seek to investigate the use of a new porous cellulose based adsorbent for the efficient 

purification of antibodies from serum and cell culture supernatants. Cellulose beads with a 

nominal diameter in the range of 500-800 pm and a solids content of 3.5 % (wtlwt) were cho-

sen for this study. The aim of this study is to show the utility of this phase in the separation and 

purification of antibodies. The understanding of how fundamentally simple and inexpensive 

materials like cellulose and cliitosan can be fashioned into matrices needed before true leaps 

in process technology will be made in the production of therapeutic proteins.  

 

MATERIALS AND METHODS 

 

Materials 

 

Ligochem TM Provided cellulose beads as a generous gift. Lyophilized, 95% pure human 

IgG (1-4506), lyophilized 11~1man serum (S-2257). rabbit antiserum against mouse IgG's (M-

8645), affinity purified goat-anti-mouse (whole molecule) IgG's conjugated to horseradish per-

oxidase (A-4416) and fluorescein isothiocyanate (FITC) labeled hIgG (F-9636) were purchased 



from Sigma Co. (St. Louis. MO.) Immulon II microtiter plates were purchased from Fisher Sci-

entific (Itasca, IL). Commercial T-gel was purchased from Pierce Chemical Company (Rock-

ford, IL). 0-phenylenediamine-2HCl tablets were purchased from Abbott Laboratories (Chi-

cago, IL.). Divinyl sulfone and β-mercaptoethanol were obtained from Fluka (Ronkonkoma, 

NY). Immunoaffinity separations were performed with Pharmacia C-10 columns (15 cm X I 

cm), a Masterflex peristaltic pump, a Knauer spectrophotometer, and a Rainini data acquisition 

system was used to lllonitor chromatography. Columns were kept at 4°C with a Lauda Supper 

RMT water cooler. 8-16% Tris-glycine gels were purchased from Novex (San Diego, CA) and 

gel electrophoresis was carried out with a X-Cell II Novex unit.  

 

METHODS 

 

Divinyl Sulfone Activation 

 

Divinyl sulfone (DVS) activation of the cellulose beads were carried by two different 

methods; method A and method B and the description is are provided below: 

 

Method A 

 

Cellulose beads were activated according to the method described elsewhere [3,22]. In 

brief, decanted cellulose beads were suspended in an equal volume of I M Na2C03, pH l 1.3 in 

a 50 rill conical flask and DVS stock solution was added slowly to the flask to yield a final DVS 

concentration of 5% or 10% (v/v). The activation reaction was carried out at room temperature 

(RT) for 24 hours.  

 



 

Method B 

 

Decanted cellulose beads were suspended in an equal volume of 1M Na,CO,, pH 11.3 

in a 50 m1 conical flask and DVS stock solution was added slowly to the flask to yield a final 

DVS concentration of 5% or 10% (vlv). The activation reaction was carried out in the cold room 

for 30 rnin (step 1). Upon completion of step 1, the pH of the solution was increased to 11.3 by 

the addition of sodium hydroxide and the reaction was allowed to continue at room tempera-

ture for 24 hours. The beads were then washed extensively with distilled water until the pH of 

the solution was neutral. 

 

Determination of Vinyl Groups 

 

The amount of vinyl groups was determined by sodium thiosulfate titration method de-

scribed elsewhere [23]. In brief, 1 m1 of decanted DVS activated beads were mixed with 3 m1 

of lM sodium thiosulfate solution. The mixture was rotated for 24 hr at room temperature to re-

lease the reactive vinyl groups. Supernatant was titrated with 0.1 N HC1 to a pH of 7.0. Divide 

the amount of HCI acid added by 10 to calculate the amount of reactive vinyl groups in pmole 

vinyl Groups lml of gel.  

 

 

 

 

 

 



T-gel Modification of DVS Activated Beads 

 

DVS activated beads prepared by method A and method B were incubated with an 

equal volume of 10% P-mercaptoethanol that had been titrated to pH 9.5 with 2M NaOH. The 

activation reaction was carried for 24 hrs at room temperature on an end-to-end rotator. Upon 

completion of the T-gel modification, the beads were washed with deionized water and stored 

at 4°C until further use. Extent of the modifications was determined by the indirect titration of 

active vinyl groups before and after ligand coupling. 

