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Differential and total cross sections for ionization of helium and hydrogen by electrons 

M. E. Rudd 
Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0111 

(Received 25 March 1991) 

A comprehensive semiempirical model for singly and doubly differential and total ionization cross sec- 
tions for electron production by electron impact is presented. The model is discussed in relation to 
several theoretically required constraints. Available experimental data for hydrogen and helium targets 
are examined, and recommended values of the data are given for all ranges of primary and secondary en- 
ergies and angles of ejection. 

I. INTRODUCTION 

Integral or total ionization cross section (TCS) data for 
electron impact on atoms and molecules have accumulat- 
ed for some 60 years but except for the early experiments 
of Goodrich [I], data for the same process, differential in 
the angle and energy of the resulting electrons, did not 
become available until the work of Opal, Peterson, and 
Beaty was published in 1971 [2]. Singly differential cross 
sections (SDCS's) are usually obtained by numerical in- 
tegration of the doubly differential cross sections 
(DDCS's) over all angles. The energy distributions of 
secondary electrons, which are embedded in the SDCS 
data, are important in studies of steller and upper atmos- 
pheric phenomena, plasma fusion work, and in modeling 
radiation damage in biological tissues and in other ma- 
terials. Angular distributions of electrons, given by the 
DDCS data, are of practical interest in studies of radial 
dose distribution. Differential cross sections for electron 
ejection are of fundamental interest since they provide a 
stringent test of theoretical descriptions of ionization. 

The total cross-section data have been the subject of 
several reviews [3-81 and a number of equations have 
been developed to fit the data [9]. However, there has 
evidently been only one published work in which the 
differential and total cross sections were all correlated 
into a consistent set of data with recommended values 
given. This is the work of Kim [lo] on helium, in which 
he has selected and modified experimental data to make 
the data internally consistent as well as being consistent 
with certain well-known theoretical constraints. The re- 
sulting DDCS's were fitted as a function of angle by a 
series of Legendre polynomials. From his paper, one can 
obtain the TCS and SDCS's, as well as the DDCS's. The 
data are presented for selected values of primary energy 
from 100 to 2000 eV. However, the range of secondary 
energies in this work only extends up to 40 eV, while the 
range of energies of the electrons resulting from an ioniz- 
ing collision extends from 0 to T -I, where T is the pri- 
mary energy and I is the binding energy of the electron in 
the target atom or molecule. 

Kim's analysis relied on the experimental data avail- 
able at  that time, especially that of Opal et al., [2]. 
However, since then, new data have become available for 

helium [11,12], that are in partial disagreement with the 
earlier experimental data and with Kim's recommended 
values. 

Accurate absolute measurements of the DDCS for 
electron impact are very difficult to make, as is seen from 
the fact that existing data, even though carefully taken by 
competent investigators, disagree in some cases by factors 
of 2 or  more. This lack of agreement, of course, makes it 
difficult for users of the data. Ab initio theoretical calcula- 
tions have not yet developed to the point where accurate 
cross sections can be reliably calculated for a wide range 
of targets for any given set of parameters. However, the 
use of carefully constructed semiempirical models offers a 
useful method for arriving at  best values for divergent 
data. Such models allow averaging, not just for data that 
happen to be taken at  a common set of parameters (in 
this case, the primary energy, secondary energy, angle, 
and target), but also permit averaging in a multidimen- 
sional space. For example, it will be shown that certain 
key fitting parameters can be described by universal 
curves which hold for all primary energies and both tar- 
gets. By choosing the best fits to such universal curves, 
data for one target at one primary energy, one angle, and 
one secondary energy can benefit by being averaged with 
data for other targets and other values of those parame- 
ters. 

