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When using the Gene Ontology (GO), nucleotide and amino acid sequences are an-

notated by terms in a structured and controlled vocabulary organized into relational

graphs. The usage of the vocabulary (GO terms) in the annotation of these sequences

may diverge from the relations defined in the ontology. We measure the consistency of

the use of GO terms by comparing GO’s defined structure to the terms’ application.

To do this, we first use synthetic data with different characteristics to understand

how these characteristics influence the correlation values determined by various sim-

ilarity measures. Using these results as a baseline, we found that the correlation

between GO’s definition and its application to real data is relatively low, suggesting

that GO annotations might not be applied in a manner consistent with its definition.

In contrast, we found a sub-ontology of GO that correlates well with its usage in

UniProtKB.

We also study how terms from different ontologies in GO relate to each other,

Such relationships can be helpful in refining term definitions. In order to identify

such “cross-terms”, we propose a generalized semantic measure which can be used to

identify related terms across GO ontologies. Results based on Saccharomyces Genome

Database show that the measure is correlated with the degree of co-occurrence for

term pairs. By thresholding the level of similarity, we found a list of highly correlated

cross ontology term pairs. These term pairs show a high level of biological correlation.
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Chapter 1

Introduction

The recent increase of fast affordable genomic sequencing technology has acceler-

ated the availability of molecular sequences [2]. The enormous amount of sequence

data transformed how biologists describe and characterize gene products. Biologists’

progress in conceptualizing biological terms can no longer keep pace with the volume

of sequence data. Thus Gene Ontology (GO) Consortium was formed to address this

issue. The initiative’s aim is to push the genomic community towards standardizing

the representation of gene and gene product attributes across species and databases.

During the past decade, GO became widely accepted in this community as a concise

means of annotating gene products for machine translation [30].

The wide acknowledgement of GO has brought in concerns as well. Because

the wide scope of the community GO targeted, curators may not be able to reach

a consensus in the vocabulary’s (usually referred to as terms) definition and usage.

Recent research [25, 17, 9, 26, 23] in semantic similarity measures allow us to quantify

relationships between terms. These measures reflect the terms’ biological relation [18]

based on their usage. Our research uses the semantic similarity measures as tools to

examine the correlation between term definition and usage.
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GO consists of three orthogonal ontologies which are controlled vocabularies de-

scribing the domain of gene products, i.e., enzymes and other proteins encoded in

DNA. All three ontologies within GO contain many biologically/biochemically de-

scriptive terms that have not been used (not applied to any annotation). A large

number of terms are used only once or not at all. This creates a usage pattern where

a large percent of GO terms fall in the tail of the distribution (called the long tail

phenomenon). Because of this phenomenon, certain types of similarity measures may

be preferable to others in evaluating ontology usage. Thus, one of our results is

a test using synthetic data with different characteristics to understand how various

similarity measures measure correlation, and how these measures are influenced by

various properties of the data. We then describe how the synthetic data parameters

imply properties of real data. Our results show that one measure (called “Cosine”)

is only useful in recognizing correlations when the gene product usage comes with

a long tail and each term is annotated by many moderately concentrated terms in

the ontology. Another measure (“Jiang’s”) is not well suited for unbalanced usage of

terms in the ontology. The remaining measures (“Resnik’s,” “Lin’s,” and “Rel”) are

almost independent of the data characteristics that we varied, especially Resnik’s.

Using our results on synthetic data as a baseline, we then sampled partial ontolo-

gies from GO and measured correlations between their definitions and their usage.

Relative to correlation results found in synthetic data with similar configurations to

the real data, we found that the average correlation is low. This might suggest that

GO annotations are not applied in a manner consistent with their definition. In

contrast, we found that the sub-ontology rooted at the term “GO:0005275: amine

transmembrane transporter activity” correlates well with its usage in UniProtKB.