 

Determination of Percent Sulfur 

 

10 m1 of cellulose beads activated by method A and B were washed 3-times with de-

ionized water and the supernatant was drawn off. The beads were then lyophilized to dryness 

and submitted to the Research and Soil Test laboratories at the University of Minnesota for 

percent sulfur (% S) analysis. Analysis was per formed on a Leco SC-132 sulfur system from 

Leco Corporation, St. Joseph, Michigan. We also provided a sample of commercially available 

T-gel from Pierce Chemical Company and a reference sample of bald or inactivated beads. 

Typically, 200 mg of dried beads were placed in a sample container and 500 mg of vanadium 

pentoxide was added on top of the sample. Samples were then heated to 2600 "F and an infra-

red detector quantified the vapors of sulfur dioxide. 

 

Ligand Binding Isotherms 

 

Small-scale experiments were conducted to obtain ligand-binding parameters of thio-

philic cellulose beads (TC-beads). 600 p1 of 50% (v/v) slurry of cellulose beads were trans-



ferred into 1.5-m1 microcentrifuge tubes to yield 300 p1 of cellulose beads. The beads were 

allowed to settle for 5 minutes and the liquid overlay was pipetted off. A l .0 m1 of 0.0, 0. l , l 

.O, 2.0,4.0, and 8.0 mglml of human IgG (hIgG) in washing buffer (0.5 M K2S04, 50 mM 

NaH2P04, pH 8.0) was added to the microcentrifuge tubes. Experiments were carried out in 

duplicate. Tubes were placed on a end-to-end rotator and rotated for 24 hrs at RT. An identical 

experiment was also carried out with thiophilic-gel (T-gel) obtained from Pierce Chemical 

Company. At the completion of the experiment, the tubes were centrifuged at 400 rpm and the 

supernatant was pipetted off and saved for protein determination. The protein concentration 

was measured spectrophotometrically at OD 280 nm. The difference in the amount of hIgG in 

the feed and the amount of hIgG in the supernatant yielded the amount of hIgG bound. Equilib-

rium binding capacity (Q,,,) was obtained from isotherm analyses and double reciprocal plots. 

 

Purification of IgG from Serum and Cell Supernatants 

 

100 mg of lyophilized human serum was re-suspended in 5 m1 of loading/washing buffer (0.5 

M K2S04, 50 n1M NaP04 pH 8.0) and the contents were allowed to come into solution. A 1.5 

m1 of the human serum sample was loaded to a column (l cm i.d. X 12.2 cm in length) packed 

with TC-beads at a linear velocity (U) of 1.0 cmlmin. Unretained proteins were collected as the 

column fall through and the non-specifically bound proteins were washed with the loading 

buffer till the OD 280 nm returned to the baseline. The bound h1gG was eluted by making a 

step change to the elution buffer; 50 mM NaP04, pH 8.0. Upon elution, the column was 

washed with 50 mM NaP04, IM NaC1, pH 8.0 to strip any tightly bound proteins and columns 

were re-equilibrated in washing/loading buffers. 'The chromatographic fractions were assayed 

for total protein content by measuring absorbance at OD 280 nni and hIgG content by specific 

ELISA assays. The purity of the product was judged by elcctrophoretic analysis. Similar ex-



periments were carried out at linear velocities of' 3 and 6 cmlmin. In separate experiments pig 

serum and cell culture supernatants containing monoclonal antibodies (Mabs) were also chro-

matographed on the column sing the procedure described above. 

 

Determination of Human 1gG by ELISA 

 

Immulon I1 micro titer plates were incubated with 100 μ/well of 1 : 1000 diluted rabbit 

anti-hIgG whole molecule in coating buffer for 34 hrs at 4°C. Wells were washed with washing 

buffer and residual sites were blocked with blocking buffer for 30 minutes at room temperature. 

