

xi

List of Tables

1.1 Test Cases of the Calculator SPL . 5

2.1 Basis Set of Paths of Euclids’ GCD Program 14

3.1 Classification of Features . 29

4.1 Covered Steps from Division Use Case 43

4.2 Calculator SPL Instances Generated by FIG Basis Path 50

4.3 Calculator SPL Instances Generated by FIG Grouped Basis Path 51

4.4 Calculator SPL Instances Generated by All Features 54

4.5 Calculator SPL Interaction Model . 54

4.6 Testing 2-way Interactions from the Calculator SPL 55

4.7 Test Cases Selected for Div Feature of the Calculator SPL 56

5.1 Objects of Study . 58

5.2 Required Test Cases and Faults Detected per Technique 63

5.3 Number of Test Cases Detected by Alternative Variants 64

5.4 Mobile Media Faults . 66

xii

List of Algorithms

1 FIG Basis Path Algorithm . 49

2 FIG Grouped Basis Path Algorithm 51

3 All Features Algorithm . 53

1

Chapter 1

Introduction

The ultimate goal of the software industry is to provide users with high quality

custom applications that attend to their needs. Over the years, individual companies

have developed a series of similar applications that share a lot of functionality, each

customized for specific demands of particular customers. Given this trend, software

industries face a new development challenge in creating and maintaining a series of

related products and leveraging commonality and reuse among these products in order

to keep the cost and development time down, without reducing individual application

quality.

Software product line engineering (SPLE) has been shown to be a very successful

approach to this type of software development allowing engineers to design and build

families of products [12,29,56,70]. This paradigm has received considerable attention

from both industry (e.g. Siemens, Boeing, Hewlett-Packard, Philips, Nokia, and

Bosch) and the software research community as it demonstrates how the development

of products can be improved through managed reuse and more importantly how to

respond quickly and effectively to market opportunities [12].

Clements and Northrop [12] defined a software product line (SPL) as “a set of

2

software-intensive systems sharing a common, managed set of features that satisfy

the specific needs of a particular segment or mission and that are developed from

a common set of core assets in a prescribed way.” Core assets represent a variety

of reusable artifacts used in all parts of the software lifecycle and incorporate all the

variability of an SPL. These assets are composed of requirement models, architectural

and design models and test models as well as the code base itself. Feature diagrams,

widely used in SPLE, represent graphically the variability of SPLs facilitating the

management and design decisions performed by the engineer team. Software product

line engineering differs from development of single systems in two aspects. First, the

development is divided into two main processes: domain engineering which defines

the entire family of products, and application engineering where individual products

are instantiated and built. Second, the variability is explicitly modeled and managed.

We will discuss these differences in Chapter 2.

A large body of research on SPL engineering has focused on reuse of core pro-

gram assets [12, 38, 44], refined feature modeling [17, 20, 67], and code generation

techniques [3, 18]. There has also been research on testing software product lines

[7, 15, 21, 50, 58, 61, 69]. Software testing is a challenge for SPLE. Testing for single

systems can consume up to 50% of the total cost of system development. For an

SPL, this number is even higher due to the shortened development time of software

systems. Software quality is an essential factor for the success of software companies.

Achieving high quality in an SPL is crucial since a single failure can be propagated

into multiple products at the same time and it is practically impossible to test all

products completely.

Kolb and Muthig [38] point out that testing has not made the same advances

as other parts of the SPL lifecycle and remains a bottleneck in SPL development.

Their work highlights issues related to testability of SPLs, where testability is viewed

3

as the ease with which one can incorporate testing into the development cycle and

increase reuse while retaining a high rate of fault detection. They comment that the

primary strength of SPL development, variability, also has the greatest impact on

reducing testability [38], due to the combinatorial explosion of feature combinations

that occurs as variability increases [15,44].

While this research points at the core problem of software product line testing,

none of it specifically considers reuse by examining the feature model and analyzing

testability at a finer grain. This thesis considers testing of SPLs from this perspective.

We believe that testing of SPLs can be made more efficient and effective by designing

the feature model of a family of products in a way that supports the testing of different

products. We next present some motivation to show some challenges faced in testing

SPLs.

1.1 Example and Motivation

In this section we present an example of a software product line that will be used

throughout the rest of this thesis to illustrate our ideas. We chose to model a calcu-

lator due its simplicity and understandability.

The Calculator SPL is a software product line that defines a family of 144 different

calculator programs, each varying in the combinations of features that it includes.

The calculator program has a common set of basic operations that will be included

in all variants (instances of the SPL). These include addition, subtraction, division

and multiplication operations, as well as a core set of features Exit, Clear (C) and

Clear Entry (CE). It also provides a set of advanced operations such as Percentage,

Square Root, Reciprocal and Sign. These are each optional features. The calculator

supports three different languages (English, Chinese or Spanish) to be used in the

4

Figure 1.1: Calculator programs

menus, title and for help. An individual calculator supports a single language. Other

optional features are the backspace operation and the memory capabilities. Users can

store numbers into memory in two different ways as well as clear and recall stored

numbers from memory. The feature model for the Calculator SPL is introduced in

Section 2.2.

Figure 1.1 shows us examples of two calculator programs that belong to the same

software product line. The program on the left (Program 1) supports the most basic

operations only and uses English as its language. The program on the right (Program

2) also uses English but contains all of the memory features. By simply changing the

language we can generate 4 more caculator programs that vary slightly from the ones

shown. We can also create a range of products with differing combinations of the

optional features.

The Calculator SPL has 19 features; a small number when compared with real

software product lines but complex enough for testing. To understand the complexity

of testing SPLs, assume that we need to test both programs based on their specifica-

tions. Table 1.1 lists the total number of tests defined for each core function as well

as the features selected in each program. If we look carefully at both programs, we

will notice that both programs need to execute practically the same set of functional

tests. The only difference is that program 2 has included tests related to the memory

5

functionality, adding 20 more test cases to the set of tests. Considering that program

1 has a total of 65 test cases and program 2 has a total of 85 test cases, we can

conclude that program 2 has 76% redundant tests after testing program 1.

Table 1.1: Test Cases of the Calculator SPL

Features Test Cases Program 1 Program 2

Core

Exit 5 X X
CE 5 X X
C 5 X X

Backspace 5 X X

Operations

Add 5 X X
Sub 5 X X
Div 5 X X
Mul 5 X X

Signals 5 X X
Square Root 5 X X
Percentage 5 X X
Reciprocal 5 X X

Language
Chinese 5
English 5 X X
Spanish 5

Memory

M+ 5 X
MS 5 X
MC 5 X
MR 5 X

Total number of tests: 65 85

As soon as we generate more calculator programs that each need to be tested, the

amount of redundant testing will rapidly increase since all programs belong to the

same family of products and share core functionality. For an overall view, consider

testing all products from the calculator SPL. Considering that we need to test each of

the 144 products individually, we will have a total of 12240 tests of which 97.91% test

cases can be classified as redundant. If we can leverage this information when testing

subsequent products from the same product line we may be able to avoiding running

the redundant tests on each new product and save testing time. While previous

6

research on software testing for product lines has focused on test case reuse which

can be defined as reusing individual test cases (or assets) between products there has

been little research on this issue of redundancy between products. We highlight our

main contributions with respect to this problem next.

1.2 Contribution

In this thesis we focus on the issue of reuse of test cases between products in the

software product line. We have four primary contributions that we make to the SPL

testing community.

First we define testability for software product lines in terms of test case reuse

across products and develop key metrics to measure the impact of different approaches

for testing SPLs with testability in mind. We present these ideas in Chapter 3.

Second, we identify the various elements of a feature model that we believe will

lead to a reduction in the number of test cases that must be run across the entire

family of products. We provide examples and insights into why the feature model

itself may be an indicator of how testable an SPL is. This has the potential to

lead to design for testability in early stages of SPL development; e.g. during domain

engineering. This work is presented in Chapter 3.

Third we propose a black box approach for testing software product lines that

takes into consideration types of variability of feature models identified previously.

We hypothesize that our approach can reduce testing effort while retaining good fault

detection in the presence all kinds of variability. Our approach is called the FIG Basis

Path method. This is presented in Chapter 4.

Finally, we report results of an experiment performed with two software product

lines to evaluate our new testing approach. The results show that we can achieve the

7

same fault detection results using our method as we can if we test all products. We

do this using as few as, or fewer products than two other alternative approaches. The

results of our case study can be found in Chapter 5.

8

Chapter 2

Background and Related Work

This chapter provides background on concepts required to understand this research

as well as related work. Section 2.1 discusses software testing, including topics such

as control flow graphs and basis path testing. Section 2.2 describes software product

lines. Section 2.3 discusses testing for software product lines.

2.1 Software Testing

Software testing is an important phase of the software development life cycle. The

main goal of software testing is ensure that the software satisfies the system require-

ments as well as reveals faults that may exist in the system. Software testing must

be done efficiently and effectively [12].

Software testing strategies can be divided into functional (black-box) or structural

(white-box) testing. A black-box strategy uses the requirements of the system to

create tests without any knowledge of the underlying program code and/or structure,

while the white-box strategy uses the control flow and data structure of the program

to generate tests. Besides these two strategies, one can use a gray-box approach

9

to testing which is a combination of white-box and black-box techniques. Software

testing strategies can be applied to different phases of the software development life

cycle which includes unit testing, integration testing, system testing and others. Unit

testing is the lowest level of testing in which individual units of the source code

are tested by developers from a white box perspective. It validates a function or

procedure of the system and requires detailed knowledge of the program design and

code. As the system grows, individual software modules are grouped, and then tested

together. This phase of testing is called integration testing. System testing performs

a complete and integrated testing evaluation of the system requirements covering all

parts of a system. Integration and system testing typically use a black box testing

approach and are often performed by test teams that are separate from the module

developers.

2.1.1 Black-box Techniques

Black-box testing, also called functional testing and behavioral testing, is a technique

that uses system requirements to create test cases for a system [5]. This strategy

can ensure that all the system requirements were implemented, but cannot guarantee

that all paths in the system are executed since it has no knowledge of the internal

structure of the program.

The typical black box test design strategies are equivalence partitioning [54],

boundary value analysis [51], decision table testing [5], pairwise testing (Combinato-

rial Testing) [14] and state transition tables. Equivalence partitioning and pairwise

testing use heuristics to select the input combinations, while state transition tables

use heuristics to select paths from a behavioral model.

The category partition method [54] is a specification based method that parti-

10

tions the system inputs into parameters and categories of environment factors. The

software engineer identifies functional requirements that can be tested separately and

classifies them into categories. Next, a set of mutually exclusive choices and con-

straints are attributed to each of the categories. This information is used to create

a test specification for the system, written in a test specification language, known as

“TSL”.

Combinatorial testing is a technique where all t-way combinations of values of a

parameter model are exercised through test cases. The base object used to select the

sample is a mixed level covering array. A mixed level covering array, MCA (N, t, k

(v1, v2,...vk)), is an N×k array. The k columns of this array are called factors, where

each factor, fi, contains vi symbols. When more than one factor shares the same value

for v, we can use a superscript shorthand notation to indicate how many consecutive

factors have that value. The sum of superscripts in this notation is equal to k. For

example, an (MCA(N, t, 23, 31, 42)) has six factors. The first three have two values,

the fourth one has three values and the last two have four values. In an MCA all

ordered t-way combinations between factors are covered at least once. Using a pair

wise approach, we can guarantee that all pairs of values between factors are included

in at least one product. A mixed level covering array will also be called simply a

covering array in this thesis. The covering array has been shown to be effective in

testing many types of configurable software [59]. For more details, refer to [14–16,44].