Since the GO project is a collaborative effort between groups sharing their vocab-

ularies, terms can be added, deleted or edited when its usage came into doubt [7].
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Sometimes, controversial terms get split into two child terms. Meanwhile gene prod-

uct are usually annotated by a series of terms. Correlated terms in these cases,

especially those from different aspects of an ontology, can be of interest to biologists

as well. To distinguish such related terms, a unified similarity measure is proposed

to evaluate the level of similarity between any two terms across ontologies.

In order to justify that our unified similarity measure reflects the correlation be-

tween terms, we compared the measure with the Resnik measure, which we found to

be the most stable measure. Results show that our measure behaves similarly to the

Resnik measure evaluating terms from the same ontology. We further verify our mea-

sure by investigating term pairs that annotate the same gene product. Results show

that term pairs more frequently co-occurred together have higher similarity values.

Thus we believe our measures can effectively quantify the similarity between terms.

By thresholding the unified semantic similarity values, we determined a list of

highly correlated cross ontology term pairs. After examining some of them, we found

high levels of biological correlation between these terms. We also identified several

pair patterns by aggregating the relation between the terms.

In summary, this research presents a quantitative analysis of the correlation be-

tween GO’s definition and application. The correlation is analyzed based on well

annotated synthetic data with similar configuration as GO. We also found that one

measure (”Resnik”) is robust against various changes in annotation statistics. In

addition, we proposed a unified similarity measure which can be used to quantify

relationships between terms across ontologies. We found a high biological correlation

between highly correlated term pairs identified using this measure.
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Chapter 2

Background

2.1 Ontology

The value of any kind of knowledge can be greatly enhanced when it is allowed to be

integrated with other data. For instance, bridging biodiversity data with genomics

data enables reasoning from morphology to gene sequence. Such integration enables

systems which exploit computational possibilities in multiple domains. To facilitate

such sharing, reuse and integration of knowledge among systems, it is useful to define

a common vocabulary in which shared knowledge is formally represented [5]. The

common controlled vocabulary is usually referred to as an ontology.

2.1.1 Concept of Ontology

The word ontology is borrowed from philosophy, which studies the existence of objects,

basic categories and their relations. In the fields of AI and information systems, the

ontology is usually referring to a vocabulary which consists of a set of objects and

describable relationships among them. Formally, an ontology is a description of the

concepts and relationships that can exist for an agent or a community of agents [28].
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Common ontologies guarantee consistency, but not completeness, with respect to

queries and assertions using the vocabulary defined in the ontology [6].

Constructing an ontology usually requires integrating information from different

sources. For instance, building an inventory management ontology across many ware-

houses requires records for all items, customer records and depository information.

A specimen cataloguing ontology for biologists uses geographic coordinates, species

identification numbers or even gene sequences collected to bridge knowledge from

different fields. Ontologies are designed to be shared among a community. This al-

ways involves related concepts and ontologies: for instance, an inventory management

ontology has to be related customer reviews to increase its usefulness. A specimen

cataloguing ontology has to be related to literature published and ontologies from

other laboratories. The need for sharing and integration requires ontologies to use a

common vocabulary.

Maintaining an ontology is expensive and requires a lot of effort. It is natural to

see that in the domains of interest, application requirements change over time. This

change is often brought in by a distributed and collaborative manner. Developers

from different communities may not share identical understandings of the concepts

defined in an ontology. Therefore, modifications of the Gene Ontology come out every

week. As an ontology grows to be larger and more popular, maintaining an ontology

becomes a problem.

2.1.2 Ontology in the Fields of Biological and Biomedical

Research

An ontology is usually designed to meet the interests of a domain. Advancement

in biological and clinical research generates swarms of data. Organizing this infor-
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mation involves the creation and analysis of annotations which link data collected

to controlled vocabularies. This approach improves human readability, facilitates

searching and makes data available to algorithmic processing [31]. Gene Ontology [2]

is the most successful collaborative effort towards this goal, integrating millions of

annotations across thousands of species.

Compared with molecular biology where data is publicly available and well de-

fined, the biodiversity and biomedical domains only have limited amounts of data for

research purposes. Due to the nature of these data, knowledge is mostly defined in

natural language in the literature. Even in the field of clinical research where sys-

tematic data are available, the use of local schemas prevent data to accumulate [13].

