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Abstract

The goal of this study is to describe linkages between the National Health Interview Survey (NHIS) and Environmental Protection

Agency (EPA) air monitoring data, specifically how the linkage method affects characteristics and exposure estimates of study samples

and estimated associations between exposure and health. In the USA, nationally representative health data are collected in the NHIS and

annual air quality data are collected by the EPA. The linkage of these data for research is not straightforward and the choices made may

introduce bias into results. The 2000–2003 NHIS and air quality data for six air pollutants were linked by residential block group and

monitor location, which differ by pollutants. For each pollutant, three annual exposure variables were assigned to respondents:

(1) average of all monitors in the county, (2) of monitors within a 5-mile radius of the distance between block group and monitor, and

(3) within a 20-mile radius. Exposure estimates, study sample characteristics, and association between fine particle exposure and

respondent-reported health status were compared for different geographic linkage methods. The results showed that study sample

characteristics varied by geographic linkage method and pollutant linked. Generally, the fewer the NHIS respondents linked, the higher

is the pollution exposure and lower is the percentage of non-Hispanic whites. After adjustment for sociodemographic and geographic

factors, associations between fine particles and health status were generally comparable across study samples. Because exposure

information is not available for all potential participants in an epidemiological study, selection effects should be considered when

drawing inferences about air quality–health associations. With the current monitoring data system, the study sample is substantially

reduced when linkage to multiple pollutants is performed.

r 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Adverse health effects of ambient exposure to environ-
mental contaminants have been convincingly demonstrated
in epidemiological research. However, studies in the United
States examining pollution and health outcomes have been
conducted using select populations in limited geographic
areas. The degree to which the results may reflect the

experience of more general populations is unknown. In the
USA, data on environmental contaminants are collected by
the US Environmental Protection Agency (US EPA) and
nationally representative health data are collected by the
National Center for Health Statistics/Centers for Disease
Control and Prevention (NCHS/CDC). Opportunities exist
to link these data to obtain a more nationally representa-
tive study sample than possible with geographically limited
data.
Only a few previous studies have combined NCHS/CDC

survey data with US EPA exposure data, likely due to
confidentiality restrictions and the resulting unavailability
of geographic details on public-use files. Ostro combined
data from the National Health Interview Survey (NHIS)
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from the late 1970s with corresponding estimates of air
pollution to examine respiratory morbidity and work-loss
days (Ostro, 1983, 1987, 1989, 1990; Ostro and Rothschild,
1989). Later, data from the National Health and Nutrition
Examination Surveys (NHANES) were combined with
exposure estimates from the US EPA to examine the effects
of air pollution on lung function and its correlation with
blood markers (Chestnut et al., 1991; Schwartz, 1989,
2001). In a methodological study, Wong et al. (2004)
compared pollution exposure estimates for children in
NHANES III using four different assignment methods. In
addition to survey data, vital statistics, compiled at NCHS/
CDC, have been linked to air pollution data in several
studies (Bell et al., 2004; Darrow et al., 2006; Dominici
et al., 2002; Samet et al., 2000; Woodruff et al., 1997).

In the examples listed above, individual-level outcomes
and characteristics are available while the air pollution
exposure is aggregated (Kunzli and Tager, 1997). In
environmental studies, the aggregated exposure is often
assumed to be an approximate exposure assignment for an
individual. From this perspective, the exposure variable is
considered subject to measurement error, and resulting
associations are often assumed to be attenuated, although
this assumption may not hold (Budtz-Jorgensen et al.,
2003; Greenland and Gustafson, 2006; Zeger et al., 2000).
A related issue when creating area-level averages is the
Modifiable Unit of Analysis Problem, where associations
differ by the level of aggregation. Differences are due to
both mathematical properties of aggregation and specifica-
tion bias, where characteristics of groups differ by the
aggregation (Waller and Gotway, 2004).

In studies based on linked NCHS survey data and US
EPA data cited above, exposure estimates assigned to
survey respondents were derived in a variety of ways,
including averages over metropolitan areas (Ostro, 1983,
1987, 1989, 1990; Ostro and Rothschild, 1989; Woodruff
et al., 1997), or counties (Darrow et al., 2006; Schwartz,
2001) and using monitors within specified distances from
the respondent’s residence (Schwartz, 1989). Choice of
geographic scale for assigning environmental exposures has
been compared in only a few studies. Willis et al. (2003)
conducted a re-analysis of the American Cancer Society
Study (ACS) and found stronger associations using
exposures calculated at the county level than at the original
metropolitan area level. In contrast, Basu et al. (2004)
compared county-level pollution exposure to exposure
based on averaging pollution measurements within 5miles
of a mother’s residence to assess PM2.5 exposure and birth
weight; the results of this California study showed a
stronger effect for the county level compared to the 5-mile
exposure measure. The consequences of using different
geographic units of analysis have also been compared in
studies of neighborhood characteristics on health (Krieger
et al., 2002).