This paper describes a semiempirical model which 
gives analytical expressions for the singly and doubly 
differential and total cross sections which are internally 
consistent and hold over the entire range of primary and 
secondary energies up to  the relativistic range. The pa- 
rameters in the model have been determined from the ex- 
perimental data, taking account of the recent experiments 
as well as earlier work. While in Kim's analysis he select- 
ed a set of data which best fulfilled certain theoretical re- 
quirements and then fitted it with series formulas, the 
present model has the agreement with these requirements 
built into its structure from the start, and instead of 
presenting the recommended cross sections only for a 
selected set of primary and secondary energies, this mod- 
el gives them in a functional form which holds for any 
desired set of those parameters. The model should find 
use among those who need to know the energy and angu- 
lar distribution of electrons from collisions for modeling 
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purposes. While no new physics is presented, those en- 
gaged in devising new theoretical descriptions of ioniza- 
tion may find the model useful in understanding the de- 
tailed systematics of the process. 

Preliminary versions of this model were presented ear- 
lier [13- 151. The model has been applied so far only to 
helium and molecular hydrogen targets in order to avoid 
the complexities due to inner-shell contributions. I t  may 
be possible to extend the model to other targets as well by 
adding contributions from shells with various binding en- 
ergies. 

11. SINGLY DIFFERENTIAL CROSS SECTIONS 

When electrons are the incident particles, one must al- 
low for exchange because the scattered primary electrons 
are indistinguishable from the secondary electrons ejected 
at the same energy from the target. Some authors intro- 
duce an artificial distinction by defining the electrons 
with energies less than ( T  - I ) /2  to be secondary elec- 
trons and designate those with higher energies to be the 
scattered primary electrons. However, this is an arbi- 
trary and generally unnecessary distinction. In the treat- 
ment below no distinction is made and the equations ap- 
ply equally well to both types of electrons. For conveni- 
ence, W will be referred to  as the energy of the secondary 
electron but, in fact, will stand for the energy of the 
detected electron, whether secondary or scattered pri- 
mary. 

Mott [16] has derived an expression for collisions be- 
tween two free electrons which takes exchange into ac- 
count. This may be written for a collision with a bound 
electron [17] as 

- - ,  

where W is the energy of an electron coming from the 
collisions, a. is the Bohr radius, I is the binding energy, 
and R is the Rydberg energy. The second term in the 
equation results from the exchange, while the third comes 
from interference between the two amplitudes. The Mott 
cross section for a target with N electrons is 

where S = 4rra *( R /112, and where for convenience the 
equation has been rewritten in terms of the dimensionless 
variables w = W / I  and t = T / I .  Such variables have 
been used before under the names "reduced energy" or 
"threshold units." 

Unfortunately, the Mott equation as it stands does not 
reproduce the experimental SDCS data very closely since 
its slope at small values of w is too small. Furthermore, 
the cross sections do not follow the correct ( l / t ) ln t  

dependence at high energies as derived from the Born ap- 
proximation by Bethe [18]. This is the dipole interaction 
term that dominates at high energies. 

In the present model, the Mott equation is modified to 
eliminate these problems, first by changing the powers of 
the terms in the brackets, and second by replacing the 
1 / t  outside the brackets with a function F( t ) ,  which is to 
be determined by comparison with experiment, and 
which has the correct asymptotic dependence. The re- 
sulting SDCS equation is then 

where 

and where n is a number, expected to be somewhat larger 
than 2, which is determined by fitting experimental spec- 
tra. The use of inverse powers of W + I in describing col- 
lision cross sections has been justified theoretically by 
Inokuti and Dillon [19]. 

111. TOTAL IONIZATION CROSS SECTIONS 

Since each collision results in two outgoing electrons, 
the total ionization cross section is one-half the integral 
of the SDCS from 0 to the maximum energy T -I. Then 

T - I  
.ion= i Jo 

where the integrand is given by Eq. (3). The first two 
terms, which supply most of the integral, are readily in- 
tegrated, but the third term is not. Of course, numerical 
integration can always be used, but it is more convenient 
to have an analytical expression. There is a simple ap- 
proximation that yields a fairly accurate integral. This 
involves replacing t - w in the third term by t - w,,, 
where w,, is the average of the maximum and minimum 
values of w, namely ( t  - 1 )/2. This approximation for 
that term alone becomes increasingly inaccurate as the 
energy is increased, but for high energies that term is too 
small to contribute appreciably. Setting t - w = ( t + 1 )/2 
in that term, the overall integral agrees with the results of 
numerical integration to within 1% at all energies for 
values of n from 1.6 to 2.45, within 2% from 1.3 to  3.1, 
and is exact at n =2. The total cross section with this ap- 
proximation is 

where 

At n = 2, g , ( t )  becomes indeterminate, but the value of 
the integral is easily obtained either by integration of the 
original equation or by finding the limiting value of Eq. 
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(7). The result is 

t - 1  
g,(t)=---- In(') f o r n = 2 .  