To face this problem, the Open Biological and Biomedical Ontologies (OBO) [29] ini-

tiative provides a lightweight solution. Rather than defining an integrated ontology

like GO, it approaches consensus by developing a set of expanding orthogonal life

science ontologies where ontologies are managed by individual interest groups. OBO

has been widely accepted in the biodiversity side and gained lots of interests.

2.1.3 Gene Ontology

The Gene Ontology project is a collaborative effort aiming to standardize the repre-

sentation of gene and gene product attributes across species and databases. GO is

made up of three independent, orthogonal ontologies:

• Cellular Component (CC) ontology, which describes where a gene product is

located at a sub-cellular level;

• Molecular Function (MF) ontology, which describes the function a gene product

can perform;
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• Biological Process (BP) ontology, which describes series of events and molecular

functions.

Terms in GO can have any number and type of relationships to other terms. The

relations are endowed with descriptive logic so that inferences can be made between

terms. There are three types of relationships defined in go: “is a”, “part of” and “reg-

ulate”. When we say A “is a” B, A is a subtype of B. For example, “lyase activity” is

a subtype of “catalytic activity”. The “part of” relationship represents a whole-part

relation. When A is “part of” B, then B is a necessarily part of A. For instance, “repli-

cation fork” is a part of “chromosome” but not all instances of “chromosome” have

“replication fork”. Within biological process ontology, “regulate” relation describes

one process’s direct effect on the other process, and be either positive or negative.

“Regulate” relations only appear in biological process ontology and can possibly

forms cycles. For example, a series of functions which one promotes another in a cycle.

Since this type of relation does not reflect any hierarchical order between terms, we

are only interested in “is a” and “part of” relations in this thesis. In addition Lord [18]

mentioned that the “part of” and “is a” relations are usually exclusive. He found that

the semantic meaning of the two relation types varies between different ontologies.

Thus we consider the two type of relations equally and do not distinguish between

types of relations. Thus GO can be structured as a directed acyclic graph (DAG)

using these relations. Each node of each DAG is a term with a distinct name and

description. The edges of a DAG represent relations between the connected nodes. A

gene product can be annotated by assigning GO terms to the description of the gene

product. This assignment is also referred to as an association between a term and a

gene product.
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GO has earned popularity among the genomics community. However, due to the

wide scope of the genomics community, ambiguities in term usage exist. The GO

project is a collaborative effort between groups sharing their vocabularies. Group

members participate on a self-interested, best-effort basis to reach consensus on the

addition, deletion or editing of terms within the three ontologies. However, individual

curators from different communities may interpret the definitions differently, resulting

in inconsistent usage, and thus it is necessary to continually refine terms. With the

large increase of gene products that are annotated with GO, methods to evaluate

semantic similarity based on annotations are critical in evaluating the consistency of

usage [7]. Not all gene products are well annotated in GO. Quite a few of them are

annotated by only one or two terms. Since these terms may biologically correlated

with other terms, the gene products should likely to be annotated by others as well.

These biological correlation could also provides insights for biologist to refine term.

This motivates our study, which is to apply measures of semantic similarity to

estimate the consistency between how GO is defined and how it is used in practice

and to identify biologically correlated term pairs. We found that GO annotations

might not be applied in a manner consistent with their definition. We also found a

list of term pairs with high levels of biological correlation.

2.2 Semantic Similarity Measures

The notion of semantic similarity is frequently used in information retrieval, where

terms are indexed by similar meaning rather than similar words. This concept was

used in early research with natural language processing techniques: associating de-

scriptive language with terms and quantifying this similarity.
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2.2.1 Similarity between Terms

There are many different functions for calculating semantic similarity between terms.

We consider the following five measures because these widely used measures quantify

the relation between terms based on their annotations. Thus they are suitable to

represent the applications in GO.