An issue that has not been fully examined in environ-
mental epidemiology is selection bias. Selection bias occurs
when the relationship between the outcome and exposure

for subjects included in the analysis is different from the
relationship for those not included (Ellenberg, 1994). In
the linked studies using NCHS datasets described above,
the analytic samples excluded varying percentages of the
surveyed responders due to insufficient exposure informa-
tion. In the studies by Ostro, for example, the findings
are based on approximately 7000–8000 NHIS working
adults with exposure information per survey year; using the
1979 NHIS, we calculated that nearly 45,000 of the
respondents were working adults, indicating that exposure
information was not available for most of the eligible
survey respondents (data available at http://www.cdc.gov/
nchs/about/major/nhis/quest_data_related_1969_96.htm).
In the re-analysis of the ACS described above, fewer than
half of the study subjects in the original metropolitan-ar-
ea-level analysis were available for the county-level analysis
(Willis et al., 2003). The study by Basu et al. (2004), on the
other hand, used the same study cohort for both the
county-level and 5-mile analyses. Whether the conclusions
of Willis et al. would have differed had all respondents
been included in the county-level analysis is unknown.
The objective of this paper is to compare the study

samples that result from using different linkage approaches
that vary by geographic scale and number of air pollutants
when combining the NHIS with air pollution data from the
US EPA. Different geographic linkage decisions lead both
to different study samples and to different exposure
assignments, either of which can lead to varying results.
An understanding of the effects of geographic linkage
decisions on the characteristics of the study sample and
exposure assignment is needed to further understand
whether and how pollution and health relate to each other.
This evaluation has implications for studies of chronic or
long-term exposure to air pollution; time-series studies of
daily events may be less affected by linkage issues.
Toward this objective, we linked respondents in the

2000–2003 NHIS to annual monitoring averages for six
criteria pollutants: particulates, fine (PM2.5) and large
(PM10); carbon monoxide (CO); sulfur dioxide (SO2);
ozone (O3); and nitrogen dioxide (NO2). Respondents were
linked, when possible, to monitor data in their county of
residence, to data from a monitor within 5miles of their
block group, and to data from a monitor within 20miles of
their block group separately for each pollutant. To
examine the effect on subsequent inference of requiring
linkage to multiple pollutants, additional comparisons
were made for study samples defined by residential linkage
to all six pollutants. Because of recent interest in the health
effects of fine particles (Pope and Dockery, 2006),
demographic and health characteristics were compared
for study samples linked to PM2.5 exposures as an example.
Using a general health indicator (fair/poor versus good/

very good/excellent respondent-reported health status),
associations between exposure and health status were
evaluated. Because a thorough examination of the effects
of air pollution on a particular health outcome was not
intended, we used a general measure of health as an
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indicator of the underlying health of the population, rather
than a health outcome specific to air pollution, to examine
the effects of geographic linkage decisions on selection bias
and exposure assignment in national health data.

2. Materials and methods

The NHIS is a survey of a nationally representative sample of the

civilian, non-institutionalized population conducted continuously by

NCHS/CDC. Sociodemographic information and answers to a variety

of health-related questions are obtained for each household member and

included in the NHIS Person file (Schille et al., 2005). In addition, more

detailed health-related questions are asked to a randomly selected sample

adult from each family and a randomly selected sample child from each

family with children and are contained in the NHIS Sample Adult and

NHIS Sample Child files (Dey and Bloom, 2005; Lethbridge-Cejku and

Vickerie, 2005).

For this analysis, geocoded NHIS data from the 2000–2003 survey were

used. Files containing geographic detail are not available publicly but can

be used for research purposes through the NCHS Research Data Center

(RDC). Although more recent NHIS data years are available, these files

were not geocoded at the time of this study. Geographic variables used to

assign pollution exposure for each respondent were county and latitude

and longitude of the population center of the census block group of

residence. Population centers are location indicators weighted by

population size. A recent paper by Kravets and Hadden (2007) provides

more detail on geocoding the NHIS. Although the geocoding varies by

year, for the 2000–2003 survey, nearly all (99.9%) respondents could be

geocoded to a Census 2000 block group. The exact residential locations

are not retained in the final analytic or in-house files.