t t f l  
7 

V 

While several different functions F( t) may be possible, 
the one selected is closely related to the Bethe expression . E - l o - '  

[18] and therefore gives cross sections having the proper +J 
V 

asymptotic ( 1 /t )lnt high-energy dependence. The func- 
QJ 
Ln 

tion is V) 
V1 

2 1 0 - ~  
F ( t ) = (  Al ln t  + A 2 +  A3/ t ) / t  . (9)  o 

The coefficients A , ,  A2, and A3  are taken to be adjust- 
able parameters obtained by fitting to the experimental 
data. With this choice, the limiting forms of the TCS are 

SA, ln t  
lim aion= --- 

t+- ( n  -1) t  

and 

By comparing the high-energy asymptotic behavior of 
the model equation with the Bethe equation, the parame- 
ter A,  in the model may be related to the quantity Aion 
in the Bethe treatment [18]. This relationship is 

NR Ai A. =-- 
ion I n - 1 .  

The quantity A,,, may be obtained from the integrated 
optical oscillator strength [18], so A,  could also be deter- 
mined from Eq. (12). 

IV. FITTING THE SDCS AND TCS DATA 

The values of n, and F i t )  could be obtained for each 
value of primary energy by fitting Eq. (3) to the SDCS as 
a function of w .  Spectra at  many of the primary energies 
from most of the known sets of data for helium and 
molecular hydrogen were fitted to yield data for this 
study. The equation fits individual runs with an overall 
average deviation of 8%, which is generally well within 
the experimental uncertainty. There is, however, a great 
deal of variation in the values of F i t) among the different 
investigators, which is indicative of the difficulty in mak- 
ing this type of measurement. The values of n tend to be 
somewhat more closely grouped and indicate that within 
the experimental uncertainty, n is a constant, indepen- 
dent of w and t ,  for a given target. The average values of 

TABLE I. Values of fitting parameters. 

Hydrogen Helium 

A I 0.74k0.02 0.85k0.04 
A 2 0.87f0.05 0.36k0.09 
A 3 -0.60f 0.05 -0.lOkO.10 
n 2.4+0.2 2.4+0.3 
G5 0.33 0.33 
p 0.60 0.60 

T o t a l  I o n i z a t i o n  
Cross  S e c t i o n s  

FIG. 1. Total cross sections for e -  +He and e -  +Hz vs 
T - I. Lines, Eq. (6); closed circles, hydrogen data; open circles, 
helium data; experimental values as described in the text. 

n determined this way are given in Table I. It is not 
known whether the fact that n comes out the same for 
the two gases means that it is a universal constant for all 
targets or whether this result is simply coincidental. 

The coefficients in F ( t )  were determined from the ex- 
perimental TCS's, since they have been measured more 
accurately than the SDCS's. For hydrogen, the data of 
Rapp and Englander-Golden [20] were used from thresh- 
old up to 100 eV, the recommended values of van 
Wingerden et al. [21] from 100 to 2000 eV, and the 
Bethe equation with constants given by van Wingerden 
et al. 1211 for energies above 200 eV. For helium, the 
data of Rapp and Englander-Golden were used below 30 
eV, the recommended values of Bell et al. [22] from 30 to 
4000 eV, and the Bethe equation with constants given by 
Kim [23] above 4000 eV. Equation (6) was fitted to these 
data with the resulting values of the parameters as given 
in Table I. The fitted equation is plotted in Fig. 1 for 
both targets along with samples of the data mentioned. 