Various dilutions of standard and samples in  dilution buffer 20 mM Tris-HC1, 50 mM NaCl, pH 

7.0, 0.5% casein) were added to the wells, 100 111 in each well and incubated for 30 minutes 

at 37°C. LJpon incubation, wells were washed four times and 1:2500 diluted HRP conjugated 

rabbit anti-hIgG was added to the wells and incubated for 30 minutes at 37°C. Wells were 

washed and 100 111 of OPD substrate was added to each well. The colorometric reaction was 

stopped after 3 minutes by the addition of 100 yl of 100 p1 of 3 N sulfuric acid to each well. 

Bound chromophore was detected at 490 nm using a Bio-Tek microplate ELISA reader. 

 

Determination of Mab by ELISA 

 

The concentrations of Mab in various chromatographic fractions were determined by the 

ELISA procedure outlined elsewhere [241. 

 

 

 

 



Labeling of T-gel Beads with Fluorescein Thiocyanate 

 

The distribution of active sites in cellulose beads activated with T-gel at various densi-

ties was determined by irnmunofluorescent microscopy. hIgG labelecl with fluorescence thio-

cyanate (FITC) was bound to cellulose ds prepared by nlethod A and B from a solution con-

centration of 0.0, 1.0 and 5.0 mg Mablml. FITC labeled beads were rotated at 0 - 4°C in the 

dark. The beads were analyzed by horizontal scanning (section scanning)  fluorescent light in 

a confocal microscope attached to a Nikon Diaphot inverted microscope (BioRad Labs., Hercu-

les, CA) ecluipped with a 15 nlW Krypton / Argon Excitation filters allowing 488 nm, 568 Iim, 

647 11m or combination of all three-laser lines were used. The samples were viewed at 1 Ox 

magnification. Digital images were collected on a Compaq ProSignia model 300 personal 

computer using Laser sharp version 3.1 software (BioRad Labs., Hercules, CA). Publication 

quality prints were made utilizing Adobe PhotoShop version 5.0 and a Tektronix Phaser 340 

printer (Tektronix, Wilsonville, OR 97070)) or a Fujix Pictography 3000 digital image printer 

(Fuji North America, Elmsford, NY 10523). Gel Electrophoresis The purity of the recovered IgG 

was analyzed by SDS-PAGE gel electrophoresis l under non-denaturing conditions [25]. In 

brief, all chromatographic fractions were diluted to a protein concentration of 0.4 mglml. Sam-

ples were mixed with non-reducing buffer at a ratio of 1 : I and were heated to 95OC for 5 min 

in a water bath. Proteins were analyzed on 8-16 % gradient gel and visualized by silver stain-

ing [26]. Stained gels were further analyzed by digital image processing to assess the purity. 

RESULTS 

DVS Activation and T-Gel Modification 

Table I summarizes the results of the DVS activation of cellulose beads. The amount of 

HC1 used in the titration reaction was used to quantify the active vinyl groups and is shown in 

column 4. Cellulose beads activated with 10% DVS using method A gave 3.0 to 4.0, pnoles of 



vinyl groupslml of gel, respectively. Cellulose beads activated with 5% DVS and 10% DVS us-

ing method B gave 5.0 to 6.0, 8.0 to 9.5 pmoles of vinyl groups11111 of gel, respectively. As 

expected, the amount of reactive vinyl groups increased with an increase in the amount of 

DVS used in the activation process by methods A and B. A control incubation of the beads at 

the same pH, but with DVS omitted, showed no titratable vinyl groups. In an attempt to achieve 

higher pnloles of vinyl groupslml of gel, activation reactions were also carried out in the pres-

ence of 20%, 30% and 40% DVS (data not included). However, in reactions containing 20%, 

30% and 40% DVS, the beads acquired a milky/whitish appearance after the activation step. 