Resnik [25] proposed that the amount of information provided by the common

ancestors of the two terms may be used as a measure:

SimResnik(ci, cj) = max
ck∈S(ci,cj)

− logP (ck) , (2.1)

where S(ci, ci) is the set of ancestors shared by both ci and cj and P (ck) is the

probability that a randomly selected gene product is annotated by term ck: P (ck) =

|Ek|/|Eroot|.

Lin [17] extended Resnik’s measure by modifying the information content of a

term to take both descendants into consideration:

SimLin(ci, cj) = max
ck∈S(ci,cj)

(
2 logP (ck)

logP (ci) + logP (cj)

)
. (2.2)

Generic terms do not have a high relevance for the comparison of different gene

products. Andreas’s [26] relevance measure combined both Lin’s and Resnik’s mea-

sure by weighting Lin’s similarity measure with 1 − P (ck). For a detailed term ck,

P (ck) becomes relatively very small and makes 1− P (ck) close to 1 and negligible:

SimRel(ci, cj) = max
ck∈S(ci,cj)

(
2(1− P (ck)) logP (ck)

logP (ci) + logP (cj)

)
. (2.3)
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Jiang [9] proposed a similarity measure as the reciprocal of semantic distance:

SimJiang(ci, cj) =

max
ck∈S(ci,cj)

(
1

− logP (ci)− logP (cj) + 2 logP (ck)

) . (2.4)

The Cosine similarity [23] is a measure frequently used in data mining. It is

defined as the cosine of the angle between two vectors in a hyperspace. We model

each term ci as a vector vi = (vi1, vi2, . . . , vin), in which vij = 1 if ci annotates ej, and

0 otherwise. The measure is then defined as

Simcos(ci, cj) =
〈vi, vj〉
‖vi‖‖vj‖

, (2.5)

where 〈vi, vj〉 is the dot product of vectors vi and vj and ‖vi‖ is the length of vi.

2.2.2 Similarity between Gene Products

In addition to the similarity between GO terms, we may want to compare gene prod-

ucts as well. Since correlated gene products are more likely have similar descriptions

in the literature or experimental results, they may have sets of terms that are related

to each other. Thus we need a method to quantitate the similarity between two sets

of terms. Common approaches take the maximum similarity between every pair of

terms from each set. For example, the similarity between two sentences is determined

by the closest pair of words from each sentence because the words in the sentences

have only one sense at a time. However, the gene product will have plenty of the

annotations contributed by many curators at the same time. Thus Lord [18] points

out that the maximum similarity method is not suitable in the case of GO after in-
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vestigating SWISS-PROT-Human. He further suggests using the average similarity

between terms instead.

CorrG(ei, ej) =
1

|Ci||Cj|
∑

ck∈Ci,cl∈Cj

SimG
measure(ck, cl) , (2.6)

where Ci and Cj are the sets of terms that annotate gene products ei and ej (respec-

tively), |Ci| is the size of the set Ci, and SimG
measure can be any of the term similarity

measures described in Section 2.2 on ontology G.

2.3 Related Work

The Gene Ontology has established itself as one of the most important source for

computational knowledges in the field of gene products. After Lord [18] investigated

the correlation between semantic similarity and gene product sequence similarity, the

semantic similarity on GO arouses great interest from many aspects.

Lee [16] presented a graph theoretic algorithm to extract common biological at-

tributes of the genes within a cluster from gene ontology (GO). With the information

extracted, they were able to perform various microarray analyses. Al-Shahrour [1]

presented a tool to extract GO terms that are significantly popular over sets of genes

within the context of a genome-scale experiment like DNA microarray. Kohler [14]

introduced a different database integration method. This method can be used to

integrate life science databases with the help of GO. Schlicker [27] compared the hu-

man protein interaction network derived from experiment with the one predicted by

similarity measure.

There are also researches on the quality between a term and its definitions. The

algorithm published by Kohler [14] is able to identify terms and definitions which
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are defined in a problematic way, where reasoning over relations shows contradiction.

Using ontology alignment, their algorithm can propose alternative synonyms and

definition for those problematic terms.