2.1.2 White-box Techniques

White-box testing, also called structural testing, is a technique that uses the data

structure of the program to create the test cases for the system [5]. The main goal of

this technique is to provide a set of inputs that will cover some specific criteria, testing

11

the intended and unintended software behavior. This strategy cannot ensure that all

the system requirements were implemented, but can guarantee that a specified set of

code elements in the system are executed.

The typical white box test design techniques are control flow testing, data flow

testing, branch testing and path testing. Next, we detail two of the white box tech-

niques: control flow testing and path testing.

Control Flow Testing

Control flow testing is a white-box technique that makes references to the control

flow graph (CFG) of a program [32]. The control flow graph is a directed graph that

consists of a set of nodes and edges where nodes represent a statement or predicate in

the program, and edges represent the flow of control between nodes. A predicate node

is a node containing a condition. Usually, edges originating from a predicate node are

labeled. Each CFG contains a unique entry node and a unique exit node as well as

predicate values connected by edges forming paths of sequential nodes between the

entry and the exit node. Figure 2.1 presents the graphical representation of the basic

control flow graph structures.

Figure 2.1: Control flow graph notation

12

There are numerous ways to create a control flow graph from a program. A CFG

can be created manually or automatically. In Java, for example, a CFG can be

constructed from the Java source code, or from the Java bytecode.

Based on the control flow graph of the program, test cases are created with the

purpose of creating an adequate set of test cases. The adequacy of the test cases can

be measured by selection criteria, such as statement coverage, branch coverage, and

predicate coverage.

Require: m and n are both greater than zero
m ≥ n for efficiency

euclid (int m, int n)
1: int r;
2: if (n > m) then
3: r = m;
4: m = n;
5: n = r;
6: end if
7: r = m % n;
8: while (r ! = 0) do
9: m = n;

10: n = r;
11: r = m % n;
12: end while
13: return n;

Figure 2.2 shows an example taken from [74]. This example computes the great-

est common divisor (GCD) of two numbers; the example contains two of the basic

common structures of a program, if and while.

Basis Path Testing

Basis Path Testing is a white box technique defined by McCabe [43] that uses the

control flow structure of the program to design test cases. Based on the cyclomatic

complexity measure, the basis path technique creates a basis set of paths for any

graph.

13

Figure 2.2: Greatest common divisor control flow graph

The cyclomatic complexity measure is an important property of the basis path

technique. The cyclomatic complexity measure not only defines the maximum number

of linearly independent paths in the graph but also ensures that every edge of a flow

graph is traversed by at least one path in every basis set. If the graph has a loop,

the Basis Path method restricts the edge traversal in order to avoid infinite loops and

minimize the realizable complexity [74]. The cyclomatic complexity can be calculated

by the following formula:

v(G) = e - n + p,

where G is a graph with n vertices, e edges, and p connected components.

Besides facilitating the creation of test cases for the program, the technique can

also help in the test planning process and assessing the testability of the program.

The basis path testing technique is composed of four steps:

14

1. Represent the control flow graph of the program

2. Calculate the cyclomatic complexity

3. Choose a basis set of paths

4. Create test cases for each path.

Table 2.1 shows the basis set of paths for the GCD example introduced previously

in Figure 2.2. Since the cyclomatic complexity of this graph is three, there is a basis

path set of 3 paths.

Table 2.1: Basis Set of Paths of Euclids’ GCD Program

Paths

1 1 2 6 7 8 12 13
2 1 2 3 4 5 6 7 8 12 13
3 1 2 6 7 8 9 10 11 12 13

According to Watson et al. [74], basis path testing can also be applied at the

module level aiding testing of integrated components. To use basis path testing at

the module level, a design reduction technique in the control flow graph is essential

since all the control structures that are not involved with module calls need to be

removed.

The basis path technique, at the module level, helps to reduce the number of inte-

gration tests since it focuses only on components that have decision points (calls) to

others and the design complexity can be significantly less than cyclomatic complexity.

2.2 Software Product Lines

Software product line engineering (SPLE) has been shown to be a very successful

approach to software development that allows engineers to build families of products

15

that share some functionalities in short time and with high quality [70]. This paradigm

has received attention in industry and the software research community as it shows

how the development of products can be improved and more importantly how to

respond quickly and effectively to market opportunities.

According to [12], a software product line is “a set of software-intensive systems

sharing a common, managed set of features that satisfy the specific needs of a par-

ticular segment or mission and that are developed from a common set of core assets

in a prescribed way.”

The SPL development approach consists of two main phases: development for

reuse called domain engineering and development with reuse called application engi-

neering (See figure 2.3). Domain engineering is the phase where the variability and

commonality of a system is identified, and a core set of reusable assets is developed.

The assets include the requirements, design model, implementation, testing and other

assets used in software development [56]. The key concept of the domain phase is the

variability which is closely related to reuse. This results in the creation of a feature

model as described below. Application engineering is the phase where an individual

software product is built in accordance with the feature model.

Feature models are the artifacts most widely used to represent the variability of

SPLs. In general, a feature model is a graphical representation that depicts the set

of all features of an SPL and relationships among them. First proposed by Kang et

al. [36], the feature model is a diagram where the common and the variable features,

as well as the different relationships between them, are represented hierarchically. Lee

et al. [41] review the concepts of features, and provide a guideline to create feature

models in an efficient and effective way. Metzger et al. [47] provide a detailed survey

of feature diagrams and the different representations found in the research literature.

Benavides et al. [6] present a literature review of automated analysis of feature models.

16

Figure 2.3: Framework from SPL engineering [57]

Next, we describe the notation of the basic features of a feature model.

• Mandatory. A parent feature has the mandatory relationship when all its child

features must be included in all products of the SPL. In our calculator SPL

example, the mandatory feature groups are Core, Operations, and Language.

The Core feature group has two mandatory child features, Exit and Clear. The

Operations feature group has four mandatory child features: Add, Sub, Div

and Mul. The Language feature group is an alternative feature, as explained

bellow.

• Optional. A parent feature has the optional relationship when any number of

its child features can be included in among the products derived from the SPL.

In our calculator SPL example, the optional features are Backspace, Signal,

Reciprocal, Square Root, Percentage and the memory set of functionalities.

Those functionalities may not be present in some products.

• Alternative. A parent feature has the Alternative relationship when only one

child feature can be included in the products derived from the SPL. Language is

17

the alternative feature of our example, the calculator SPL. Calculators derived

from this SPL must contain only one language.

• Or. A parent feature has the Or relationship when at least one of the child fea-

tures must be included in the products derived from the SPL. In our calculator

SPL example, the Or features are the memory store functionality. Products

may contain one of the functionalities, M+ and MS, or both can be included.

In addition to the parental relationship between features, the feature models also

contain cross-tree constraints between the features. The constraints are:

• Requires. The Requires constraint represents an implication relationship be-

tween features. If a feature A requires a feature B, every product that includes

feature A must also include the feature B. In our calculator SPL example, the

memory recall feature requires the store feature. This means that a selection of

memory recall feature is only meaningful in connection with the Store feature.

• Excludes. The Excludes constraint represents a mutual exclusion relationship

between features. If a feature A excludes a feature B, both features cannot be

present in the same product.

Some extensions of the feature model have been proposed in the literature. Batory

[4] has proposed constraints in the form of generic propositional formulas; Some

authors [19, 63] have proposed extensions with UML-like multiplicities of the form

[n,m] with n being the lower bound and m the upper bound; Others [4] have proposed

the inclusion of attributes to include additional information on the features. Feature

models have also been used for generative programming [3,18,67], providing a model

based approach to the realization of product lines.

18

There has been a lot of work on feature modeling [2,3,36,56,64] of which we have

presented only a small subset.

2.2.1 Orthogonal Variability Model

The Orthogonal Variability Model (OVM) [56] supports the abstract and consistent

representation of software product line variability. In this model, the core concepts

are the variation point (VP) and the variant (V). Each variation point has at least

one variant, and the association between these elements describes their dependency.

In OVM, the dependencies between features can be Mandatory, Optional and

Alternative. For alternative dependency, a group of variants is associated with a car-

dinality [min..max] which determines the total number of variants selectable for one

product family. The authors also include the term of “variability constraint” to rep-

resent the constraints in the model. OVM also graphically represents the constraints

between features. A constraint may be defined in three different ways: (1). between

variants (Vs) and variants (Vs); (2). Between variants (Vs) and variation points

(VPs); and (3). Between variation points (VPs) and variation points (VPs). Figure

2.4 shows the graphical notation for OVM modeled with the OVM Improver available

at [55]. The OVM Improver tool supports the modelling of variability including the

detection and correction of defects.

To illustrate this notation, we model our calculator SPL example in OVM (Figure

2.5). The calculator SPL has five variation points (VPs): Core, Operations, Lan-

guage, Memory and Store. Each VP has an association with at least one variant.

The Core VP has three mandatory variants, Exit, Clear (C), Clear (CE) and one

optional variant, Backspace. The Operations VP has eight variants which four are

mandatory (Add, Sub, Div and Mul) and four are optional (Signals, Square root,

19

Figure 2.4: OVM notation

Percentage and Reciprocal). The Language VP has an alternative dependency with

cardinality of 1 to 1. The variants for the Language VP are Chinese, English, and

Spanish. The Store VP also has an alternative dependency, but with a different cardi-

nality, 1 to 2. The variants for the Store VP are M+ and MS. The require constraint

is represented between variants recall and store, and between variants clear and store.

Figure 2.5: Calculator SPL feature model

20

2.3 Testing Software Product Lines

Software product line development promises to develop a family of products in short

time with high quality at lower costs [70]. To achieve this goal, quality assurance

became an essential part of the development process. Quality attributes such as

correctness and reliability have begun to receive attention from industry and the

research community as a consequence of the efforts to use more effectively the assets

of an SPL throughout the products [25,49].

Most of the research done for software product line development is focused on

requirements, design, and implementation. Pohl et al. [57] describe six essential prin-

ciples for SPL system testing that should be taken into consideration when developing

testing techniques for SPL engineering. Several testing challenges for SPLs are identi-

fied in [50,66] of which the main one is the need to test many closely related products

that all are part of a single specification. Jaring et al. [34] claims testing in software

product lines does not always optimally benefit from reuse. Kolb and Muthig [38]

point out, however that testing has not made the same advances as other parts of the

SPL lifecycle and remains a bottleneck in SPL development.

Jaring et al. [33] point out that the testability of a product line can be viewed

as a function of the binding time of variability, and that providing early binding can

increase the ability to test products early.

McGregor [45] introduces a set of testing techniques for software product lines

including core assets of testing. These techniques are similar to techniques used in

software development of single systems and does not address reusable test specifi-

cations. McGregor [44] and Cohen et al. [15] have suggested ways to reduce the

combinatorial space by sampling products for testing using combinatorial interaction

testing [13]. We use this technique as a comparison method in our case study.

21

Several authors [7,52,53,62] have proposed the use of use cases to systematically

reuse test specifications. Olimpiew et al. [53] introduces CADeT (Customizable Ac-

tivity diagrams, Decision tables and Test specifications). CADeT is a functional test

design method that utilizes feature-based test coverage criteria and use cases creat-

ing a reusable set of test specifications. Nebut et al. [52] uses use cases to generate

product-specific functional test objectives, and a tool is proposed to automate the

test case derivation. Reuys et al. [60, 62] presents ScenTED (Scenario-based Test

case Derivation), a technique that supports the derivation of system test cases from

domain requirements.

Other research on methods for testing families of products includes the PLUTO

testing methodology [7], where the feature model is used to develop extended use

cases, PLUCS (Product Line Use Cases), that contain variability which can formulate

a full set of test cases using category partitioning for the family of products; however,

this work does not provide methods for reducing testing effort across products.

Other work on testing software product lines includes that of Denger et al. [21]

who present an empirical study to evaluate the difficulty of detecting faults in the

common versus variable portions of an SPL code base concluding that the types of

faults found in these two portions of the code differ. They use both white and black

box techniques but do not test from the feature model.