Race and Hispanic origin were combined into seven distinct categories:

white, black, Asian, Hispanic, American Indian and Alaska Native

(AIAN), multiple race, and other race. Race and Hispanic origin are

collected separately in the NHIS; for this analysis, any respondent

reporting Hispanic origin was assigned the Hispanic category, regardless

of race. For the Hispanic respondents, those reporting Mexican or Mexican

American origin were categorized as a subgroup. Family income refers to

the total family income received in the previous calendar year by all family

members. Income is converted into a percent of the official poverty

threshold by taking into account both the total family income and family

size. Responses were grouped into four levels of income as a percent of

poverty: less than 100%, 100–199%, 200–399%, and 400% or more.

Because the number of respondents missing family income is relatively

large, we used the data files produced by NCHS with missing values of

family income imputed using multiple imputation methods (Schenker et al.,

2006). Race/ethnicity and family income are both strongly associated with

health outcomes (NCHS, 2007). Furthermore, because disadvantaged

groups are more likely to live in areas with higher levels of pollution (Lee,

2002), these sociodemographic factors may affect exposure–health

associations. Geographic descriptors were census region and the 2006

Urban–Rural Continuum (Ingram and Franco, 2006); pollution exposure,

sociodemographic characteristics, and health outcomes differ by urban/

rural status (Eberhardt and Pamuk, 2004; US EPA, 2003).

As potential outcome and confounding variables in environmental

health studies, a handful of health variables were included in the

tabulations. The percentage reporting fair/poor health status was

calculated for all respondents. For the sample adults, we tabulated

cigarette smoking (current, former, or never). For the sample adults and

sample children, the NHIS collects information about a number of

conditions. We tabulated the percentages that had been told by a doctor or

health professional in the previous 12 months that they had chronic

bronchitis (adults), sinusitis (adults), respiratory infection (children), ear

infection (children), and hay fever (adults and children). These health

indicators were not intended to be an exhaustive set of potential pollution-

associated measures in the NHIS.

Annual averages of pollution exposure by pollution monitor for six air

pollutants for 2000–2003 were obtained from the US EPA’s Air Quality

System (AQS) database (US EPA, 2006). The AQS provides air

monitoring data-ambient concentrations of criteria and hazardous air

pollutants at monitoring sites throughout the USA, primarily in cities and

towns; these data are collected for regulatory purposes. The pollutants

PM2.5, PM10, CO, SO2, O3, and NO2 are referred to as criteria pollutants

and are routinely monitored and regulated by the US EPA. Studies have

demonstrated that higher ambient levels of these pollutants are correlated

with poorer health outcomes (US EPA, 2003). Air quality measurements

are obtained at different time intervals. Some monitors collect information

daily, for example, while others collect information every third or sixth

day. Monitors were included in this study if data were available for at least

75% of the scheduled monitoring times. A small number of monitors had

county location but not latitude and longitude and were linked by county

but not by distance. Additional details on the selection of monitors for this

analysis are available from the authors.

An average annual exposure of each pollutant, if available, was

assigned to each NHIS respondent by averaging the annual exposures

from all monitors within the county and all monitors within 5 and 20miles

of the block group. For the 5-mile and 20-mile exposures, weighted

averages were calculated using the inverse of the squared distance between

the block group center and the monitor as the weight.

Three types of linkages for each pollutant were defined based on the

following geographic criteria and the availability of data: (1) respondents

linked to monitoring data by county, (2) respondents linked to monitors

within 20miles, and (3) respondents linked to monitors within 5miles.

Using these three geographic criteria, 18 separate geographic study

samples were formed by linking to each of the six pollutants and an

additional three were formed by simultaneously linking to all six

pollutants. For each of 21 geographic study samples, the median and

interquartile ranges (25th and 75th percentiles) of the annual average

pollution values were calculated.

Focusing on the three linkages to PM2.5 exposure (county-level, the 20-

mile, and the 5-mile) and the three linkages to all six measured pollutants,

we characterized the resulting geographic study samples by the socio-

demographic, geographic, and health indicators described above.