V. DOUBLY DIFFERENTIAL CROSS SECTIONS 

The angular distribution of electrons emitted with a 
given energy is usually dominated by the binary en- 
counter peak, which is a slice across the so-called Bethe 
ridge in a three-dimensional plot. I t  was found that this 
peak could be represented by a Lorentzian in the cosine 
of the angle. An additional Lorentzian centered at  180" 
was used to fit the rise in the cross section often noted at  
large angles. The equation is 

where 

and 
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and where GI .  . . G5 are the fitting parameters, which, in direction and velocity of the initial motion of the orbital 
general, are functions of the primary and secondary ener- electrons in the target. The shape of the binary peak has, 
gies. in fact, been used to determine the Compton profile 

There is some question as to whether the rise seen in [29,30], which is the distribution of momentum in the tar- 
the backward direction is physical or instrumental. get. G3, the half width at half maximum of the cosine 
While the last term in Eq. (13) is needed to fit some of the distribution, may be written 
data above about 120°, there are large variations among 
the data of different investigators. If it is later decided G, =A cosO -- sinO,AO . (17) 
that this rise is not real, the model can easily be modified 
by omitting or reducing the size of that term. 

From the data available, angular distributions for over 
100 different combinations of primary and secondary en- 
ergy, target gas, and investigator were selected and fitted 
by Eq. (13) to obtain information on the systematics of 
the parameters. 

The parameter G2 is given by G2 =cosOo, where O0 is 
the position of the center of the binary peak. This is 
determined by the laws of conservation of energy and 
momentum applied to a collision of an incident electron 
with a bound, stationary electron. If the collision is as- 
sumed to be perfectly elastic, but the electron subsequent- 
ly loses the energy I as it leaves the atom or molecule, 
then the equation given by Kim [lo] results in 

I 11/2  

The value of At3 may be estimated by assuming the ini- 
tial velocity of the orbital electrons to be (21/rn)'/~ and 
that this velocity is added vectorially at right angles to 
the velocity ( 2 ~ / r n ) ' / '  of the ejected electrons. To be 
more accurate, of course, the orbital kinetic energy U 
should be used, since it is usually significantly different 
from the ionization potential I. However, values of U are 
not measurable quantities and must be calculated. Since 
such calculations are not readily available and only a 
functional dependence is needed at this point, I is used in- 
stead of U. If I << W, then A O = ( I /  w ) ' / ~ = (  w)-'I2. 

However, this neglects the fact that there is a distribution 
both in direction and magnitude of the orbital velocities, 
and therefore the actual half-width should be smaller by 
some factor. Combining these considerations, then, 

The results of fitting the experimental data are shown 
for the parameter G2 in Fig. 2, where they are compared 
to the predictions of Eq. (16). Since the binary peak is 
very broad at small secondary energies, it is difficult to 
find the center, hence the large spread in values of G2 at 
low energies. 

The width of the peak results from the distribution in 

FIG. 2. Values of the parameter G2,  plotted as ~ , t " ~  vs w, 
obtained by fitting to the experimental data. Solid line, Eq. (16); 
closed symbols, hydrogen, as follows: squares, Shyn, Sharp, and 
Kim [24]; circles, Opal, Peterson, and Beaty [2]; inverted trian- 
gles, Hollman et al.  [25]; diamonds, Rudd, Lewis, and Kerby 
[14]. Open symbols, helium, as follows: diamonds, Mueller- 
Fiedler, Jung and Erhardt [12]; x's, Goruganthu and Bonham 
[ I  11; inverted triangles, Sethuraman, Rees, and Gibson [26]; 
crosses, Oda [27]; triangles, Rudd and DuBois [28]; circles, 
Opal, Peterson, and Beaty [2]. 

By comparison with experiment, P=O. 60. 
The values of G, from the fitting are shown in Fig. 3 

compared with the expectations from Eq. (18). Although 
the equation was derived under the assumption that the 
orbital velocity is small compared to the ejection velocity, 
the equation appears to fit both the hydrogen and helium 
data quite well to as low an energy as the reliable experi- 
mental data go. Furthermore, as-scaled, the equation ap- 
pears to be a universal equation holding for all primary 
energies and for both gases. 