Feature models have been used to model the product space for instantiating prod-

ucts for testing [7, 15, 69]; for instance, the work of Uzuncaova et al. [69] transforms

a feature model into an Alloy specification and uses this to generate test cases, while

the work of Cohen et al. [15] uses feature models to define samples of products that

should be included in testing. Schürr et al. [65] use a classification tree method for

testing from feature models. Other extensions of feature models have been created

for staged generation [17] or modeling constraints [20]. None of this work explicitly

22

uses feature models as we do, in a graph based representation that can be used to

select products (and test cases) for testing as a control flow graph can be used for se-

lecting paths and test cases. The work of Bachmeyer et al. [2] also uses a graph based

representation of a feature model, but they do not use this in the testing process.

23

Chapter 3

Designing Software Product Lines

for Testability

Software product line engineering (SPLE) promises to develop a family of products

in a short time with high quality. The key to this is the reuse of artifacts. Reuse of

software artifacts is the ability to leverage the use of the same artifact into another

environment. Software product line engineering leverages reuse within all phases of

the software life cycle development - from software requirement development through

software maintenance. Software reuse can reduce not only the development costs,

time, effort, and risk but also can improve the quality and productivity of the system.

The most common type of reuse is the reuse of software components, however other

artifacts can also be reused during software development, such as system architecture,

design models, and others [39]. Jha et al. [35] claims that domain engineering is not

the only key for reuse in SPLE, but that the documentation of software architecture

supports the reuse and integration of reliable components.

Identified as a bottleneck in software product line engineering, software testing

has become a crucial phase in the development cycle. Freedman [30] has argued that

24

design for testability is the most fundamental practice of software testing. Chanson

et al [11] define software design for testability as a process of applying techniques and

methods during the design phase in order to reduce the effort and cost in testing.

Software testability [8,9,28,71,72] is a subject that has been investigated over the

years by both the research community and industry with the intent of making software

testing more efficient and effective. According to Voas and Miller [72], software testing

can reveal faults while testability cannot, but testability can suggest places where

faults can hide from testing, something testing cannot do.

A lot of definitions have been proposed for software testability of single systems

where each of the definitions reflects the testability of software from different points

of view. In general, software testability is associated with the degree to which a

software artifact facilitates testing of a program by reducing the testing effort. The

IEEE standard glossary [22] defines testability as (1). “the degree to which a system

or component facilitates the establishment of test criteria and the performance of

tests to determine whether those criteria have been met” and (2). “ the degree to

which a requirement is stated in terms that permit establishment of test criteria and

performance of tests to determine whether those criteria have been met”.

Voas et al. [71, 72] define testability as a prediction of the probability of soft-

ware failures when faults exist in the software. Freedman [28] analyzes observability

and controllability software properties and introduces the domain testability concept.

Binder [8] claims that software testability is a result of a combination of six factors:

representation, implementation, built-in test, test suite, test support environment,

and software process capability. In [9], the authors analyze two factors that influence

the testability of a system: the number of test cases required to test the system, and

the effort required to develop each of the test cases.

On the other hand, only a few researchers have defined testability for software

25

product lines. Jaring et al. [33] point out that the testability of a product line can

be viewed as a function of the binding time of variability, and that providing early

binding can increase the ability to test products early. Kolb and Muthig [38] discuss

how to improve the testability of a product line architecture, and claim that the easiest

case is testing products with no variability at all which means that some components

are used by all products of the same family. The authors define testability of an SPL

as “a characteristic of the architecture, design and implementation and with respect

to the testing phase and an activity of the test process. Furthermore, product line

testability refers to the testability regarding reusable product line components and

the product line members built using them.”

While all of the work just described aims at the core problem of software testability,

none of if specifically considers testability of SPLs as an artifact of reuse in SPLs;

something that can be determined by analyzing the feature model in the application

engineering phase. In this work, we consider testability of SPLs from this perspective.

We begin with the conjecture that the testability of a software product line can be

improved by designing the product line architecture (and resulting feature model) in

a manner that supports reuse of testing assets across different products of the same

family. Others have argued that variability decreases testability [38], but we believe

that there should be a finer grained examination of this argument. Both optional and

alternative features can be viewed as points of variability in a software product line,

yet we believe they may behave differently from a black box testability perspective

and provide different opportunities to reduce testing effort, as we explain in Section

3.2.

By paying attention to testability early in the design phase, the testing phase

can be improved by avoiding redundant tests and revealing faults. In the following

sections, a detailed analysis of different types of features and their relationships in

26

the feature model is performed. We explore the issue of variability, and evaluate the

correlation between the characteristics of each feature/relationship and testability.

We also analyze the different levels of granularity of features in the feature model

and how each affects the testability of the SPL. This connection will help not only

the traceability of test cases and features of the SPL, but the avoidance of redundant

test cases as well. A cost per fault benefit may occur by selecting the appropriate

granularity level of features.

3.1 Testability Measures

Before presenting the analysis of features and its correlation with testability, we

present some metrics that can be used to evaluate the testability of feature mod-

els. We begin with metrics that are not derived directly from the feature model but

that measure how testable a particular feature model is given a set of test cases that

can be mapped to elements within the model. We leave a design-level set of metrics

as future work.

In this section, we first introduce our definition of software product line testability,

and then we develop key metrics to measure the impact of different approaches for

testing SPLs. These key metrics are used for evaluating different characteristic of a

feature model in Section 3.2.

3.1.1 Definition of Testability

Our definition for testability of software product lines is created from a family per-

spective. The testability of a software product line is the degree which feature models

allow for greater reuse of test artifacts across products of the same family without

losing effectiveness.

27

We consider the testability degree of a software product line to be high when it is

possible to perform an efficient and effective test of all features, with a small set of

products. Efficiency is the ability to execute a small set of test cases without avoiding

redundant tests. Effectiveness is the ability to reveal faults within products.

3.1.2 Key Metrics

A software design leads to a system that must be tested, and that can be tested

more or less efficiently and effectively. Several software metrics are based on internal

characteristics of software to predict an expected behavior. We believe that there

exists a way to measure the testability of an architecture/feature model itself by

analyzing their characteristics.

As a first step we begin by defining metrics that indicate if a particular model is

more or less testable based on reuse post-hoc. In future work we will develop metrics

to measure testability on the architecture directly.

To introduce the testing efficiency and effectiveness in software product lines we

introduce metrics for each: effectiveness and reduction.

The effectiveness formula is the ratio of the union of revealed faults for all the

products to all revealed faults in the system. Given M products, we define Fi as the

set of faults that are found when testing product i, where 1 ≤ i ≤ M. If FSPL is the

set of faults found in all M products then we can define the effectiveness of testing a

sub-set of products as:

Effectiveness =
|⋃M

1 Fi|
|FSPL|

∗ 100 (3.1)

For instance if we can find 10 unique faults when testing all products in the SPL

and then find faults 1,2,3,5 in one product and faults 1,2,6,7 in another product our

28

effectiveness is 6/10 * 100 = 60%.

The reduction formula is the ratio of the total number of test cases used to test

the SPL and the total number of test cases used to test all products of the SPL. Given

M the number of products tested, we define Ti as the total number of test cases for

product i, and N is the total number of products. Reduction is then defined as

Reduction =

(
1−

∑M
i=1 Ti∑N
i=1 Ti

)
∗ 100 (3.2)

For instance if we have a total of 10 products which each has 10 test cases, and

we selected only 20 of all the test cases, we will have a reduction of (1 - 20/10*10) *

100 = 80%.

Given both the reduction and the effectiveness of testing for different feature

models we can associate these with different levels of testability. For a full notion

of testability we will need to tie this back to the architecture/design of the system

itself.

3.2 Feature Model for Testability

Given our definition and metrics for testability we believe that different characteristics

of the feature model lead to more/less testable SPLs. In this section, we evaluate the

characteristics of variability and constraint relationships of a feature model and how

they affect the testability of SPLs. We analyze the testability of feature models from

a black box point of view using only requirements of the system without accessing

the source code of the application. There are four types of variability: Mandatory,

Optional, Or and Alternative and two types of relationship: Requires and Exclude.

We not only analyze them, but also classify them into groups according to their testa-

bility. Table 3.1 summarizes the four variability types and two relationships analyzed

29

in this section providing a brief description of the variability and their testability

classification.

Table 3.1: Classification of Features

Variability Description Classification

Mandatory Features that must be present in all products. Neutral
Optional Features that may be present in all products. Positive

Or Features for which at least one variant must be selected
over the possibilities.

Positive

Alternative Features that are mutually exclusive and only one of the
variants can be included in a product.

Negative

Constraint Description Classification

Requires Constraint used between two features when one feature re-
quires another feature’s capability.

Positive

Excludes Constraint used between two features when one feature can-
not be grouped with the other.

Negative

Mandatory features are features that must be present in all products created

from the SPLs. We also can see mandatory features as the commonality of all products

created by an SPL model. From the testability point of view, we classify this group

as neutral. Even though we classified this group as neutral, the testing of SPLs may

be improved by testing the mandatory features only once avoiding the redundancy

of reusing test cases over all the products, but we leave this as a future research

direction.

Figure 3.1: Mandatory features of the calculator SPL

30

For a better understanding, consider the Core variant point from our example,

the calculator SPL. Figure 3.1 shows just this part of the OVM model. This VP

specifies core functions of a calculator program. The Core VP has four variants of

which three of them are mandatory. Since this VP is mandatory, each product will

include at least the three mandatory variants. Even though all products contain the

mandatory features, we can select the tests related to those variants to run only once

and discard the related tests cases on the next products.

Optional features are features that may be present in products created by an

SPL model and provide one way to represent the variability of an SPL. Optional

features can be combined in many ways in an SPL model. These features can appear

as a variation point, variant, and grouped together with other types of features (op-

tional and/or mandatory). From the testability point of view, we classify this group

as positive since it is possible to include all the optional features, and valid features,

in one product having the largest number of features activated. Since reuse is the key

concept for SPL, we can exhaustively test the feature only once, and discard it from

other instances.

Figure 3.2: Optional features of the calculator SPL

For a better understanding, consider the memory variant from our example, cal-

culator SPL. Figure 3.2 shows just this part of the OVM model. This VP specifies

31

the memory capability of a calculator program. Since this variant is optional, not all

products of this SPL will include this feature. We improve the reuse of this feature

by exhaustively testing the product that contains the memory feature, and discard

the tests of this feature in other products that may contains the feature.

Or features are features for which at least one variant must be selected over

the possibilities. For these the product will have one or more variants under the

same variant point. The characteristics of this feature are highly correlated with the

Optional feature group since they have practically the same behavior. We classify

this group as positive. Like the Optional group, the Or feature group allows us to

include all possible variants in one product.

Figure 3.3: Or features of the calculator SPL

For a better understanding, consider the Store variant point from our example,

the calculator SPL. Figure 3.3 shows just this part of the OVM model. This VP

specifies how the numbers will be saved in the memory of a calculator program. The

store VP has two variants: M+ and MS and has a cardinality of 1 to 2. Since this

VP is optional within the SPL, we can include both variants (M+ and MS) into the

same product, and test it exhaustively. There is no need to test it again on other

products of the same family.

Alternative features are features that are mutually exclusive and only one of the

variants can be included in a product. From the testability point of view, we classify

this group as negative. To cover all the variants, we need n products where n is the

32

Figure 3.4: Alternative features of the calculator SPL

total number of variants under the alternative VP. In addition, the alternative features

may further decrease the testability of SPLs when the behavior of each variant may

affect the whole product, and consequently all other features (functionalities) need to

be tested together.