The association between respondent-reported health status, defined as a

dichotomous variable ‘‘excellent/very good/good’’ versus ‘‘fair/poor,’’ and

PM2.5 exposure was estimated for each of the subgroups using standard

logistic regression analysis for surveys with SUDAAN (RTI International,

2006), including appropriate methods for the multiple imputations of

poverty status (Schenker et al., 2006). The associations for a 10 mg/m3

change in PM2.5 are presented unadjusted as well as adjusted for

socioeconomic and geographic variables. Geographic variation in health

and pollution levels exists but its role in these models is uncertain. If, for

example, geographic variation in health can be attributed to air pollution,

then controlling for region of the country may mask the effect.

Alternatively, exposure measures may be more representative for urban

compared to suburban areas. Although a thorough understanding of

potential regional variation in the effects of air pollution on health is

beyond the scope of this descriptive analysis, models were fit both with

and without the geographic variables but exploration of potential

geographic effect modification was not done. Similarly, while socio-

economic variables are established confounders, their role as effect

modifiers is uncertain. On one hand, disadvantaged groups may be more

susceptible to the effects of air pollutants; on the other hand, other factors

that contribute to poor health outcomes may overwhelm additional effects

of pollution for these groups. A full exploration of effect modification by

socioeconomic status was beyond the scope of this analysis.

Because smoking is a strong determinant of health outcomes and

smoking status varies across the USA, smoking could be considered a

strong confounder of pollution–health associations. To assess the impact

of smoking status as a confounder on these associations, using a sub-

sample of data from the Sample Adult file (45% of adults), models were fit

with and without the indicator of smoking and for the subset of never

smokers.

To separate the effect of the study sample from the effect of the

exposure assignment, models were fit to estimate associations between

health status and PM2.5 using a study sample with values for PM2.5 defined
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at the county level and for both 5 and 20miles and a study sample with

PM2.5 and the other pollutants defined at all levels. The study sample

linked to all three geographic scenarios for PM2.5 is slightly smaller than

the 5-mile study sample because some respondents in the 5-mile study

sample do not have a county-level measure, that is, the monitor (or

monitors) within 5miles is in a different county.

For comparisons across study samples, we inspected the estimates but

statistical tests were not done. The study samples overlap and are, thus,

not independent. Because of the complex survey design of the NHIS,

standard errors for all estimates were calculated using standard survey

methods with the software SUDAAN (RTI International, 2006) and all

percentages and odds ratios (ORs) are weighted to represent the civilian

non-institutionalized population; sample sizes are unweighted.

3. Results

There were over 380,000 respondents in the 2000–2003
NHIS. The percentage of survey respondents linked to
pollution data varied by pollutant and geographic linkage
(Table 1). For all pollutants, the percentage of respondents
linked is slightly higher using the 20-mile radius than using
a county linkage, due, in part, to some county boundaries
being less than 20miles from a respondent’s location.
Linkage to all six pollutants decreases the percentage of
respondents available for analysis markedly, particularly
using 5-mile radii.

Average annual exposure measures are relatively similar
across linkage methods (Table 2). Exposure estimates tend
to be slightly higher for the 5-mile linkage. Among the
respondents linked to six pollutants, exposure estimates for
particulate matter were higher than those linked to just one
pollutant (Table 3); this effect was less pronounced for
gaseous pollutants.
Using a more restricted sample of approximately 25,000

respondents with exposure estimates for all six pollutants
and all three geographic linkage methods, pollution-
specific correlations for the different pollution-specific
exposure measures at different geographic scales were all
greater than 0.85 (not shown); using PM2.5, as an example,
the correlations between the county-level estimate of PM2.5

and those calculated for 5 and 20miles were 0.91 and 0.93,
respectively. Given that many of the same monitors are
used in the calculation of these exposures for a respondent,
the high correlations are not surprising. Nevertheless, the
high correlations at the individual level suggest that, on
average, the exposure estimates assigned using the 5-mile
criterion are very similar to those assigned at the county
level.
Demographic distributions differed among the study

samples linked to PM2.5 data (Table 4). The percentage of
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Table 1

Number and weighted percentage of NHIS respondents linked to annual average exposure data for six criteria pollutants by geographic linkage method,

2000–2003

Pollutant Geographic linkage method

Monitors in county of residence Monitors within 5miles of residence Monitors within 20miles of residence