The parameters G4 and G5 are determined from fitting 
the angular distributions above 90". Unfortunately, the 
discrepancies among the experimental data sets are even 
more pronounced at the large angles than elsewhere and 

FIG. 3.  Values of the parameter G3 obtained by fitting to the 
experimental data, plotted as G 3  /( 1 - G :  )''I vs W. Line, Eq. 
(18); symbols as in Fig. 2. 
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in some cases data are not presented at  angles close 
enough to 180" to obtain reliable values of these parame- 
ters. Consequently, it is difficult to find the systematics of 
G, and G,. Fortunately, except for the lower impact en- 
ergies, the rise at  large angles is only a minor part of the 
overall angular distribution. A rough approximation will 
have to suffice for this region until more and better data 
are available. 

Many of the data sets show only a small rise in the 
backward direction or  none at  all. However, the latest 
data, that of Miiller-Fiedler [12] and of Gorguganthu and 
Bonham [ l l ] ,  have a pronounced rise near 180". Data for 
low secondary energies from these investigators and data 
at  higher energies from Oda [27] were fitted by Eq. (13) to 
obtain values of G, with the results shown in Fig. 4. 
Even with this restricted sample, G5 exhibits large varia- 
tions. Although it appears that lower values of G, would 
be appropriate at higher energies, there is not enough 
data to assign values with confidence. Instead, we will 
use the constant value G5=0.33, which represents a 
weighted average of the data shown. 

Using the fixed value of G,, the data were refitted to 
obtain information about G,. That parameter decreases 
with increasing w, slowly at first, and then drops rapidly 
as w +t - 1. The variation of G4 with w and t  is approx- 
imated by the expression 

The quantity y is a constant chosen for the best fit of the 
data. For the hydrogen and helium data, y = 10 was 
used. Figure 5 shows the values of G, from the fitting 
along with the line that represents Eq. (19). Although the 
general trend of the data follows the line, there are large 
variations among the data. Indeed, the data of Opal 
et al.  [2] have a rising rather than a falling characteristic 
in the plot. 

The parameter G, will be discussed in the next section. 

FIG. 4. Values of the parameter G5 obtained by fitting to the 
experimental data, plotted vs W. The line represents the 
weighted average, 0.33, used in the model; symbols as in Fig. 2. 

FIG. 5. Values of the parameter G4 obtained by fitting to the 
experimental data, plotted as G 4 t / (  1 - w / t I 3  vs w + 1. Line, 
Eq. (19); symbols as in Fig. 2. 

VI. INTEGRATION OF THE DDCS EQUATION 

The DDCS may be integrated over angle to obtain the 
SDCS. Thus 

and 

where a(w, t ,O)  is given by Eq. (13).  The result is 

~ ( w , t ) = G ~ [ g ~ ~ ( w , t ) + G ~ g ~ ( w , t ) ]  , (21) 

where 

g ~ , ( w , t ) =  J f B , ( w , t , ~ ) d ~  

=2rrG3 tan-' --- [ [ '0P2] 

For G, = 0 . 3 3 ,  g,=2.9, a constant. 
The integral of the DDCS given in Eq. (21) may be 

equated to the expression for the SDCS given in Eq. (3 )  to 
obtain G , : 

Values of G1 obtained by fitting Eq. (13) to the data 
sets for helium at 500 eV are shown in Fig. 6 compared to 
the calculations from Eq. (24). 

VII. REQUIREMENTS ON THE MODEL 

Kim [ l o ]  has given six major requirements that must 
be satisfied by a consistent set of DDCS data. We next 
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FIG. 6. Values of the parameter G ,  obtained by fitting to the 
500-eV experimental data for helium, plotted vs W.  Line, Eq. 
(24); symbols as in Fig. 2. 

examine the present model to see how well it satisfies 
those requirements. 

A. Threshold behavior 

Clearly, all of the cross sections must go to  zero at  
threshold, i.e., at t = 1. In the present model, g ,  ( t )  goes 
to zero at  t = 1, thus insuring that the cross sections obey 
this requirement. Furthermore, as t + 1 the TCS expres- 
sion calculated from the model has a linear dependence 
on the excess energy above threshold, thus agreeing quite 
well with the 1.127 power dependence derived by Wan- 
nier [3 11. 