For a better understanding, consider the Language variant point from our example,

the calculator SPL. Figure 3.4 shows just this part of the OVM model. This VP

specifies the language that will be used in menus, title, help and etc. The language

VP has three variants: English, Spanish and Chinese. Since this VP is mandatory

within the SPL, each of the languages must be tested together with the rest of the

variants in the SPL. The VP can have only a single language included at a time,

therefore, any testing that occurs with English and other variants such as with the

optional operations (such as percentage) will need to be repeated with Spanish and

Chinese. However, the optional operations may already have been tested with other

parts of the SPL such as with the memory variants so there will be repetition in some

of our test cases that cannot be avoided.

Now, consider the Store variant point. In our feature model, this variant point

has the “Or” dependency but for illustrative purpose we will simulate the case in

which this VP has an alternative dependency. Figure 3.3 shows just this part of the

OVM model. This VP specifies how the numbers will be saved in the memory of

33

a calculator program. The store VP has two variants: M+ and MS. Since this VP

is optional within the SPL, each of the variants may be tested only once avoiding

the repetition of the tests cases. Controversially of language VP, the store variants

(M+ and MS) have no impact on other variants of the calculator SPL facilitating the

discarding of this VP in testing other products.

Based on these characteristics, we can categorize the Alternative feature group into

two smaller groups: Alternative Features that affect the whole SPL and Alternative

feature that affect only their own functionally. Unfortunately, the decision of which

subgroup this feature belongs to must be made by the Software Engineer team.

The Requires Constraint is a constraint between two features, and it is used

when one feature requires another feature’s capability. When one of them is selected

for a product, the other must also be present in the same product. From the testability

point of view, we classify this group as positive since it is possible to include the

“required and requires” variant in the same product. Based on this characteristic,

we suggest that we always include the required and requires variants in the same

product. This procedure will avoid the redundancy in testing of variants that are

required by another variant.

For a better understanding, consider the Memory variation point which has three

optional variants: Store, Clear and Recall. Figure 3.5 shows just this part of the

OVM model. Even though all the variants have different behaviors, the Clear and

Recall variants need the Store variant capability to work properly. Based on this,

we suggest selecting Recall and Clear variants every time that the Store variant is

selected to become part of one product.

The Excludes constraint is a constraint between two features, and it is used

when one feature cannot be grouped with the other. This means that when one of

them is selected for a product, the other feature must not be present in the same

34

Figure 3.5: Requires constraints of the calculator SPL

product. From the testability point of view, we classify this group as negative since

we will need two products to test both features.

3.3 Granularity of Feature Models

Different phases of life cycle development may require feature models of different

granularity. For example, fine-grained feature models are essential when extracting

features from legacy applications, while a coarse-grained feature models is enough at

the requirement level. Determining the appropriate level of granularity for features

in a feature model is still an open question.

In the previous section we extended the definition of testability for SPLs. In this

section we analyze different levels of granularity of features in the feature model and

evaluate how each of them affects the testability of an SPL considering the relationship

between the two properties of granularity and traceability of a program.

35

3.3.1 Granularity

Granularity is the degree to which a system can be broken down into it is behav-

ioral entities. In feature models, features can have different levels of granularity. A

feature can represent a whole functionality, an extension of functionality, a part of

functionality, or even a few lines in the program.

Granularity of features in feature models is a topic of feature modeling that has

received a little attention by both the research community and industry. Kästner et

al. [37] discuss the effects of granularity of features for two common ways to imple-

ment an SPL: the compositional approach and the annotative approach. The authors

point out that a compositional approach does not support fine-grained extensions of

feature models while an annotative approach does even though it introduces readabil-

ity problems. Lee et al. [41] provide guidelines for refinement of features in the feature

model. The authors argue that features must be easily mapped to architectural com-

ponents, and this will enhance the traceability between architectural components and

features.

As SPLs grow in size and complexity designing the right granularity of feature is

required for feature models. If granularity is too fine, then feature models can become

complicated, unreadable and unmaintainable [37]. If granularity is too coarse, then

feature models can hide some important behavior of an SPL losing the connection

with other models such as the architectural model.

For a better understanding, consider an extension of our example, the calculator

SPL. This extension includes two kinds of number systems: decimal and hexadecimal.

Hexadecimal is a positional numeral system with base 16. It uses sixteen distinct

symbols, 0-9 to represent values zero to nine, and A, B, C, D, E, F to represent

values ten to fifteen. A few features of the calculator SPL are affected by this new

36

addition where each operation of the calculator SPL needs to be performed with two

types of number systems.

We can model this new addition in two different ways. Figure 3.6 shows the

coarse-grained version of the feature model, while Figure 3.7 shows the fine-grained

version. As we can see, both models use different granularities to model the new

addition previously introduced. Figure 3.6 uses a coarse granularity by adding only

a new variation point called Number Systems and associates it with the calculator

SPL by adding a requires constraint. Figure 3.7 used a fine granularity adding a new

variation point Number Systems to each affected operation of the calculator SPL.

Figure 3.6: Coarse-grained feature model of the calculator SPL

Figure 3.7: Fine-grained feature model of the calculator SPL

37

3.3.2 Testability and Granularity of Feature Models

Traceability is a technique that creates a relationship between system requirements

and others artifacts of the system. It plays an important role in software develop-

ment since it can verify that an implementation fulfills all the requirements and help

with change management. For example, the traceability quality attribute supports

software engineers in the identification of failed test cases (defects) with one specific

requirement of the system.

For an illustrative example, suppose that we are testing the Add operation within

a product that contains the two types of number systems previously introduced, and a

failure happened. With the coarse-grained feature model (Figure 3.6) we can identify

that there is a problem with the Add feature but we are not able to identify which

number system failed since the add operation has a relation with each type of number

system. However, if we consider the fine-grained feature model (Figure 3.7) we can

easily identify which number system failed on the execution of the Add operation.

The fine-grained feature model made it easy to establish the connection between the

operation performed and the number system used.

We believe that a proper connection must exist between test cases and features.

This connection will help not only the traceability of test cases and features of the

SPL, but the avoidance of redundant test cases as well. The right level of granularity

can bring several advantages when considering testability of software product lines.

We enumerate some of these advantages here:

• Different levels of granularity will produce differing numbers of test cases and

different amounts of re-use. By selecting the appropriate granularity testing the

SPL may become both more efficient and more effective.

• Traceability between features and test cases can improve black box testing.

38

Choosing the correct granularity can improve traceability.

• Having the correct level of granularity will have an impact on the number of

test cases that may be re-used between different SPL products improving re-use

and avoiding redundancy.

Given the possible impact of granularity on testability we believe that this should

be part of our model. In Chapter 5 we examine granularity as part of our case study

to understand more about this issue. But we leave much of the work of defining the

correct granularity for SPL testability as future work.

39

Chapter 4

Leveraging Redundancy for

Testing via Feature Models

In the previous chapter, we defined testability for software product lines in terms of

test case reuse across products and developed key metrics to measure the impact of

different approaches for testing SPLs with testability in mind.

We now propose a new black box approach for testing software product lines that

takes into consideration types of variability of feature models identified in the previous

sections. We hypothesize that our approach can reduce testing effort while retaining

good fault detection in the presence of the most types of variability.

Our methodology, which we call the FIG Basis Path method, involves five main

steps as introduced in Figure 4.1. In step 1, we associate each feature of the feature

model with the use cases requirements for the software product line. In step 2, we

create test cases that cover all scenarios of each use case. In step 3, we transform

the feature model into a feature inclusion graph; that is, in essence, a feature model

dependence structure of an SPL. In step 4, we walk the feature inclusion graph to

generate a subset of independent paths that cover the graph for testing where each

40

Figure 4.1: FIG testing framework

independent path can be seen as a valid product of the software product line. Steps

3 and 4 may happen in parallel with step 2. Finally, in step 5, we select all test cases

related with each feature of the product and execute them.

Next, we described each step of our methodology in detail.

4.1 Associate Features with Use Cases

Use case modeling offers poor assistance in modeling variability of software product

lines. A lot of work has been suggested by the community to cover this deficiency

[23,26,40]. Eriksson et al. [23,24] argue that association of features and use cases is a

many-to-many relationship where one feature may be described by several use cases

and one use case may be included in several features.

In this section, we describe the PLUSS approach. Essentially, the PLUSS approach

maintains one use-case diagram for the SPL, and uses the feature model as a tool to

41

Figure 4.2: Operation use case and feature model

compose all the different products from the SPL. The authors created a meta-model

that associates use cases, use-case realizations and features of the feature model. The

meta-model is shown in Figure 4.3. For a detailed description, see [24].

Figure 4.3: PLUSS meta-model [24]

For an illustrative example, consider the division operation use case for the calcu-

lator SPL example. The division operation use case describes how a division operation

is performed by users of the calculator program. Figure 4.2 shows a snippet of the

calculator feature model and the use case diagram. By applying the PLUSS meta-

model, we associate the feature div on the feature model with the division operation

use case.

42

In our methodology, we used the meta-model defined in PLUSS [24] to integrate

use cases and features.

4.2 Create Test Cases

A large body of work on extraction of test cases from use cases has been done.

Use cases [1, 68] are descriptions of a system’s requirement using natural language

that capture a system functional requirements. First, software engineers identify all

scenarios (main and alternatives) of a specific use case. Scenarios are paths through

flows of events in the use case. Then, test cases are created with the main purpose

of covering all the scenarios thus identified.

Figure 4.4: Division use case and paths

For an illustrative example, consider the use case for the division operation of our

example, the calculator SPL. Figure 4.4 shows the Division operation use case. On

the left side of the figure, we present the use case description of the division operation.

On the right side, we present the graph representation of the use case. By analyzing

the use case, we will create two test cases: one that executes the main scenario of

43

the use case, and another one for the alternative path. Table 4.1 shows the test cases

created based on the division use case requirement and the steps covered by each of

them. We highlight (using dashed lines in figure 4.4) the paths that we aim to execute

by the test cases created for this use case.

Table 4.1: Covered Steps from Division Use Case

Test cases Covered steps

1 1, 2, 3 and 4

2 1, 2, 3 and 3.1

4.3 Transform Feature Models into Feature

Inclusion Graph

There has been a large body of work on feature modeling [2,36,64]. Some of this work

includes transforming a feature model into a graph [2] - not for the explicit purpose of

testing, but rather to incorporate more fine grained constraint information [20] or for

generating the products themselves [3]. We do not know of other work, however, that

transforms a feature model into a graph for the explicit purpose of test case selection.

In this section we present a transformation of the feature model into a graph that

we call a feature inclusion graph (FIG), which represents feature dependencies derived

from the feature model. We classify a testing technique based on the FIG as a black-

box technique since the graph relies exclusively on the feature model of an SPL, a

diagram created at the domain engineering phase. However, we take some advantage

of white-box techniques, such as those that use control flow graphs and basis paths,

to improve our testing methodology.

44

In a FIG, all features that appear on a non-branching path are included in the same

product, while branches represent the variability in feature composition. We view the

FIG as having a loose connection to the control flow graphs used in software testing;

a control flow graph shows explicit flow of control in a program and can be used to

select test cases for white box testing. Harrold [31] has suggested that regression

testing techniques can be applied to different abstractions of software artifacts as

long as they can be represented as a graph and tests can be associated with edges. In

our scenario we do not have control flow; rather, our paths represent a combination

of features and their dependencies, but we use a common method from control flow

based testing to find a basis path set [75] for the graph – a set of independent paths

through the program graph.

The FIG contains all features of the SPL. We next show how it is derived using

different parts of a feature model from OVM [56]. In OVM, the core concepts of an

SPL model are the variation points and variants. Each variation point (VP) has at

least one variant and the edges between VPs and variants indicate dependencies. In

a FIG we apply the same OVM concepts. A FIG has two main components, features

and edges. The edges represent the variability of our diagram making explicit all

possible paths that we can traverse to generate the minimum set of products. The

features are classified as Mandatory, Optional, or Alternative. Next, we describe how

each feature and edge are represented in the FIG and how they interact with each

other.