N % N % N %

PM2.5 282,935 71 155,045 37 313,047 80

PM10 221,160 53 118,294 27 274,126 68

CO 208,359 49 109,117 24 246,755 61

O3 273,506 69 135,921 31 308,960 79

NO2 187,769 44 89,979 19 226,335 55

SO2 186,103 45 76,461 18 230,294 58

All six 125,284 28 30,461 6 176,546 42

Table 2

Median and the interquartile range (25th and 75th percentiles) of the annual average pollution exposure for NHIS survey respondents linked to exposure

data for single pollutants by geographic linkage method, 2000–2003

Pollutant Geographic linkage methoda

Monitors in county of residence Monitors within 5miles of residence Monitors within 20miles of residence

Median 25th–75th percentiles Median 25th–75th percentiles Median 25th–75th percentiles

PM2.5 (mg/m
3) 13 11.0–15.3 13.5 11.3–15.5 13 11–15.1

PM10 (mg/m
3) 24.0 20.5–29.6 24.4 20.8–29.6 24.1 21.1–28.1

CO (ppm� 100) 60 47–82 64 49–87 61 48–81

O3 (ppm� 1000) 52 47–57 51 46–56 52 48–57

NO2 (ppm� 1000) 18 13–24 20 16–24 18 14–27

SO2 (ppm� 10,000) 37 21–52 41 23–61 45 27–57

aSee Table 1 for underlying sample sizes.
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white respondents, for example, was highest in the study
sample linked to PM2.5 monitors within 20miles and lowest
in the study sample linked to PM2.5 monitors within
5miles. The percentage of respondents in poverty was
highest in the study sample linked to PM2.5 monitors
within 5miles. The distributions of region and level of
urbanicity differed among the study samples. The pre-
valence of the health conditions reported for the sample
adult or child from the previous 12 months were, with one
exception, higher for the overall NHIS than for any of the
linkage study samples defined by geographic linkage to
PM2.5. The age distribution appears similar across study
samples.

The results for the study samples linked to all six
pollutants were similar to those for the study samples
defined by linkage to PM2.5. For example, the study
samples linked to monitors for all six pollutants within
5miles had fewer white respondents, more Hispanic
respondents, and respondents from families with lower
incomes than either study samples defined by county
linkages or linked to multiple pollutants within 20miles
(Table 4). As above, distributions of age and health
outcomes were similar, though the 5-mile sample included
a slightly higher percentage of smokers and a lower
percentage of young children with ear infections; the
prevalence of the health conditions reported for the sample
adult or child from the previous 12 months were generally
higher for the overall NHIS than for any of the linkage
study samples. Again, there were large differences by
region and urbanicity. Compared to the overall NHIS, for
example, respondents from the West are over represented
after linking to multiple pollutants by county.

The odds of reporting fair or poor health status
increased with an increase of PM2.5 of 10 mg/m3; this
increase was approximately 10–20% but varied depending
on the study sample and adjustment for covariates
(Table 5). Associations were attenuated with adjustment
for sociodemographic and geographic variables. The effect
of the adjustment was somewhat more pronounced for the
5-mile linkage subgroups than for the other groups.

Among the subset of adults with smoking information,
ORs were similar to those reported in Table 5 (not shown).
While smoking status consistently had an independent
effect on health status, its inclusion in the regression
models did not modify any association by more than 1%
(not shown). Among the subset of never smokers, all
associations between health status and air pollution were
stronger and the variation in effect estimates among
linkage study samples was similar to the overall results
(not shown).
To assess whether variability in findings from different

geographic linkage methods can be attributed to differ-
ences in exposure assignments or differences in study
samples, we compared associations between health status
and PM2.5 using the same respondents. For this analysis,
we used two study samples of respondents, each with
county-level, 20-mile, and 5-mile PM2.5 exposure measures.
The first subset required only PM2.5 exposures for each
geographic level and the second subset comprised the
approximately 25,000 respondents with linkage to all
pollutants at each geographic level; the sample size differs
from that for 5miles because some respondents with 5-mile
exposures did not have county-level exposure estimates.
Adjusted ORs using the county-level and 20-mile exposure
variables were the same as those calculated using the 5-mile
exposure variable despite the wider geographic areas used
in their definition (Table 6). This finding is consistent with
the high correlations reported above. This similarity
suggests that some of the differences in ORs observed in
Table 5 may be due to differences in study sample rather
than the exposure variable definition.