Other research focuses on the similarity measures themselves. Mistry [19] pro-

posed similarity measure that can avoid some problems that affect the probability-

based measures. They showed that their measure is significantly faster than informa-

tion content based measures. There are also improvements [19] proposed to overcome

difficulties in the existing similarity measures. Pesquita [22] systematically evaluated

all these measures and their variations using the relationship with sequence similarity.

The demand to identify related ontology terms across ontologies has been ad-

dress in general ontology research. They are mostly aimed for matching ontology

schemas from different perspectives like databases [15], information systems [3] and

web services [11]. They attempt to solve this problem using fuzzy logic or information

theory.

Compared with research in general ontology, the need to search for cross terms

in GO has not received enough attention. This motivates our study to identify bio-

logically related term pairs. Also, all the literature described above interprets each

ontology individually. This is another motivation of our study, which is to use a

generalized method to assess semantic similarity using all three ontologies.

2.4 Summary of the Literature

As more biology experts come to understand the convenience of storing data in the

interchangeable format, we can expect more structural knowledge to become available

to computational analysis. Plenty of semantic similarity measures are designed for

their applications. This includes similarities between primary data being annotated
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and between vocabulary terms used to annotate them. Related work has been done

to predict experimental results. In contrast, we use some of the same measures they

do, but for the purposes of measuring the consistency of the use of GO.

2.5 Objectives of our Study

From the literature, we understand that term usage in GO is not necessary consistent.

Also we know that ambiguous terms and related terms exist in GO. Our study has two

objectives. First, we measure the consistency of the use of GO terms by comparing

GO’s defined structure to the terms’ application. Second, we design a generalized

semantic measure which can be used to identify a correlated vocabulary across GO.
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Chapter 3

Methodology

In order to achieve the objectives described in Section 2.5, we will utilize both syn-

thetic data and data from real ontologies. We will use synthetic data to characterize

the sensitivity of several similarity measures to various properties of the data. We

then interpret the correlation between the definition and the usage of real ontologies

using results obtained from synthetic data. At last, we will present a unified method

to compute the similarity between any two terms, which could be coming from either

the same or different ontologies.

3.1 Characterize Similarity Measures with

Annotation of Various Properties

Before we apply our correlation technique to real ontological data, we must first

determine what similarity values we should expect if an ontology’s application to

annotating gene products in fact does reflect its definition, under each similarity

measure of Section 2.2.
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3.1.1 Ontology Formalization

The gene ontology G = (V,E) is organized as a directed acyclic graph (DAG), where

each vertex corresponds to a term ci. There is an edge from ci to cj if and only if

cj is explicitly a ci. Since both “is a” and “part of” relations are transitive, cj “is a”

or “part of” ci if and only if there is a path from ci to cj. We consider cj to be a

descendant of ci if a path from ci to cj exists.

According to the gene product annotation guidelines [20], a gene product can be

annotated by zero or more nodes of each ontology. Let Ci be the set of terms used

to annotate gene product ei. Similarly, we can define Ej as the set of gene products

annotated by term cj. By definition, cj ∈ Ci ⇔ ei ∈ Ej. In addition, annotating

a gene product with a term implies that the gene product is also annotated by all

ancestors of the term. Thus, ci is a descendant of cj implies Ei ⊆ Ej. The ancestor

term inherits all annotations from its descendant, so the root term has all annotations:

Eroot =
⋃
i

Ei.

3.1.2 Synthetic Data: Generating Ontology Annotations

We generated pairs (ei, Ci), where ei is a synthetic gene product and Ci is its simulated

annotation set, i.e. each term cj ∈ Ci annotates gene product ei. The synthetic data

has various properties, which we use to characterize the similarity measures.

Formally, let G = (V,E) be the ontology DAG and m = |V |. The synthetic

annotation data was generated using the following randomized process on G. For

each of the n distinct gene products, we select one term as the first term according

to a predetermined initial distribution ω0. The annotation data set is then generated

using three parameters n, r, and γ as follows.