In a FIG, a variation point is represented as a triangle and variants are repre-

sented as rounded rectangles. A Mandatory dependency is represented by a solid

edge between a VP and variant, while an optional dependency uses a dashed edge.

A diamond represents the variability of optional and alternative features of an SPL

model (a variant can/cannot be selected for one specific instance). Figure 4.5 shows

45

an example of Mandatory and Optional features represented in the OVM language

and FIG diagram, respectively. In this example we see on the left (Figure 4.5) two

mandatory features in OVM (B and C). These are both required in the same flow of

control therefore we put them on a single non-branching edge of our FIG (left in the

figure). Note that either B or C can come first since the dependency is only important

at the branches (e.g. this is a partial order). We show two optional features (again

B and C) on the right side in Figure 4.5. Here in the figure (lower right) we have

added three branched edges. The middle edge represents the case in which neither

feature is included, while each of the other edges allow for the inclusion of either

feature. We also include a back edge for each feature since it is possible to include

a second feature. Assuming that we allow only one instance of a feature for a single

product, (we do not handle the case in which multiple copies of a feature occur in

our representation) we can see that there are four possibilities in this graph: we can

have no optional features, one of B or C, or both B and C.

B

C

A

B C

A

Figure 4.5: Mandatory and optional features

From a testability perspective we view this type of variation to be more testable

than some other types of variation, since we can include both features (B and C) in a

single product. With two optional features we have a 75% reduction in the number of

products that we must instantiate in order to test all features. For a concrete example

46

we can apply this to the Core variation point and its variants in the calculator SPL.

The Core variation point has three mandatory features (Exit, Clear (C) and Clear

Entry (CE)) and one optional feature (Backspace) as shown in Figure 4.6. As we can

see in this case the optional feature (backspace) can be included in the first product

tested providing us with a single instance (instead of the possible two instances in

the SPL snippet).

Core

Exit

Clear (C)

Backspace

Figure 4.6: Calculator example

Alternative features are features that are mutually exclusive and present a more

difficult challenge for testability. We argue that these are the true deterrents to

testability since only one feature can be present in an SPL at a time. Even with these

types of variation points we may still gain some benefit in re-usability. Figure 4.7

shows three examples of alternative features in OVM (top) and their corresponding

FIG (bottom). The first example (left) has cardinality 0...1, i.e., and is really an

optional feature that can be included in at most one of the two alternatives. In this

case we expect to see a small benefit from the optional feature characteristics. We

need two of the three possible products to cover all features.

The second example (middle) shows the exclusive or 1...1 relationship. This is

the least testable type of variation since it forces the combinatorial space to increase.

Here we have two dashed edges to B and C, no back edges and no middle edge. We

have two possible products and need to test both to cover the features of this graph.

47

B C

A

B C

A

B C

A<0..1> <1..1> <1..2>

Figure 4.7: Alternative features

We see no reduction in paths.

The last example (right) is when we have a 1...n relationship; the figure shows

a 1...2 relationship. We have a back edge from each feature, and we can cover all

features using a single product even though there are three products (B, BC, and C),

by including both B and C in our product for testing.

The graphs do not explicitly incorporate constraints in the representation. We

maintain a separate set of constraints that we can check during our graph traversal,

to ensure consistency, but will examine this in future work. Figure 4.8 presents our

example, the calculator SPL, represented in the FIG notation.

4.4 Compose Products

In this section we present four methods for selecting products for testing. The first

two use the FIG and the second two do not. The first method is our core algorithm

called the FIG Basis Path method. The idea is to select a set of independent paths

in the program that cover all features in the graph. We then present a variant of

this method called the FIG Grouped Basis Path method that tests subfamilies of the

product line grouped by the alternative features in the SPL. We believe that this

method will be incorporated into the development process more smoothly, where one

48

Figure 4.8: Calculator SPL Feature Inclusion Graph

particular subfamily is created at a time. The third method does not use the FIG, but

is used in our empirical comparison as a method that we believe will be less expensive;

we call this the All Features method. The algorithm greedily chooses products until

49

all features in the product line have been included at least once. The last method we

discuss is also used as a basis for comparison. We expect that it will be stronger than

the other comparison method, but also perhaps more expensive. This is the Covering

Array method suggested by McGregor [44] and Cohen et al. [15]. In this method we

select a subset of products from the feature model that cover all pairs of features in

the SPL.

We describe each method in more detail next.

4.4.1 FIG Basis Path

The FIG Basis Path method (Algorithm 1) is based on the basis path algorithms

in [75]. In this algorithm we assume that the FIG is built and that we have a set of

constraints on the features. We begin by iterating through all paths in the FIG in a

depth first traversal in order to ensure that we find the longest paths first (line 1). In

the algorithm we reference the authors use a breadth first search, but our objective

is slightly different. For each path we check the constraint set to see if the path is

feasible (line 2). If it is, we then check if it is linearly independent with the other

paths in BP (line 3). In our study we performed this step manually; however, it can

be automated with a constraint solver. If it is independent we add it to BP (line 4).

Algorithm 1 FIG Basis Path Algorithm
Require: Set basis path (BP) empty.

BasisPath(FIG)
1: for all paths, P, ∈ FIG (using DFS order) do
2: if P is feasible then
3: if LinearlyIndependent(P, BP) then
4: add P to BP
5: end if
6: end if
7: end for

For example, suppose we want to select the minimum set of products in the calcu-

50

lator SPL. We show the FIG in figure 4.8. For each path, we evaluate if it is feasible

by checking existing constraints. In this case, all paths that include the Memory

Recall variant and do not include the Store variant will be removed from the final set

of paths (Products). We next begin our selection. In the first path, 16 variants are

selected, containing all of the mandatory features and optional features, one language

- Spanish - and three variants from the Memory variant point: Store (M+), Recall

(MR) and Clear (MC). The second path substitutes the Store variant from the previ-

ous path (M+) to MS. The third and fourth paths change only the Language variant.

Table 4.2 lists all the paths created by this algorithm.

Table 4.2: Calculator SPL Instances Generated by FIG Basis Path

Product ID Total Features Features Selected

1 16 Exit, Clear, Clear Entry, Backspace, Add, Sub, Mul, Div, Square
root, Percentage, Sign, Reciprocal, Spanish, Store (M+), Recall
(MR), Clear (MC)

2 9 Exit, Clear, Clear Entry, Add, Sub, Mul, Div, Spanish, Store (MS)
3 8 Exit, Clear, Clear Entry, Add, Sub, Mul, Div, Chinese
4 8 Exit, Clear, Clear Entry, Add, Sub, Mul, Div, English

4.4.2 FIG Grouped Basis Path

The FIG Grouped Basis Path method (Algorithm 2) is a modification of the FIG

Basis Path method, in which subfamilies of the product line are grouped based on

the alternative features. We begin by generating all of the paths in the FIG in depth

first order in order to ensure that we find the longest paths first and check each for

feasibility. We then group all feasible paths by alternative feature groups, where all

paths that include a particular alternative feature are included in its group. If there

are paths that contain no alternative features, we create an additional group to hold

these. For each of these groups, we iterate through all paths. For each path, we check

51

if it is linearly independent with the other paths in BP (line 2). If it is independent

we add it to BP (line 3).

Algorithm 2 FIG Grouped Basis Path Algorithm
Require: Set basis path (BP) empty.

Set FIG GROUP with all feasible paths grouped by features.
GroupedBasisPathAlgorithm(FIG GROUP)

1: for all paths, P, ∈ FIG GROUP do
2: if LinearlyIndependent(P, BP) then
3: add P to BP
4: end if
5: end for

For example, suppose we want to group based on the language VP in the calcu-

lator SPL. In this case we would find all paths that contain Spanish and put them

in one group. All that contain Chinese go into in another, and the rest that contain

English are put into another. In the calculator SPL all paths would contain at least

one of these variation points so we do not have an extra group. Once we have the

grouping, we use the Basis Path algorithm for each group where the FIG is replaced

with the set of paths in the group. We can skip checking feasibility since this has

already been performed. Table 4.3 lists all the paths created by this algorithm.

Table 4.3: Calculator SPL Instances Generated by FIG Grouped Basis Path

Product ID Total Features Features Selected

1 16 Exit, Clear, Clear Entry, Backspace, Add, Sub, Mul, Div, Square
root, Percentage, Sign, Reciprocal, Spanish, Store (M+), Recall
(MR), Clear (MC)

2 9 Exit, Clear, Clear Entry, Add, Sub, Mul, Div, Spanish, Store (MS)
3 16 Exit, Clear, Clear Entry, Backspace, Add, Sub, Mul, Div, Square

root, Percentage, Sign, Reciprocal, Chinese, Store (M+), Recall
(MR), Clear (MC)

4 9 Exit, Clear, Clear Entry, Add, Sub, Mul, Div, Chinese, Store (MS)
5 16 Exit, Clear, Clear Entry, Backspace, Add, Sub, Mul, Div, Square

root, Percentage, Sign, Reciprocal, English, Store (M+), Recall
(MR), Clear (MC)

6 9 Exit, Clear, Clear Entry, Add, Sub, Mul, Div, English, Store (MS)

52

4.4.3 All Features

The All Features method (Algorithm 3), does not require a FIG. This method is

less expensive than the first two because it does not involve enumerating paths and

walking the graph. Instead its goal is to include a set of products that just cover all

features.

We begin by placing all features in one of three sets, Mandatory, Alternative and

all others. We order features in descending order based on the number of constraints

on that feature. We keep a set we call used features which starts as empty. This

set contains all the visited features. For each product, we greedily add features

(putting them in the constraint order described) into a product, skipping those that

are already in the used feature set (unless mandatory (lines 7-8) or violate an exclude

constraint (lines 18-24), or are part of a requires constraint (lines 27-33)), until we

have a product including the greatest number of unused features. We then update the

used features and product sets (lines 25-26). We also include additional constraints

to ensure that only one feature of an alternative variant point is selected (lines 34-

36). Once all features have been included in at least one product we are done (line

40). The intuition behind this method is that we include all features in at least one

product, but we pick products first that have the greatest number of new features, to

minimize the size of the product space tested.

For the calculator SPL, we select three products that cover all features in the

SPL. See Table 4.4. The first product contains the mandatory features, the Chi-

nese language and all variants associated with the Memory variant. The second and

third products do not include any variant from Memory, but the Language variant is

changed to English and Spanish, respectively.

53

Algorithm 3 All Features Algorithm
Require: Set Mandatory with with all common variants.

Set Alternative with a list of all alternative variants.
Set allOthers with all variants of the feature model ordered by highly constrained.
Set VPSet with a list of all variant point.
Set excConstrainst with all pair-variants that has the excludes relationship.
Set reqConstraint with pair-variants that has the requires relationship.
Set usedFeatures empty.

SelectInstance (v, G)
1: for all VP ∈ allOthers do
2: for all v ∈ VP do
3: if (v ∈ VPSet) AND (v /∈ instance) then
4: instance = instance ∪ v
5: SelectInstance (v, G)
6: else
7: if v ∈ Mandatory then
8: add v
9: else if v ∈ Alternative then

10: if any v of curVP ∈ instance then
11: continue
12: else if all v in curVP ∈ visited then
13: instance = instance ∪ v
14: end if
15: else if v ∈ excludeSet then
16: continue
17: else
18: if v ∈ excContrainst then
19: vExc = getExcConstraint(v)
20: if vExc ∈ usedFeatures then
21: continue
22: end if
23: excluseSet = exclude ∪ vExc
24: end if
25: product = product ∪ v
26: usedFeatures = usedFeatures ∪ v
27: if v ∈ reqConstraint then
28: vReq = getReqConstraint(v)
29: for all vr ∈ VReq do
30: product = product ∪ vr
31: usedFeatures = usedFeatures ∪ vr
32: end for
33: end if
34: if if parent(v) ∈ alternativeSet then
35: continue
36: end if
37: end if
38: end if
39: end for
40: Print product
41: end for

4.4.4 Covering Array

Our fourth method, the Covering Array Method is a testing technique that sam-

ples a set of instances in such a way that all t-way combinations are included [14,16].