4. Discussion

These findings show variation in analytic study samples
derived from a single nationally representative database
(the NHIS) when different approaches are used to link the
NHIS to EPA air pollution data. The variation among
study samples is most pronounced for demographic and
geographic (region and urbanicity) variables. In general,
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Table 3

Median and the interquartile range (25th and 75th percentiles) for annual average pollution exposure for NHIS survey respondents linked to exposure

data for all six pollutants by geographic linkage method, 2000–2003

Pollutant Geographic linkage method

Monitors in county of residence

(N ¼ 125,284)

Monitors within 5miles of residence

(N ¼ 30,461)

Monitors within 20miles of residence

(N ¼ 176,546)

Median 25th–75th percentiles Median 25th–75th percentiles Median 25th–75th percentiles

PM2.5 (mg/m
3) 14.3 11.4–16.6 15.2 13.3–16.2 14.3 11.9–15.7

PM10 (mg/m
3) 26.4 22.3–32.6 26.0 22.2–34.2 25.1 22.2–29.9

CO (ppm� 100) 65 52–84 70 54–93 65 53–84

O3 (ppm� 1000) 51 47–55 49 43–53 52 47–56

NO2 (ppm� 1000) 19 14–25 23 19–30 19 15–26

SO2 (ppm� 10,000) 30 21–46 46 25–64 40 22–57

J.D. Parker et al. / Environmental Research 106 (2008) 384–392388
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Table 4

Characteristics of NHIS respondents linked to PM2.5 monitors by geographic linkage method (percentage), 2000–2003

All Linked to PM2.5 Linked to all six pollutants

County 5miles 20miles County 5miles 20miles

Sample size 383,995 282,935 155,045 313,047 125,284 30,461 176,546

Percentage

Race/ethnicity

Asian 3.6 4.6 5.2 4.3 5.8 7.2 5.6

American Indian/Alaska Native 0.6 0.5 0.4 0.4 0.3 0.3 0.3

Black 12.0 14.0 17.4 13.3 15.9 22.0 16.9

Hispanic 12.8 15.6 17.4 14.0 24.2 29.9 18.7

Mexican 8.3 9.8 10.6 8.7 15.6 16.1 10.6

Other Hispanic 4.5 5.8 6.8 5.3 8.7 13.8 8.1

White 69.6 63.9 58.2 66.6 52.1 39.3 57.2

Two or more races 0.9 0.9 0.9 0.9 1.0 0.8 0.8

Other 0.5 0.5 0.6 0.5 0.6 0.6 0.5

Poverty level

o100% 13.2 13.1 15.9 12.7 14.5 22.3 13.2

100–200% 18.7 18.1 19.7 17.9 19.4 22.6 17.8

200–400% 31.4 30.6 30.9 30.7 29.6 27.7 29.5

4400% 36.7 38.2 33.6 38.8 36.5 27.4 39.4

Age (years)

o17 24.7 25.0 24.6 24.9 25.5 25.9 25.0

17–44 40.5 41.2 42.2 41.2 42.0 43.6 42.0

45–64 22.9 22.4 21.5 22.6 21.5 19.7 21.9

464 11.9 11.5 11.7 11.4 11.0 10.8 11.4

Region

Northwest 19.0 19.7 22.7 20.4 14.2 36.3 26.1

Midwest 24.0 21.6 23.9 21.7 17.1 14.8 18.2

South 36.2 32.5 28.3 34.7 29.9 16.5 29.9

West 20.8 26.3 25.2 23.2 38.8 32.5 25.8

Urban/rural county

Large central metropolitan 28.5 40.0 43.8 35.1 73.0 73.1 54.8

Large fringe metropolitan 24.7 24.4 21.2 27.7 14.0 14.0 32.8

Medium metro 20.3 22.9 22.3 22.4 12.4 11.5 11.1

Small metro 9.8 6.9 8.4 7.6 0.6 0.4 0.6

Micro-politan 10.4 5.0 3.8 5.8 0 0 0.7

Non-core 6.2 0.8 0.5 1.5 0 0 0

Health characteristics

Fair/poor health status 9.1 8.6 9.4 8.6 8.6 10.3 8.3

Smokinga, adults

Current 22.5 21.6 22.3 21.8 20.4 23.0 20.5

Former 22.2 21.8 20.6 22.0 20.0 17.4 20.8

Never 55.3 56.6 56.8 56.2 59.4 59.5 58.8

Health conditions diagnosed in past 12 monthsa

Adultsa

Chronic bronchitis 4.6 4.3 4.4 4.5 3.9 3.9 3.9

Sinusitis 15.4 14.8 14.4 15.2 13.2 12.7 12.9

Hay fever 9.2 9.4 9.4 9.4 8.9 9.5 9.2

Childrena

Respiratory infection 13.0 12.4 11.7 12.8 10.5 9.3 11.1

Hay fever 11.3 11.3 10.8 11.4 9.7 10.1 10.6

Ear infection, 0–2 years 13.3 12.6 11.6 12.9 10.9 7.2 11.3

Ear infection, 3–17 years 5.2 5.0 4.8 5.1 4.5 4.3 4.7

aIncludes only the sample adults or sample children asked detailed health questions; the few respondents with missing data for a particular health