B. Asymptotic behavior 

As already mentioned, through the high-energy behav- 
ior of F (  t), the TCS expression has the required (1 /t)lnt 
dependence. The SDCS and DDCS have the same 
asymptotic dependence. 

Kim also noted [lo] that the Bethe approximation 
yields a sin2@ angular dependence at  high energies. If 
t >> 1 and w <<t, then G, << 1, and the first term of Eq. 
(13) dominates. Under these conditions, G2 << 1 and 
G ,  > 1. Then, from Eq. (141, 

Using the first two terms of the binomial expansion, 

in agreement with the Bethe requirement. 

C. Angular symmetry 

As just shown, the model yields a sin2 angular depen- 
dence at  high energies, thus automatically satisfying the 
requirement of back-front symmetry in that limit. 

D. Integrated cross sections 

This constraint requires the integral of the differential 
cross section to agree with the TCS and for the latter to 
have the proper ( l / t ) ln t  high-energy dependence. As 
noted, these properties are built into the model in the 
function F ( t ) .  Furthermore, the value of A ,, as de- 
scribed earlier, is related to the integrated optical oscilla- 
tor strength. 

E. Energy-loss cross section 

The first moment of the energy distribution is closely 
related to the stopping cross section. This is defined as 

The asymptotic high-energy limit of this integral ob- 
tained from the model should agree with the prediction 
of the Bethe theory. For high energies, only the first 
terms of f, (w, t) and of F i t )  are needed. Doing the in- 
tegral and dropping higher-order terms in 1 /t, the model 
yields 

The leading term in the Bethe equation is [18] 

Comparing the two equations, A , /( n - 2 )  = 2. Using the 
values of A from Table I, A ,  /( n - 2 )  =2.1 and 1.9 for 
helium and hydrogen, respectively, both in good agree- 
ment with the expected value. 

F. Binary peak 

Since the target electron is bound, the equation for the 
center of the binary peak is not given by C O S ~ ' ~ = ( W  /t)'", 
but rather by Eq. (161, as indicated previously. This 
dependence is part of the model. 

FIG. 7. SDCS for 50-eV e - +He collisions plotted as X (see 
text) vs W. Line, Eq. (3) ;  asterisks, Crooks [32]; other symbols 
as in Fig. 2. 
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VIII. RECOMMENDED CROSS SECTIONS 

The parameter n for the two gases was determined by 
fitting to the SDCS, while A , ,  A , ,  and A 3  were found by 
fitting the TCS. The values of the parameters are given 
in Table I. The TCS may then be calculated for any pri- 
mary energy by Eq. (6). Using the same parameters, Eq. 
(3) gives the SDCS recommended for the two gases for 
any combination of primary and secondary energies. In 
Figs. 7-9 the results of the model are compared with ex- 
perimental values of the SDCS. To  reduce the large vari- 
ation of the SDCS with energy, the measured and calcu- 
lated cross sections have been divided by the Mott equa- 
tion values given by Eq. (1). Thus, the quantity 
X =a(  W, T ) / a M (  W, T) is plotted. This is similar to the 
quantity Y, the ratio of the SDCS to the Rutherford cross 
section, often used, but has the advantage of being sym- 
metric about ( T - I ) /2 .  

At low primary energies, complete collection of the 
primary beam is very difficult because of scattering and 
space-charge spreading. Furthermore, the resulting 
secondary electrons, which are necessarily also of low en- 
ergies, are hard to analyze and detect with uniform 
efficiency, and spurious electrons are more numerous at  
those energies. For these reasons, it is not surprising that 
there is a large spread of values among the 50-eV data 
points of various investigators, as seen in Fig. 7. The 
present model provides a way of extrapolating the more 
reliable data at higher energies to the low-energy region 
and therefore may in some cases be more accurate than 
the experimental data. 