All the beads were examined under a microscope before and after the activation process to 

record any gross change in morphology. Activation reactions with 20, 30 and 40% DVS re-

sulted in beads with a "rigid doughnut like"  appearance. The cellulose beads activated by DVS 

were further end modified with p-mercaptoethanol to yield thiophilic cellulose beads (TC-

beads). The amounts of unreacted vinyl groups were estimated at the end of the thiophilic re-

action step. No titratable vinyl groups were found after coupling of mercaptoethanol to DVS  

activated cellulose beads, indicating complete reaction. A control incubation of the beads at 

the same pH, but with mercaptoethanol omitted showed titratable vinyl groups. The immobi-

lized ligand (P-mercaptoethanol) density was also determined by elemental sulfur analysis. 

TC-beads made with method A and method B contained 5.24 + 0.01 % sulfur (%S) and 7.31 A 

0.12 %S, respectively. T-gel from Pierce Chemical Company contained 5.66 %S. TABLE I  

 



Ligand Binding Isotherms 

The static binding capacity (Qmax) was determined by plotting the static adsorption iso-

therm for T-gel obtained from Pierce Chemical Company and the  TC-beads made by methods 

A and B, respectively. A representative set of static adsorption isotherms is shown in Figure 1. 

T-gel obtained from PCC and TC-beads made by method B in the presence of 10% DVS were 

not completely saturated with hIgG, as shown by the upward slope of their respective iso-

therms. TC-beads made, by method A in the presence of 10% DVS, and by method B in the 

presence of 5% DVS appear to be saturated, as judged by their respective isotherms. An esti-

mate of Q,,, was obtained by double-reciprocal analyses for isotherm data collected from mul-

tiple sets and the average values are presented in Table I. The Q,,, of T-gel obtained from 

Pierce Chemical Company for human IgG was found to be 26.97 A 10.5 mg hIgG /m1 of gel. 

The Q,,, for cellulose beads activated by method B in the presence of 5% and 10% DVS were 

found to be 1.31 mg hIgG/ml of gel and 40.4 +- 12 mg hIgGIm1 of gel, respectively. The batch 

binding capacity of T-gel obtained from cellulose beads activated by method A in the presence 

of 10% DVS was found to be 3.44 mg hIgG /m1 of gel.  



Column Chromatography 

Based on the static binding capacity and % sulfur obtained for the thiophilic cellulose 

(TC) beads made by method B, we selected to evaluate the chromatographic performance of 

TC-beads made by method B in the presence of 10%  DVS. Figure 2shows a typical chroma-

tographic profile for the isolation of human IgG from the serum. Unbound or very weakly re-

tained proteins passed through the column during the first five column volumes (CV). The UV 

trace at 280 nm returned to baseline by seven CV indicating near complete elution of unbound 

protein. A step change to the elution buffer was made to elute the bound IgG. A chroma-

tographic peak at 280 nm indicates elution of bound protein, which wc identify as retained IgG. 

This peak eluted between 2-7 column volumes. Finally, to elute any proteins bound by non-

specific interactions, a step increase to l M NaCl at fourteen minutes was employed. Flushing 

of the column continued for approximately twelve column volumes. To restore the column the 

next run, it was then flushed with loading buffer for fifteen minutes prior to the next injection. 



 

 



Yield of IgG from Serum 

Table I1 sunnnarizes the hIgG and porcine IgG yields in the various chromatographic 

fractions at different linear velocities when human serum and porcine serum was usecl as feed 

to the column, respectively. Chromatographic profiles with similar characteristics to one de-

scribed earlier were obtained for all runs in Table 11. The total protein concentration in differ-

ent chromatographic fractions in each individual run was estimated by measuring the absorb-

ance at 280 nm. The perceni total recovery of protein was delerinined as a ratio of the total 

protein in the elllate fraction and fall through to the total protein in the feed sample. In runs us-

ing human serum as a feed sample, total recoveries in the range of 82-90% were obtained. In 

runs using pig serum as a feed sample, total recoveries greater than 998 were obtained. A ma-

jority of the protein was recorded in the fall through fraction thus allowing enrichment of IgG in 

the elution fraction. 