question were excluded.
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the more restrictive the linkage criteria, the more urban the
resulting study sample becomes. Correspondingly, the
underlying study samples differed in important ways in a
variety of demographic factors. In an analysis using data
linked by county to multiple pollutants, the resulting study
population would be considerably smaller than the original
NHIS and have nearly twice the percentage of respondents
from the West. There may be trade-offs between a
seemingly more precise geographic area using a smaller
radius and the loss of statistical precision with fewer survey
respondents. Although the NHIS is a large survey, the
number of respondents with uncommon health outcomes
or in subpopulations can be small. Measurement error and
other issues that plague single pollution studies are already
exacerbated in analyses of multiple pollutants (Zeka and
Schwartz, 2004); the effects of selection bias and reduced

sample size with linked multiple pollutant data add to the
challenges of analysis and interpretation.
Associations between health outcomes and air pollution

can depend both on the underlying study sample and the
geographic exposure assignment. We found that differences
in the geographic linkage method did not lead to large
differences in the association between health status and
PM2.5 pollution. That the adjusted ORs calculated for the
5-mile study samples were somewhat smaller than those
calculated using the broader exposure areas (Table 5) is
consistent with the findings of Basu et al. (2004) and does
not support the hypothesis that more precise measurements
lead to stronger associations. However, it is unclear
whether the results in Table 5 are due to differences in
study sample or differences in exposure assignment. It is
possible that the effect of sample selection (or specification

ARTICLE IN PRESS

Table 5

Unadjusted and adjusted odds ratios (OR) with 95% confidence intervals (CI) describing association between respondent-reported fair/poor health status

and PM2.5 exposure (per 10mg/m3) by geographic linkage method

Linked to PM2.5 Linked to all six pollutantsa

County 5miles 20miles County 5miles 20miles

Sample size 282,935 155,045 313,047 125,284 30,461 176,546

Unadjusted

OR 1.22 1.25 1.15 1.27 1.18 1.22

95% CI 1.14–1.31 1.17–1.34 1.09–1.22 1.18–1.37 1.03–1.35 1.14–1.30

Adjusted

ORb 1.15 1.10 1.11 1.26 1.09 1.16

95% CI 1.08–1.22 1.02–1.17 1.06–1.17 1.16–1.36 0.95–1.26 1.09–1.24

ORc 1.22 1.14 1.18 1.24 1.10 1.16

95% CI 1.15–1.30 1.07–1.22 1.12–1.25 1.12–1.37 0.95–1.28 1.07–1.25

aLinked to PM2.5, PM10, carbon monoxide, sulfur dioxide, ozone, and nitrogen dioxide exposure.
bAdjusted for race and ethnicity, poverty status, and age.
cAdjusted for race and ethnicity, poverty status, age, region, and urbanicity.

Table 6

Unadjusted and adjusted odds ratios (OR) with 95% confidence intervals (CI) describing association between respondent-reported fair/poor health status

and PM2.5 exposure (per 10mg/m3) among respondents with PM2.5 linkage for all geographic linkage methods (5miles, 20miles, and county level)

Linked to PM2.5 Linked to multiple pollutantsa

County 5miles 20miles County 5miles 20miles

Sample size 151,870 151,870 151,870 25,687 25,687 25,687

Unadjusted

OR 1.27 1.20 1.25 1.17 1.14 1.11

95% CI 1.17–1.38 1.12–1.28 1.17–1.34 0.99–1.40 1.00–1.31 0.97–1.27

Adjusted

ORb 1.10 1.08 1.10 1.08 1.09 1.08

95% CI 1.02–1.19 1.01–1.58 1.02–1.17 0.91–1.30 0.95–1.25 0.93–1.24

ORc 1.15 1.13 1.14 1.09 1.10 1.09

95% CI 1.06–1.24 1.06–1.21 1.07–1.22 0.89–1.32 0.94–1.28 0.93–1.28

aLinked to PM2.5, PM10, carbon monoxide, sulfur dioxide, ozone, and nitrogen dioxide exposure. The sample sizes are smaller than the previous 5-mile

sample sizes (Tables 1–5) because some respondents with 5-mile exposure estimates do not have county-level exposure estimates.
bAdjusted for race and ethnicity, poverty status, and age.
cAdjusted for race and ethnicity, poverty status, age, region, and urbanicity.

