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JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 11 1 JUNE 1998

Finite-temperature behavior of anisotropic two-sublattice magnets

Ralph Skomski
Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588-0111

The finite-temperature magnetism of rare-earth transition-metal intermetallics is investigated by
extending then-component vector spin model to two-sublattice magnets. Mean-field analysis shows

that the influence of the rare-earth anisotropy on the mean-field Curie temperature is much smaller
than expected from the low-temperature rare-earth anisotropy. The use of ultraspherical polynomials
yields a generalization of the famous(m+1)/2 power-law exponent ton(m+n—2)/(n—1).

© 1998 American Institute of Physids50021-897@8)48811-X

I. INTRODUCTION To generalize ther-vector model we have to introduce

separate transition-metal and rare-earth sublattice magnetiza-

Nd ;WOéSlg’lag'Cg fz:((j)-Smagdar(faerrr;msailgglletsint;rl:ai?in tions s and S, respectively, so that?=1 and S*=1. The
276145, DYysr&Ls gare phy y 9 spontaneous sublattice magnetizations are then given by

and technologmally |mportant mgtenél’s‘fA par_t|cular fea- Mor=5Mgr and M z=SM,g, Where the index O refers to
ture of these materials is that their two-sublattice character IS i i
associated with nonequivalent crystallographic siésThis 1€ zero-temperature moment. Let us, for the moment, con
. . i sider the mean-field Hamiltonian
has to be contrasted to antiferromagnets having equivalent
sublattice$® For example, the square-lattice Ising antiferro- 7= —J1154S,) — Jr1SASz) — ITrSAS,)
magnet can be mapped onto the square-lattice Ising ferro-
magnet by simultaneously changing the sign of the exchange ~IreSAS) ~ KrS;—KgS;. @
and reversing the spins of one sublatti@e. For the materials of interest, the transition-metal intrasublat-
Rare-earth transition-metal compounds consist otice couplingd+t dominates the intersublattice exchange de-
transition-metal and rare-earth sublattices coupled by a conscribed byJgt and J1g, Whereas the rare-earth intrasublat-
paratively weak intersublattice interactidht For the late tice exchangelgg is negligibly small.K; and K are the
iron-series elements the intersublattice exchange betwedowest-order uniaxial transition-metal and rare-earth sublat-
rare-earth and transition-metal spins is antiferromaghet@  tice anisotropy constants, respectively, and refer to the mag-
that, according to Hund’s rules, light and heavy rare earthsietic energy per atom. Due to the pronounced rare-earth
yield ferromagnetic and antiferromagnetic intersublatticespin-orbit couplingK g> K for typical magnets. An excep-
coupling, respectively. tion are rare earths whosef £lectron cloud is spherical,
Atomic anisotropy energies are small, typically of ordersuch as gadolinium. Note that puttidg= Jg=Kg=0 and
E./kgT~1K, but due to interatomic exchange their influ- K;=Kg=0 yields, forn=3, the well-investigated limits of
ence on the magnetic properties is not restricted to low temthe anisotropic one-sublattite  and isotropic
peratures. Note that the theoretical description of the finitetwo-sublattic” Heisenberg models, respectively.
temperature anisotropy of itinerant electrons is still in its ~ The equilibrium behavior of the model E(L) is given
initial stage, whereas the Heisenberg-type magnetism of oy the partition function
calized electrons is comparatively well understood. Here we
use a generalized-vector model to investigate anisotropic z:f ! exp(—.71kgT)ds dS. )
two-sublattice magnets. Emphasis is put on two questions:
the effect the two-sublattice anisotropy on the Curie temHere, the dash indicates that the conditicis-1 and S?
perature, andii) the finite-temperature behavior of the net =1 restrict the integration to the surfacesreflimensional
anisotropy. spheres. The thermally averaged sublattice magnetizations

Il. MODEL AND CALCULATION
The n-component vector-spin ar-vector modelFig. 1)
is defined in terms of quasiclassical local magnetization vec-
tors obeyings?=s3+ - - - + s2= 122 This definition includes '
the Ising modekn=1, so thats=se,), the planar mode(n

=2, s=s,6,15,6,), the classical Heisenberg modei= 3,

s=s,&+S,6,15,6,), and the spherical modehE ). The n=1 n=2 n=3
n=0 model is known as the polymer mod&iThe n-vector @) ®) © )
model is widely used to study finite-temperature ¢

. 12 "
magngtlsn?. For example, the critical exponents of the g 1. spin configurationsz) J=5/2 Heisenberg modeib) Ising model,
spherical model are known exacﬂy. (¢) planar model, andd) classical Heisenberg model.
0021-8979/98/83(11)/6724/3/$15.00 6724 © 1998 American Institute of Physics
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<aBb . B. Anisotropy
plateau’ region :

: Figure 2 gives a schematic idea of the temperature de-
K dominates - Ky dominates pendence of the total anisotropy. Here we neglect the low-
: temperature and critical limitsdashed lingsand focus on
Eq.(7) the intermediate regimes<Tgy and Tgy<T<T.. In the

: classical Heisenberg model, the temperature dependence of
: N mth-order anisotropy contributions is proportional to the
{ Eq.(11) ffieal thermal average of the Legendre polynomiaR,(S,))q,