54

Table 4.4: Calculator SPL Instances Generated by All Features

Product ID Total Features Features Selected

1 17 Recall, MS, M+, Clear, Chinese, Add, Sub, Mul, Div, Square-
Root, Percentage, Reciprocal, Sign, Exit, Clear(CE), Clear(C),
Backspace

2 9 Spanish, Add, Sub, Mul, Div, Exit, Clear(CE), Clear(C),
Backspace

3 9 English, Add, Sub, Mul, Div, Exit, Clear(CE), Clear(C),
Backspace

Table 4.5 lists the factors and values of the calculator SPL as a mixed level covering

array (MCA). We can see that Language has a different size set of values than the

other factors.

A few differences can be noted between this and our other methods. First, in the

Covering Array method we consider optional features as being both included and not

included. Therefore we would not be able to simply test a product with both A and

B but would need to test A with and without B, and B with and without A, as well

as neither feature. While possibly a stronger testing criterion we expect that this

method will be more expensive and may not be helped by improved testability as we

have described it.

Table 4.5: Calculator SPL Interaction Model

Product Line Options (factors)

Operations Memory

Backspace Signal % Recip. Sqrt Language M+ MS MC MR

On On On On On English On On On On
Off Off Off Off Off Spanish Off Off Off Off

Chinese

For a better illustration of this method, consider the pair-wise testing of the calcu-

lator SPL. Table 4.5 shows a list of all possible features of this software product line

that can be combined with each other. In this model, we have 10 factors: Backspace,

55

Signal, Percentage, Reciprocal, Square root, Language, M+, MS, MC and MR. Each

of these factors has a set of possible values varying on the total number of values.

The MCA for the calculator SPL is represented as MCA(25,31,24). Table 4.6 shows

a set of 10 products that make up the calculator CA. This set of products represents

all possible pairs of factor-2. For example, the pair of (backspace, on) and (language,

english) appears in the third row; the pair of (signal, on) and (MC, on) appears in

the second row. In this set of products, all pairs of features are covered in at least one

product, but not all tuples. In this sample, we missed the combination of (language,

english), (M+, on) and (MS, on).

Table 4.6: Testing 2-way Interactions from the Calculator SPL

Operations Memory
Backspace Signal % Recip. Sqrt Lang. M+ MS MC MR

1 Off Off On Off On English On Off On On
2 Off On On On On Spanish On Off On Off
3 On On On On On English On On Off Off
4 On On Off On Off Chinese Off On Off Off
5 On Off Off Off Off Chinese On Off On On
6 On Off Off Off Off Spanish On Off Off Off
7 Off Off On On Off Spanish Off On On On
8 Off On On On On Chinese On On Off On
9 On Off Off Off On Spanish Off On On On
10 Off On Off Off Off English Off On Off Off

4.5 Execute Test Cases

In this section, we present the last step of our methodology. At this point, we have

created all the products that will be used to test the software product line. Each

product is basically a composition of features. In this step, the software engineer

creates a test suite for each of the products by selecting all the test cases that were

associated with each feature (Step 2 of our method) included in the product.

56

For example, consider the execution of this step for one of the products selected by

the FIG Basis Path method in Section 4.4.1. This product, called p1 in this example,

contains eight features: Exit, Clear, Clear Entry, Add, Sub, Mul, Div and English.

Since we can apply the same procedure to all features, we will restrict this example

with only one feature of program p1, Div feature. As we presented in Section 4.2,

Div feature has two test cases that cover all the scenarios of the use cases. Table

4.7 lists the test cases for the Div features, the inputs and the expected output for

each test case. These test cases are added into the test suite of program p1 and

executed by the test engineer. The test suite for program p1 may be different when

compared with others test suites for the calculator SPL since the test suite is made

based on the features selected for the program. For example, all programs will contain

the test cases described in Table 4.7 since Div is a mandatory feature of calculator

SPL. However, programs that contain the memory functionalities included will have a

different test suite than program p1 that does not include the memory functionalities.

Table 4.7: Test Cases Selected for Div Feature of the Calculator SPL

Feature Use Case TC ID 1st number 2nd number Expected Output

Div Division Operation 1 9 3 3

Div Division Operation 2 6 0 Cannot divided by zero.

57

Chapter 5

Case Study

To gain insights into the operation of the FIG Basis Path method we conducted a case

study, comparing the approach to the three other approaches described in Chapter

4. Our goal is to address the following research questions:

RQ1: How does the FIG Basis Path method compare with other test methods?

RQ2: Can we reduce the effort required to test groups of products through the FIG

Grouped Basis Path method?

RQ3: Can the feature model granularity impact the effectiveness of the FIG Basis

Path method?

5.1 Study Objects

As objects of study we selected two software product lines, both developed by other

researchers and used in previous studies of SPLs. The first SPL is a Graph Product

Line (GPL) created by Lopez-Herrejon and Batory [42]; it is built using the AHEAD

methodology and implemented as a series of .jak files [3] (an extension of the Java

58

language). The second SPL is a mobile phone software product line, named Mobile

Media [27], created by Lancaster University and widely used in previous studies.

Table 5.1 lists, for each of our software product lines, the total number of lines

of code excluding comments (LOCs), the number of classes present (Classes), the

number of products that can be created (Products), the number of faults present

(Faults), the number of variants classified as Optional, Alternative, and Or (Variants)

and the number of constraints classified as Require and Exclude (Constraints). The

total number of lines of code (LOCs) corresponds to the product that has the most

features selected.

Table 5.1: Objects of Study

Variants Constraints
LOCs Classes Products Faults Opt. Alt. Or Require Exclude

GPL 1435 (jak) 12 38 60 0 4 1 10 1
MobileMedia - V5 2220 37 16 10 4 0 0 0 0
MobileMedia - V6 2173 38 24 10 4 0 1 4 0

The Graph Product Line (GPL) is an SPL that implements a family of graph

algorithms in which each product is a type of graph. The code base includes 1435

lines of jak code and consists of 15 features. A graph is either directed or undi-

rected. Edges can be weighted or unweighted. A graph product requires at most one

search algorithm: depth-first search (DFS) or breath-first search (BFS), and at most

one or more of the following algorithms: vertex numbering, connected components,

strongly connected components, cycle checking, minimum spanning tree and single-

source shortest path. The Graph SPL feature model contains a total of 80 instances

without constraints. After reading the documentation for the Graph SPL we created

a feature model for it, as shown in Figure 5.1. To create this model we needed to

resolve some ambiguity in the documentation and we also reduced the possible cardi-

59

nality for combinations for the variant point Alg. Ultimately we obtained 38 possible

instances of the product.

Figure 5.1: Graph SPL feature model

Mobile Media is an SPL that implements mobile applications that manipulate

media (photos, music and video) on mobile devices. Mobile Media has evolved since

2005 to support several types of media. Until now, Mobile Media has nine releases

implemented in two paradigms: aspect oriented and object oriented. For our study, we

selected two versions of Mobile Media that were developed using the object oriented

paradigm, versions five and six. In version five, users are allowed to manipulate image

files in different mobile devices as well as send messages, set favorite pictures, copy

images and perform other operations related to albums and labels. The version five

of Mobile Media allows us to derive a total of 16 instances of the product. We present

the feature model for version five in Figure 5.2.

Version six is a refactored version of version five and it includes one more type

of media. In this version, users are allowed to manipulate two different types of

media: photo and music. Both versions share a set of a few operations, as Album

Management and Media Management, but they have different underlying code bases

60

Figure 5.2: Mobile Media SPL feature model - version 5

due to the refactoring. The Mobile Media feature model allows us to derive a total

of 24 instances of products. We present the feature model for version six in Figure

5.3. As we can see, new variation points, variants and constraint dependencies were

included due to the addition of a new type of media.

Figure 5.3: Mobile Media SPL feature model - version 6

61

5.2 Study Conduct

To conduct our study we applied each of the four testing approaches to each of

our fault free objects. We executed these test cases on our faulty versions, and to

determine whether a test case detected a fault, we compared the output of the faulty

version under that test with the output of the original (non-faulty) version of the

object under that test. All of our executions were performed on a 1.8GHz Intel

Pentium M with 1GB of system memory running SuSE Linux 10.1 platform equipped

with the Java 1.5 JDK.

5.3 Test Suites

The test suites used in our study were developed by associating each feature with

its correlated use case requirements. For each feature, we developed concrete test

cases that cover the primary scenario as well as the alternative paths. We used

the documentation provided with the object to generate these. All test cases were

created by other researchers in our group not including the authors of this paper. For

the Graph SPL, the test suites are command line test cases. For the Mobile Media

product line, the test cases are GUI based and implemented using a combination of

two open source testing tools, Microemulator [48] and Abbot [73]. Microemulator

provides a Java SE exclusive implementation of a mobile phone emulation platform

with similar capabilities to the SUN wireless toolkit historically used for mobile phone

application development. Abbot provides a means for automating user activities on

the phone emulator thereby exercising the features of the MobileMedia subject. Abbot

is implemented in Java and utilizes components of the Java AWT to generate event

actions and collect screen images for comparison to an oracle. In Mobile Media version

62

five we had some non-deterministic test cases which we removed for our study. These

ran deterministically for version six however so we left them in the test pool.

5.4 Fault Seeding

In the Mobile Media SPL, during the course of working with the system, we found

ten actual faults in both versions that caused the system to working improperly. We

corrected each fault based on the requirements provided with the application and

then re-seeded each fault into single faulty versions. We thus had ten faulty versions

of this application for both version five and six. For the Graph SPL, we provided six

students in our laboratory, who were not involved with the study itself and had no

knowledge of the approaches being studied, with a document on an approach for doing

fault seeding and subsets of the .jak files. We did not provide any information on

the purpose of our study (and none had a complete running application to examine).

We asked each student to seed ten faults into their set of files. This yielded 60 faulty

versions of this application.

5.5 Results

In this section we examine the results of our study relative to our research questions.

We begin with RQ1 which asks how the FIG Basis Path method compares with other

methods. Table 5.2 shows the data for both SPL applications used in our study. The

first column shows the number of products tested, followed by the number of test

cases run. The rightmost column shows the number of faults detected by each tech-

nique. In considering this research question we examine three methods: the Covering

Array method, the All Features method, and the Basis Path method, and we compare

63

these to an All Products method which performs an exhaustive enumeration of all

products. (The Grouped Basis Path method is considered for RQ2.) As the table

shows, in the Graph SPL of the 60 faults inserted, 54 were found when we tested all

products. Both the Covering Array method and the Basis Path method also found 54

faults, however the FIG Basis Path method used fewer than half as many products as

the Covering Array method and 39.7% of the test cases. The least expensive method

was All Features (five products and 26 test cases); however, this technique missed

three faults when compared with the other techniques.

Table 5.2: Required Test Cases and Faults Detected per Technique

Graph SPL
Total Number of Products: 38

Total Number of Faults: 60
Method # Products Test Cases Faults Detected
Covering Array 20 141 54
All Features 5 26 51
FIG Basis Path 9 56 54
All Products 38 256 54

Mobile Media 5 Mobile Media 6
Total Number of Products: 16 Total Number of Products: 24
Total Number of Faults: 10 Total Number of Faults: 10

Test #Faults #Test # Faults
Method # Products Cases Detected # Products Cases Detected
Covering Array 5 190 7 6 201 10
All Features 1 49 7 2 71 10
FIG Basis Path 1 49 7 2 85 10
All Products 16 348 7 24 839 10

We next consider the results for the two versions of Mobile Media. In this case

we see that all methods found all of the faults in both versions. For version five,

the All Features and FIG Basis Path methods required only one product and 49 test

cases, compared with 348 test cases for the All Products method and 190 test cases

for the Covering Array method. For version six, the All Features and FIG Basis Path

64

methods required only two products with 71 and 85 test cases respectively, compared

with 839 test cases for the All Products method and 201 test cases for the Covering

Array method. We discuss the implications of these results in the next section.