J.D. Parker et al. / Environmental Research 106 (2008) 384–392390



bias) is greater than the effect of exposure assignment
(or measurement error), but numerous other factors could
also be contributing to these differences. For example, in
addition to population differences, measurement error
likely differs among areas defined by urban–rural status;
exposure for respondents in more suburban areas may be
less well characterized than those in more urban areas. The
composition of the fine particles near to monitors may
differ from that farther away which, in turn, could lead to
different observed health effects; additionally, some moni-
tors may be cited near areas at risk of non-compliance
potentially leading to population and exposure differences.
The results in Table 6 address this question, in part, by
using the same study samples with different exposure
assignments. That the adjusted ORs for the county-level
and 20-mile exposures are similar to the 5-mile exposure
using the common study samples supports a greater impact
of sample selection than of measurement error on the
results (Table 6). This suggests that county-level measure-
ments may provide reasonable estimates of fine particle
exposure for some outcomes in air pollution studies,
creating more opportunities for research.

The results from the models were not intended to
provide conclusive evidence on the possible effects of fine
particulate matter on general health status, rather they
were intended to illustrate potential effects of sample
selection and exposure assignment due to monitor loca-
tions on inferences. Yet, while the general association
between PM2.5 and health status varied somewhat by
analytic approach, the results generally suggest a 10–20%
increased odds of fair or poor health status with a 10 mg/m3

change in PM2.5 after controlling for potential confoun-
ders. Despite the imprecision of general health status in an
interview survey, health status has been shown to be related
to mortality even after controlling for known social,
demographic, and medical factors; one recent study found
particularly strong associations between health status and
mortality due to respiratory and infectious causes and
diabetes (Benjamins et al., 2004). Within our data, a full
exploration of the relationship between health status and
other health conditions, considering demographic and co-
existing health measures, was not done. Nevertheless,
our reported findings support further examination of the
effects of air pollution on health using more specific health
outcomes.

A limitation common to environmental health studies is
the approximation of exposure based on residential
location, or in this study, block group location, rather
than personal exposures. Additionally, the use of annual
averages rather than more targeted time intervals provides
a relative ranking of air quality by location; but may not
provide enough information for studying some health
effects. The ability to assign exposure more precisely would
affect associations reported for health status and PM2.5,
but would not alter the conclusion that findings using
linked national data systems may be subject to selection
effects.

With the increasing ability to assign exposure for study
participants in areas without actual monitors using spatial
models (Jerrett et al., 2005) or multiple imputation
methods (Le et al., 2006; Sheppard et al., 1999), the
necessity for study subjects to be situated near monitors
may lessen. However, more work is needed to ascertain
whether the modeled data generally performs similarly as
measured data in epidemiological studies. Importantly, for
national data systems, the accuracy of modeled data, as the
accuracy of the measured data, may vary across the USA,
adding another layer of complexity. It is reassuring from
our study that exposures defined using the finer geographic
scale (e.g., closer to true exposure) were similar to those
defined by the coarser scales, though some of this similarity
can be attributed to estimates calculated from the same
monitors. Thus, it is not clear that the apparent benefit
from modeling—greater geographic specificity—is necessa-
rily worth increased uncertainty in the resulting data.
Neither the air monitoring data nor the NHIS are

collected to study the effects of air quality on health
outcomes. Air monitoring data is collected for regulatory
purposes; the decisions that lead to the siting of monitors
and their potential effects on these and other epidemiolo-
gical results were not discussed here. The NHIS is designed
to provide nationally representative information for a
variety of health indicators. Care needs to be taken when
combining these data sources for epidemiological health
studies. In our evaluation of the combined data, we found
differences in study samples by linkage method. For
chronic outcome studies of the effects of fine particles, we
did not find a compelling reason to limit the study samples
to survey respondents within 5miles of a monitor.
Although not definitive, our results suggest that the
possibly more precise exposure estimates may be out-
weighed by the potential bias and loss of sample size from
restricting the sample in national studies.
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