Figures 8 and 9 show that for the helium SDCS data at 
200 and 2000 eV, there is very good agreement between 
the model and the recommended values of Kim [lo] indi- 
cated by the dotted line. There is some discrepancy be- 
tween the model and the data of Opal, Peterson, and 
Beaty [2] for W > 50 eV in the 2000-eV results. Since 
there are no other experimental data in that region, it is 
not possible to say whether the error is in the model or in 
the data. However, data from that group tend to be too 
low in the intermediate range of electron energies com- 

FIG. 8. SDCS for 200-eV e -  +He collisions plotted as X vs 
W. Dashed line, Kim [lo]; solid line, Eq. (3); symbols as in Fig. 
-, 

FIG. 9. SDCS for 2000-eV e +He collisions plotted as X vs 
W. Dashed line, Kim [lo]; solid line, Eq. (3); symbols as in Fig. 
2. 

pared to other experimental data as seen, e.g., in Figs. 7 
and 8. 

For the DDCS, the parameter G I  is obtained from Eq. 
(241, G ,  from Eq. (161, G 3  from Eq. (18), and G4 from Eq. 
(19). G ,  has the fixed value 0.33. Then the DDCS for 
any combination of primary and secondary energy and 
angle is given by Eq. (13). Examples of the comparison of 
the model with experiment and with Kim's recommended 
values [lo] are given in Figs. 10-12. In most cases, the 
model agrees reasonably well with the data when the rela- 
tively large spread among the experimental values is tak- 
en into account. The discrepancies are somewhat greater 
at  low primary energies. Since two investigators have 
found that a peak in their data at  zero angle was due only 
to spurious electrons [25,35], the rise in the cross section 
seen in the forward direction in some of the experimental 
data (not shown here) is probably not real. The agree- 

T-- -104mA,m t , &  - 1 
'4 ....> 40 eV ( x  10) 

.......... k . ~ .  A 

. . . . . . .  2 l o 3  
A,. .. 

w 
...... 2 10' 100 e~ e-+ H ~ .  -..- A'. 6 0  eV 

V1 

2 10' 1 I 
0 0 30 60 9 0  120 150 180 

A n g l e  (deg) 

FIG. 10. DDCS for 100-eV e - +H, collisions plotted vs an- 
gle 9 for various ejection energies. Line, Eq. (13); closed 
squares, Shyn and Sharp [33]; closed triangles, DuBois and 
Rudd [34]. Dotted lines are only to guide the eye. 
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FIG. 11. DDCS for 100-eV e - +He collisions plotted vs an- FIG. 12. DDCS for 500-eV e - + He collisions plotted vs an- 
gle 0 for various ejection energies. Solid line, Eq. (13); dashed gle 0 for various ejection energies. Solid line, Eq. (13); dashed 
line, Kim [lo]; symbols as in Fig. 2. line, Kim [lo]; symbols as in Fig. 2. 

ment with Kim's recommended values [lo], both SDCS 
and DDCS, is very good for the higher primary energies, 
but the agreement between the two angular distributions 
is not as good at lower energies. From Fig. 11 it appears 
that for lower energies the present model follows the 
shape of the data of Miiller-Fiedler, Jung, and Erhardt 
[12] better than Kim's values do. 

IX. CONCLUSIONS 

A model has been presented by means of which cross 
sections for electron-impact ionization, either total or 
differential in energy and angle of ejection, are given in 
compact form for all combinations of primary and secon- 
dary energy and angle. Parameters have been obtained 
for helium and hydrogen targets from fitting to experi- 
mental data. While the model seems to be successful for 
those targets, it should also be tested for heavier targets 
for which there is a more complex energy dependence of 
the dipole oscillator strengths. While the dipole term is 
important at intermediate and high primary energies, it is 
of lesser importance at low energies. Therefore, the mod- 

el may be especially useful at low energies where the 
high-energy models, such as those based on the Bethe 
equation, fail. 

This analysis points up the need for additional experi- 
mental data and also the lack of complete theoretical un- 
derstanding of the electron emission process. Questions 
concerning the nature of systematics of the rise in the 
backward direction, the dependence of the shape of the 
binary encounter peak on primary and secondary ener- 
gies, and the exact functional dependence of the SDCS 
need to be addressed. 
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