RQ2 asks if we can reduce the effort required to test groups of products through the

FIG Grouped Basis Path method. To answer it, we examine data shown in Table 5.3.

This table shows the data grouped by the alternative features of each SPL. The left

side of the table shows data for All Feasible Paths in each group, including the number

of products, number of test cases, and number of faults detected. The right side of

the table shows the same data for the selected products using the FIG Grouped Basis

Path method. In every group of products we see that we can reduce the number of

products tested while retaining the fault detection capability. For Graph SPL, our

reduction in products ranges from 67% (CC) to 33% (Shortest, MTSP, MSTK). In

addition we have used between 37% and 79% of the test cases required for all feasible

paths, resulting in at least a 20% reduction in the required test cases. For Mobile

Media, we had a reduction of between 71.2% and 77.7% of the test cases and 75%

(Music) to 80% (Photo) of the products.

Table 5.3: Number of Test Cases Detected by Alternative Variants

Graph SPL
All Feasible Paths FIG Grouped Basis Path

Variant #Product #TC #Faults #Product #TC #Faults
Shortest 3 19 27 2 13 27
SCC 4 34 28 2 17 28
CC 6 46 21 2 17 21
MSTP 3 14 26 2 11 26
MSTK 3 29 29 2 24 29

Mobile Media v6
All Feasible Paths FIG Grouped Basis Path

Variant #Product #TC #Faults #Product #TC #Faults
Music 4 139 4 1 40 4
Photo 5 220 10 1 49 10

65

Figure 5.4: Number of test cases and faults detected grouped by alternative features

In an additional analysis we wanted to determine whether any subset of n paths

could have been selected with the same fault detection results within each group. For

Graph SPL, we performed a pair wise comparison between products since we have

selected two products for each group. For each group we combined all combinations

of 2-paths and calculated the fault detection. We show this data in the form of a box

plot (Figure 5.4). In each plot we see a range of fault detection, indicating that the

FIG Basis Path method is providing the best fault detection (we know that it is at

the top of the box plot since all basis path results provided the same fault detection

as the full set of feasible paths in that group). Since the FIG Grouped Basis Path

for Mobile Media selected only one product from the whole set of feasible products,

we evaluated the fault detection for all products that belong to the same group. The

data in Figure 5.4 shows that there is a range of fault detection between products in

the Photo variant, but products with the Music variant selected have the same fault

detection. This confirms that we cannot randomly select a subset of products within

groups and necessarily be assured of the same fault detection.

RQ3 asks if the feature model granularity can impact the effectiveness of the FIG

Basis Path method. To answer it, we examine data shown in Table 5.4. This table

shows the fault data grouped by the alternative features of Mobile Media SPL version

66

Table 5.4: Mobile Media Faults

Features Faults

Photo Music

Name Type # faults # faults revealed # faults # faults revealed

Create Album Mandatory 0 0 0 0

Delete Album Mandatory 1 1 1 1

Create Media Mandatory 1 1 1 1

Edit Media Mandatory 1 1 1 1

Delete Media Mandatory 1 1 1 1

View Photo Alternative 0 0 0 0

Play Music Alternative 0 0 1 1

Set Favorites Optional 0 0 0 0

View Favorites Optional 0 0 0 0

Sorting Optional 0 0 0 0

Copy Media Optional 2 2 2 0

Send SMS Optional 2 2 n/a n/a

Receive SMS Optional 2 2 n/a n/a

six. The left side of the table shows the number of faults identified and the number

of faults revealed by FIG Basis Path method for the Photo variant. The right side of

the table shows the number of faults identified and the number of faults revealed by

FIG Basis Path method for the Music variant. As we can see, the FIG Basis Path

method reveals most of the faults but did not reveal the fault for copy music media.

We discuss the implications of these results in the next section.

5.6 Discussion

For RQ1, based on this data we believe that the FIG Basis Path method is efficient

at finding faults and is at least as effective as other techniques. In the product

line that we define as less testable due to the alternative features (Graph SPL) we

see that the FIG Basis Path method performed the best. It found as many faults

as the other techniques for 60% fewer test cases than the CA technique, and 55%

fewer products. In the Mobile Media application, where we believe we have a more

67

testable product due to the small number of alternative features, we see that the FIG

Basis Path method was as effective at finding faults as all other methods, and cost

the same as the least expensive method, All Features. It was less expensive than

the covering array method as well. Given these results we suggest that although

the cost of computing the FIG Basis Path may be slightly higher than that for All

Features, the technique appears to work well for both types of feature model elements

(alternative and optional), therefore it is the more robust technique. We also have

analyzed where the faults lie within our applications and many faults were located in

the mandatory and optional features. We need to further analyze the impact of faults

that are embedded inside of the variant portions of the code to fully understand the

effectiveness of these techniques. A further discussion in faults of software product

lines is provided in Section 5.7.

For RQ2, we see that it is possible to test parts of the product space more efficiently

using the FIG Grouped Basis Path method when the feature model has alternative

variant points. In the Graph SPL application, where we believe we have a less testable

product due to the variability and a large number of requirements constraints, we were

able to select a small set of products that revealed all our faults with fewer test cases

and products. Furthermore, the boxplots tell us that we cannot simply select the

paths to test randomly. This suggests a further use of the FIG Basis Path method,

where we want to focus on parts of the SPL at a time or where development is taking

place in stages, based on specific variation points. Conversely, the FIG Grouped Basis

Path method did not show any improvement over the FIG Basis Path method in the

Mobile Media application. We believe the small number of constraints of the Mobile

Media application has some influence over the method. We conclude for RQ2 that

we can use FIG Grouped Basis Path to reduce test effort.

For RQ3, we see that there is a correlation between the granularity in the feature

68

Figure 5.5: Copy media variant of the Mobile Media feature model

models and the efficiency of our FIG Basis Path method. To better analyze this

correlation, we examine two different models of the CopyMedia variant of Mobile

Media SPL application. Figure 5.5 shows both models of the copy media variant.

Copy Media is an optional functionality that copies a specific media from one album

to another. The model on the left side of the figure shows the original model. The

right side of the figure shows the refactored model of the copy media variant. Since

Copy Media is an optional feature of the Mobile Media SPL, the FIG Basis Path

method may select the copy media feature only once for the original model which

implies that this feature may be tested for one type of media only. Otherwise, for

the refactored model, the FIG Basis Path method will select both variants (Photo

and Music), and the feature will be tested for both types of media consequently. We

conclude for RQ3 that the granularity of the feature model can impact the detection

of our technique regarding fault efficiency.

5.7 Limitations

One limitation in our study involves the size of instances created. Since our method-

ology tries to maximize the number of features that are considered together in order

69

to reduce the total number of instances to cover all features, the first instance may be

somewhat large and consequently the complexity of testing will increase. Thus, larger

objects of study may lead to different results. Another limitation involves faults that

might occur due to integration between features. Failures that can be found only

during integration tests may not be found since we are discarding features that were

previously tested.

70

Chapter 6

Conclusion and Future Work

In this thesis we have examined ways to improve the testability of software product

lines. In this chapter we highlight our main contributions to software product line

testing and present several areas to pursue as future work.

6.1 Conclusion

We have proposed a new definition for testability of software product lines based on

the ability to re-use test cases between products without a loss of fault detection

effectiveness. We built on this idea to identify elements of the feature model that

contribute positively and/or negatively towards SPLs testability. We also developed

key metrics to measure the impact of different approaches of designs of feature models

for testing SPL and discuss the impact of the feature granularity of feature models

on SPL testability.

Second, we provided a graph based testing approach called the FIG Basis Path

method, which selects products and features for testing based on a feature dependency

graph. This graph relies exclusively on the feature model of an SPL. However, the

71

FIG Basis Path method borrows ideas from white-box techniques, such as those that

use control flow graphs and basis paths. This method should increase our ability to

re-use results of test cases across successive products in the SPL family and reduce

testing effort while retaining fault detection capability.

Finally, we report the results of a case study involving several non-trivial SPLs

and show that for these objects, the FIG Basis Path method is as effective as testing

all products in the SPL. Using the FIG Basis Path method we were able to detect the

same number of faults as we did when testing all products, by testing as few as 6%

and no more than 24% of the products in our SPLs, and running only 10% of the test

cases as on all products in the best case. The most effective non-graph technique,

the covering array method, required us to test between 13% and 54% of products

respectively in the same systems. In the subject with only optional features, we see

that our method does as well as all other techniques in fault detection and costs no

more than the least expensive technique, All Features.

6.2 Future Work

This research on improving the testability of software product lines has highlighted

many avenues and opportunities for future work. There are three main paths that

we explain next.

First we will examine other variations of feature models such as 1...n relationships

and the impact of constraints on the FIG Basis Path method. We plan to examine

this technique on larger software product lines with more complex faults.

Second we plan to work on a fault model for SPLs. An initial fault model was

proposed by McGregor [46]; however we believe that we can extend this model by

analyzing objects fault types. With an accurate fault model, we will be able to

72

perform more thorough empirical studies in order to quantify the benefits of the FIG

Basis Path method.

Finally, we plan to explore other aspects of testability, beyond those explored in

this thesis. We will refine our metrics so that we can achieve better testability during

the application engineering phase of SPL development by analyzing alternative feature

models. We will perform a large-scale study of how feature granularity in feature

models impacts testability in practice. Together these will lead to higher testability

in software product lines.

73

Bibliography

[1] Steve Adolph, Alistair Cockburn, and Paul Bramble. Patterns for Effective Use

Cases. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[2] Randall C. Bachmeyer and Harry S. Delugach. A conceptual graph approach to

feature modeling. In Intl. Conference on Conceptual Structures, pages 179–191,

2007.

[3] Don Batory. Scaling step-wise refinement. IEEE Transactions on Software En-

gineering, 30(6):355–371, 2004.

[4] Don Batory. Feature models, grammars, and propositional formulas. In SPLC,

pages 7–20. Springer, 2005.

[5] Boris Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold Co.,

New York, NY, USA, 1990.

[6] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analysis

of feature models 20 years later: A literature review. Inf. Syst., 35(6):615–636,

2010.

[7] Antonia Bertolino, Alessandro Fantechi, Stefania Gnesi, and Giuseppe Lami.

Product line use cases: Scenario-based specification and testing of requirements.

In Lecture Notes in Computer Science, pages 425–445, 2006.

74

[8] Robert V. Binder. Design for testability in object-oriented systems. Commun.

ACM, 37(9):87–101, 1994.

[9] Magiel Bruntink and Arie van Deursen. Predicting class testability using object-

oriented metrics. In SCAM ’04: Proceedings of the Source Code Analysis and

Manipulation, Fourth IEEE International Workshop, pages 136–145, Washing-

ton, DC, USA, 2004. IEEE Computer Society.

[10] Isis Cabral, Myra B. Cohen, and Gregg Rothermel. Improving the testing and

testability of software product lines. In SPLC’10: Proceedings of the 14th Inter-

national on Software Product Line Conference, 2010.

[11] Samuel T. Chanson, Antonio Alfredo Ferreira Loureiro, and Son T. Vuong. On

the design for testability of communication software. In Proceedings of the IEEE

International Test Conference on Designing, Testing, and Diagnostics - Join

Them, pages 190–199, Washington, DC, USA, 1993. IEEE Computer Society.