1 where the index 0 refers to the isotropic Hamiltontadror
0 L : =~ the n-vector model we have to use ultraspherical polynomi-
0 TRT T T als P(x).*® The first ultraspherical polynomials af
FIG. 2. Temperature dependence of magnetocrystalline anisotropy if both 1, Pl(n)zx’
K+ andKpg are positive(schematig. 1
—_—— 2—
P ] (nx—=1), (6a)
; ; 2 2 1 3
Ms(s,) and M¢x(S,) and anisotropie&(s;) and Kg(S5) Pg(n):m [(n+2)x>—3x], (6b)

are obtained by direct integration or, more conveniently, by
differentiating Eq.(2) with respect to(s,) and(S,). The and
resulting self-consistent equations are, in general, coupled 1
and nonlinear. Mathematically, the calculation involves sur- _ 4 2
' ; Psm= n+2)(n+4)x*—6(n+2)x<—1]. (6¢
face averages such gg™,=/'z"dx/[dx. In particular, am=pz—g L(N+2)(n+4) (n+2) ] (69

2\ _ 4\ _
(z9)0=1/n and(z")o=3/n(n+2). For n=2, the ultraspherical polynomials are also known as

Tchebicheff polynomials.
At low temperatures, the magnetization dependence of
A. Curie temperature the Heisenberg anisotropy constaits,, is given by the
famous power-law K(T)/K(0)=(Ms/Mg)M™M* 172 (Ref.

. o 14). For exampleK(T)/K.(0)=(M¢/My)3. Let us now
expandz into powers of the small quantities;) and(S,). generalize this power law to arbitrary spin dimensionalities,

As in the case of isotropic two-sublattice magr?e7t$he de- which is of some interest because statistical considerations

termination of the Curie temperature reduces to the calcula- P g T . .
. . o . : often simplify in the limit of large spin dimensionalities. The
tion and diagonalization of aX22 secular matrix equation.

In the present case starting point is the “low-temperature” expression
P ' J' exp@t)Z"dx=1—m(n—1)t/2. By expressing the ultra-

In the vicinity of the Curie temperature it is possible to

(s,) Arr Ag\((sy) spherical polynomials in terms of hypergeometric
(S)) "\ Arr Arrl/\(S)) () functions!® we find after short calculation
where K1(T)/K1(0)=(Mg/Mg)mm+n=2)/(n=1) )

A= (I /nkgD{1+[2(n— 1)K, /[n(n+2)kgTT}. (4) Note _that the exponent in this equation equaisin the
spherical model andr#(n—1) for the lowest-order anisot-
Neglecting Jrr and taking into account the smallness of ropy constant ifi=2).
JrT, K7, andKg, we obtain by eigenvalue analysis Equation(7) is restricted to one-sublattice magnets, but
_ 2 _ at very low temperature§<Tg it remains valid ifM¢ and
Te=Tr+ Trdd Tr{2(n=1)/[n(n+2)ke]} (K~ M, refer to the rare-earth sublattice magnetization. In the

+KRTEQT/T‘2|')1 (5) practically important intermediate regiofkt<T<T., one
, has to consider the rare-earth sublattice in the exchange field
whereTr=Jr7/nkg and Tg1= \IrtdTr/NK. of the transition-metal sublattiég; which yields the ap-

The first two terms on the right-hand side of &) are  proximate 1T* power-law
well known and describe the isotropic transition-metal and )
rare-earth  contributions to the Curie temperature, Kr(T) _ Jrt
respectively®>’ The third term on the right-hand side of Eq. Kr(0)  n(n+2)k3T?’
(5) is the anisotropy contribution td .. We see that the

|nflutegcfe of tt:: € ralre-e;(rth banls?trczpy_rlzs ?_Tat"hert t.hanf exduantum-mechanical single-ion motfeénd the estimaté
pected from the value g by a factorTg,/ Ty, that is o =1.7+0.4 deduced from literature data on g ;N, and

order 0.05 for iron-rich rare-earth intermetallics. 4
. . . .. SmFeLC,.
Note that the anisotropy of the ideally anisotropic Ising
model (h=1) does not contribute to the Curie temperature
but from the leading termi+=J;1/nkg we see that the Ising
Curie temperature is about three times larger than the The itinerant character of thed3electrons means that
Heisenberg Curie temperature. not only the spontaneous magnetization but also the mag-

®

This prediction agrees fairly well with numerical studies on a

'C. Transition-metal sublattice
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netic moment are temperature dependént’ However, in  anisotropy® and magnetostatic dipole interactions. For this
most cases the thermal reduction of the magnetic momemeason, our predictions are only semiquantitative.
does not exceed a few percent so that its neglect is a fair In conclusion, we have analyzed the finite-temperature
assumptiort’~*°As a very crude approximation, we consider behavior of a generalized-vector model. The influence of
the mean-field Hamiltonian transition-metal and rare-earth anisotropies on the Curie tem-
oy 2 perature is treated in a mean-field approximation. Due to the
== 3r18(8,) ~KrS;~ oS, ®)  Wweakness of the intersublattice coupling, the anisotropy con-
wheren=3 ands’<1 and the parametéf,<| —1/D(Eg) is  tribution to the Curie temperature is determined by the
a Stoner-type single-site eneryTypically, U,>J>K;, so  transition-metal sublattice. The temperature dependence of
that in lowest-order T =T1(1+4K:/15kgT+—2T+/Uy). the anisotropy may be approximated by a hierarchy of power
The reduction ofT, is small in the region where Eq9) laws.
applies, but may nevertheless be larger tharktheontribu-

tions discussed in this paper. ACKNOWLEDGMENTS
In lowest order, the transition-metal anisotropy is given o
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