The hIgG concentration, in different chromatographic fractions of runs 1.2 and 3, was 

also estimated by the ELBA protocol and the values are presented in Table IT. The percent 

yield of hIgG in the eluate fraction was determined as a ratio of total hlgG in the eluate fraction 

to the total hIgG challenge in the feed. The yield of hIgG in run I was 73%, the yield of hIgG in 

run 2 was 50.62%, and the yield of hIgG in run 3 was 5 %. With an increase in linear velocity 

lower hIgG yields were obtained. However the total protein recovery remained high, greater 

than 99 percent.  



 

Yield of Mab from Cell Culture Supernatant 

 

Table I1 gives the Mab yield when cell culture supernatant serum was used as feed to the col-

umn. Chromatographic profiles with similar characteristics to one  described earlier were ob-

tained. The percent total recovery of protein was determined as a ratio of the total protein in 

the eluate fraction and fall through to the total protein in the feed sample. In runs using cell cul-

ture supernatant as a feed sample, total recoveries in the range of 80-99 % were obtained. A 

majority of the protein was recorded in the fall through fraction. The Mab concentration was 

also estimated by the ELISA protocol described in the methods section. The percent yield of 

Mab in the eluate fraction was determined as a ratio of total Mab in the eluate fraction to the 

total Mab challenge in the feed. Mab yields in the range of 40-50% were obtained. 



 

Gel Electrophoresis 

Figure 3 shows a silver-stained, SDS-PAGE gel of the starting human serum (feed) and 

the chromatographic fractions from a typical separation run on TC-beads. Chromatographic 

fractions from Runs 1, 2 and 3 corresponding to u = 1, 3, and 6 cndmin were selected for elec-

trophoretic analysis. Lanes 1 shows a molecular weight ladder. Lanes 2 shows an application 

of pure hIgG a total protein level of 6 pgs. Lanes 3 shows an application of hulnarl serum (feed 

to the column) at a total protein level of 4 pgs. The serum has two distinct protein bands corre-

sponding to human serum albumin HSA with a molecular weight of 56,000 Dalton and hIgG 

with a molecular weight of 150,000 Dalton. Some additional minor bands are also observed. 

Lanes 4, 5, and 6 shows the elution fractions from runs 1, 2 and 3, respectively, at a total pro-

tein level of 4 pgs. Lanes 7, 8, and 9 shows the fall through fractions from runs 1 , 2, and 3, re-

spectively, at a total protein level of 3 ygs. The eluate fractions gave a band around 150 kDa 

similar to the pure hIgG in Lane 3. In addition to the major Mab band at 150 kDa, a minor band 

at 56 kDa accounting for less than 10% of the area obtained by digital image processing was 

observed. The fall through fractions shown in lanes 7, 8, 9 gave a band around 56 kDa similar 

to the pure HSA. The purity of the hIgG in the eluate fraction (Lanes 4, 5 and 6) is estimated to 

be greater than 90% by digital image processing. Similar electrophoretic pattelms were ob-

tained with the fractions from other runs listed in Table I1 (data not shown). 

FITC Labeling 

To better understand the installation and distribution of thiophilic adsorption sites within 

the cross section of cellulose beads (0.8 mm in diameter) FITC labeled hIgG was bound to TC-

gel in a batch experiment. hIgG was bound on TC-beads made with method A and method B. 

In Figure 4 a series of scanning images for the adsorption of hIgG to TC-beads are shown. 

The cross section of TC-beads is filled with antibody as evidenced by the green fluorescent 



stain throughout the cross section. No discernible differences in fluorescent intensities were 

observed between sections taken from either method A or method B. Thus we were able to 

 

install thiophilic sites throughout the cross section of the bead. 

ISCUSSION 

ew matrix technology based on naturally occurring polysaccharides for large-scale protein 

D

 

N

separations have been recently developed with the goal of achieving process savings [20,21]. 

Recovery of research expenses is a leading thiophilic mode. We believe the true leaps in 

throughput and productivity in bioprocessing processing will result when the merits of large 

bead technology will be merged with new and improved activation or ligand immobilization 

strategies.  
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