[12] Paul Clements and L. M. Northrop. Software Product Lines: Practices and

Patterns. Addison Wesley, 2001.

[13] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system:

an approach to testing based on combinatorial design. IEEE Transactions on

Software Engineering, 23(7):437–444, 1997.

[14] David Cohen, Ieee Computer Society, Siddhartha R. Dalal, Michael L. Fredman,

and Gardner C. Patton. The aetg system: An approach to testing based on

combinatorial design. IEEE Transactions on Software Engineering, 23:437–444,

1997.

75

[15] M. B. Cohen, M. B. Dwyer, and J.Shi. Coverage and adequacy in software

product line testing. In Workshop on the Role of Architecture for Testing and

Analysis, pages 53–63, July 2006.

[16] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Interaction testing of

highly-configurable systems in the presence of constraints. In ISSTA ’07: Pro-

ceedings of the 2007 international symposium on Software testing and analysis,

pages 129–139, New York, NY, USA, 2007. ACM.

[17] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration through spe-

cialization and multilevel configuration of feature models. Software Process: Im-

provement and Practice, pages 143–169, 2005.

[18] Krzysztof Czarnecki. Overview of generative software development. In Uncon-

ventional Programming Paradigms, pages 313–328, 2004.

[19] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing

cardinality-based feature models and their specialization. In Software Process:

Improvement and Practice, page 2005, 2005.

[20] Krzysztof Czarnecki, Steven She, and Andrzej Wasowski. Sample spaces and

feature models: There and back again. In Intl. Software Product Line Conference,

pages 22–31, 2008.

[21] Christian Denger and Ronny Kolb. Testing and inspecting reusable product line

components: First empirical results. In Intl. Symposium on Empirical Software

Engineering, pages 184–193, 2006.

[22] Institute O. Electrical and Electronics E. (ieee). IEEE 90: IEEE Standard Glos-

sary of Software Engineering Terminology. IEEE Computer Society, 1990.

76

[23] Magnus Eriksson and Alvis Hgglunds Ab. Marrying features and use case for

product line requirements modeling of embedded systems. In Institute of Tech-

nology, UniTryck, Linköping University, Sweden, pages 73–82, 2004.

[24] Magnus Eriksson, Jürgen Börstler, and Kjell Borg. The pluss approach - domain

modeling with features, use cases and use case realizations. In Lecture Notes in

Computer Science, pages 33–44. Springer-Verlag, 2005.

[25] Leire Etxeberria and Goiuria Sagardui. Quality assessment in software product

lines. In ICSR ’08: Proceedings of the 10th international conference on Software

Reuse, pages 178–181, Berlin, Heidelberg, 2008. Springer-Verlag.

[26] A. Fantechi, S. Gnesi, G. Lami, and E. Nesti. A methodology for the derivation

and verification of use cases for product lines. In Software Product Lines, Lecture

Notes in Computer Science, pages 114–116. Springer, 2004.

[27] Eduardo Figueiredo, Nelio Cacho, Claudio Sant’Anna, Mario Monteiro, Uira

Kulesza, Alessandro Garcia, Sergio Soares, Fabiano Ferrari, Safoora Khan, Fer-

nando Castor Filho, and Francisco Dantas. Evolving software product lines with

aspects: an empirical study on design stability. In Intl. Conference on Software

Engineering, pages 261–270, 2008.

[28] Roy S. Freedman. Testability of software components. IEEE Trans. Softw. Eng.,

17(6):553–564, 1991.

[29] Hassan Gomaa. Designing software product lines with uml 2.0: From use cases

to pattern-based software architectures. In SPLC ’06: Proceedings of the 10th

International on Software Product Line Conference, page 218, Washington, DC,

USA, 2006. IEEE Computer Society.

77

[30] Georg Grtter. Keynote outline split 2006 challenges for testing in software

product lines, 2006.

[31] M. J. Harrold. Architecture-based regression testing of evolving systems. In

Workshop on the Role of Architecture for Testing and Analysis, pages 73–77,

July 1998.

[32] Matthew S. Hecht. Flow Analysis of Computer Programs. Elsevier Science Inc.,

New York, NY, USA, 1977.

[33] M. Jaring and J. Krikhaar, R. L.and Bosch. Modeling variability and testa-

bility interaction in software product line engineering. In Intl. Conference on

Composition-Based Software Systems, pages 120–129, 2008.

[34] Michel Jaring, Rene L. Krikhaar, and Jan Bosch. Modeling variability and testa-

bility interaction in software product line engineering. In ICCBSS ’08: Proceed-

ings of the Seventh International Conference on Composition-Based Software

Systems (ICCBSS 2008), pages 120–129, Washington, DC, USA, 2008. IEEE

Computer Society.

[35] Meena Jha and Liam O’Brien. Identifying issues and concerns in software reuse in

software product lines. In ICSR ’09: Proceedings of the 11th International Con-

ference on Software Reuse, pages 181–190, Berlin, Heidelberg, 2009. Springer-

Verlag.

[36] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-

oriented domain analysis (FODA) feasibility study. Technical report, Carnegie-

Mellon University Software Engineering Institute, November 1990.

78

[37] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in software

product lines. In ICSE ’08: Proceedings of the 30th international conference on

Software engineering, pages 311–320, New York, NY, USA, 2008. ACM.

[38] Ronny Kolb and Dirk Muthig. Making testing product lines more efficient by

improving the testability of product line architectures. In Workshop on Role of

Software Architecture for Testing and Analysis, pages 22–27. ACM, 2006.

[39] Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183, 1992.

[40] Martin Griss Laboratory, Martin L. Griss, John Favaro, and Case Methodolo-

gist. Integrating feature modeling with the rseb. In In Proceedings of the Fifth

International Conference on Software Reuse, pages 76–85, 1998.

[41] Kwanwoo Lee, Kyo Chul Kang, and Jaejoon Lee. Concepts and guidelines of

feature modeling for product line software engineering. In ICSR-7: Proceedings

of the 7th International Conference on Software Reuse, pages 62–77, London,

UK, 2002. Springer-Verlag.

[42] Roberto E. Lopez-Herrejon and Don S. Batory. A standard problem for eval-

uating product-line methodologies. In Intl. Conference on Generative and

Component-Based Software Engineering, pages 10–24, 2001.

[43] Thomas J. McCabe. A complexity measure. In ICSE ’76: Proceedings of the 2nd

international conference on Software engineering, page 407, Los Alamitos, CA,

USA, 1976. IEEE Computer Society Press.

[44] J. D. McGregor. Testing a software product line (cmu/sei-2001-tr-022). Technical

report, Carnegie Mellon Software Engineering Institute, 2001.

79

[45] John McGregor. Testing a software product line. Technical report, Carnegie-

Mellon University Software Engineering Institute, December 2001.

[46] John D. McGregor. Toward a fault model for software product lines. In SPLC

(2), pages 157–162, 2008.

[47] A. Metzger and P. Heymans. Comparing feature diagram examples found in the

research literature. Technical report, Software Systems Engineering - University

of Duisburg-Essen, February 2007.

[48] MicroEmulator. http://www.microemu.org/, 2010.

[49] Sonia Montagud and Silvia Abrah ao. Gathering current knowledge about qual-

ity evaluation in software product lines. In SPLC ’09: Proceedings of the 13th

International Software Product Line Conference, pages 91–100, Pittsburgh, PA,

USA, 2009. Carnegie Mellon University.

[50] H. Muccini and A. Van Der Hoek. Towards testing product line architectures.

In In: International Workshop on Testing and Analysis of Component Based

Systems, pages 111–121, 2003.

[51] Glenford J. Myers. Art of Software Testing. John Wiley & Sons, Inc., New York,

NY, USA, 1979.

[52] Clmentine Nebut, Franck Fleurey, Yves Le Traon, and Jean-Marc Jzquel. A

requirement-based approach to test product families. In PFE, volume 3014 of

Lecture Notes in Computer Science, pages 198–210. Springer, 2003.

[53] Erika Mir Olimpiew and Hassan Gomaa. Reusable model-based testing. In ICSR

’09: Proceedings of the 11th International Conference on Software Reuse, pages

76–85, Berlin, Heidelberg, 2009. Springer-Verlag.

80

[54] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying

and generating fuctional tests. Commun. ACM, 31(6):676–686, 1988.

[55] Ovm improver. http://www.sse.uni-due.de/wms/en/?go=109, 2010.

[56] K. Pohl, Günter Böckle, and Frank van der Linden. Software Product Line

Engineering. Springer, Berlin, 2005.

[57] Klaus Pohl and Andreas Metzger. Software product line testing. Commun. ACM,

49(12):78–81, 2006.

[58] Klaus Pohl and Andreas Metzger. Variability management in software product

line engineering. In ICSE ’06: Proceedings of the 28th international conference

on Software engineering, pages 1049–1050, 2006.

[59] X. Qu, M.B.Cohen, and G.Rothermel. Configuration-aware regression testing:

An empirical study of sampling and prioritization. In International Symposium

on Software Testing and Analysis, pages 75–85, July 2008.

[60] Sacha Reis, Andreas Metzger, and Klaus Pohl. A reuse technique for performance

testing of software product lines. In Proceedings of SPLiT 2006 - Third Intl.

Workshop on Software Product Line Testing, pages 5–10, Baltimore, USA, 2006.

[61] Andreas Reuys, Erik Kamsties, Klaus Pohl, and Sacha Reis. Model-based system

testing of software product families. In CAiSE, pages 519–534, 2005.

[62] Andreas Reuys, Erik Kamsties, Klaus Pohl, and Sacha Reis. Model-based system

testing of software product families. In CAiSE, Lecture Notes in Computer

Science, pages 519–534. Springer, 2005.

[63] Matthias Riebisch, Kai Bllert, Detlef Streitferdt, and Ilka Philippow. Extending

feature diagrams with uml multiplicities, 2002.

81

[64] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. Feature

diagrams: A survey and a formal semantics. In Intl. Requirements Engineering

Conference, pages 136–145, 2006.

[65] Andy Schürr, Sebastian Oster, and Florian Markert. Model-driven software prod-

uct line testing: An integrated approach. In Theory and Practice of Computer

Science, pages 112–131, 2010.

[66] Antti Tevanlinna, Juha Taina, and Raine Kauppinen. Product family testing: a

survey. SIGSOFT Softw. Eng. Notes, 29(2):12–12, 2004.

[67] Sahil Thaker, Don Batory, David Kitchin, and William Cook. Safe composition

of product lines. In Intl. Conference on Generative Programming and Component

Engineering, pages 95–104, 2007.

[68] Unified modeling language. http://www.uml.org, 2010.

[69] Engin Uzuncaova, Daniel Garcia, Sarfraz Khurshid, and Don Batory. Testing

software product lines using incremental test generation. In Intl. Symposium on

Software Reliability Engineering, pages 249–258, 2008.

[70] Frank van der Linden. Software product families in europe: The esaps &

caféé projects. IEEE Softw., 19(4):41–49, 2002.

[71] J. Voas, J. Payne, R. Mills, and J. McManus. Software testability: an experi-

ment in measuring simulation reusability. In SSR ’95: Proceedings of the 1995

Symposium on Software reusability, pages 247–255, New York, NY, USA, 1995.

ACM.

[72] Jeffrey M. Voas and Keith W. Miller. Software testability: The new verification.

IEEE Softw., 12(3):17–28, 1995.

82

[73] T. Wall. Abbot Java GUI test framework.

http://abbot.sourceforge.net/doc/overview.shtml, 2010.

[74] Watson Wallace and Thomas J. McCabe. Structured testing: A testing method-

ology using the cyclomatic complexity metric. NIST SPECIAL PUBLICATION

SP, 1996.

[75] Jun Yan and Jian Zhang. An efficient method to generate feasible paths for basis

path testing. Information Processing Letters, 107(3-4):87 – 92, 2008.