1. Choose an initial distribution ω0 = {P0(c1), P0(c2), P0(c3), ..., P0(cm)} over terms
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C = {c1, c2, c3, ..., cm}. We will examine the distribution ω0 in Section 3.1.4.

2. Randomly choose a starting term si ∈ C according to ω0 for each of the n

synthesized gene products ei.

3. Let D be the all-pairs shortest path matrix on the ontology DAG G, where Dij

is the number of steps needed to reach cj from ci. For each si, generate a distri-

bution Qi over C, where the probability for each term decreases exponentially

with its distance to si, i.e. Qi(cj) = γDij .

4. Choose r terms from C according to Qi, and add them to Ci. For each cj chosen,

add all of its ancestors to Ci.

3.1.3 Quantitative Analysis of Similarity Measures

In order to measure how well an ontology’s usage correlates with its definition, we

measure the correlation between how the gene products are annotated with terms

(via the similarity measures in Section 2.2) and the terms as they are defined in the

ontology. Formally, for each pair of terms (ci, cj), we measure their distance in the

ontology DAG. We then sort all term pairs in descending order (greatest distance

first) and put them into a sorted list LDAG. We then measure the similarity between

each pair of terms via the similarity measures in Section 2.2, sort the term pairs

in ascending order (lowest similarity first) and put them into a sorted list Lmeasure,

where the measure is Resnik’s, Lin’s, Jiang’s, Rel or Cosine. Finally, we measure

the correlation between the two sorted lists LDAG and Lmeasure using Kendall’s τ

coefficient [12].

The basic τ method requires all values in the ranked lists to be unique, which

cannot be guaranteed in our problem setting. Therefore, we make a common modifi-
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cation [24] to the basic method as follows. Let L1 and L2 be the two (equal-length)

lists that we are comparing. Let `i1 ∈ L1 be the ith element in L1, and `i2 ∈ L2 be

the ith element in L2. Similarly define `j1 and `j2 for j 6= i. Now consider each pair

of pairs ((`i1, `
i
2), (`

j
1, `

j
2)) for i 6= j. We say that this pair is concordant if `i1 > `j1

and `i2 > `j2 or `i1 < `j1 and `i2 < `j2. The pair is discordant if `i1 > `j1 and `i2 < `j2 or

`i1 < `j1 and `i2 > `j2. (Note that all inequalities are strict.) Now let nc be the number

of concordant pairs, and nd be the number of discordant pairs. Finally, let n1 be the

number of ties among elements of L1 and n2 be the number of ties among elements

of L2. Then the τ coefficient is defined as:

τ(L1, L2) =
nc − nd√

(nc + nd + n1)(nc + nd + n2)
. (3.1)

The τ coefficient ranges from −1 (perfect negative correlation) to +1 (perfect positive

correlation).

3.1.4 Synthetic Data: Parameter Sensitivity Analysis

To observe how the parameters of Section 3.1.2 influence correlation, we start by

choosing ω0 to be the uniform distribution. We evaluated the mean values of the

correlation between LDAG defined in Section 3.1.3 and the sorted list for each mea-

sure, which are τ(LDAG, LLin), τ(LDAG, LResnik), τ(LDAG, LRel), τ(LDAG, LJiang) and

τ(LDAG, LCos) on various configurations of parameter values.

When an ontology is used in practice, the terms commonly used often come from

a relatively small subset of the entire set of terms. As an example, refer to Figure 3.1,

which shows that in the database UniProtKB/Swiss Prot, 40% of the gene products

are annotated by at most two GO terms, and less than 10% of gene products receive

annotation from more than 5 terms. On average, there are five terms used to annotate
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each gene product. We then modify the synthetic data generation model to be more

realistic by taking two variations.

Figure 3.1: Percentage of gene products annotated in GO versus number of terms
used to annotate them.

In our updated model, we let r (the number of terms annotating a gene product)

vary among the gene products. Based on Figure 3.1, we assume the number of terms

follows a geometric distribution with parameter p, which is the probability that a

randomly selected gene product is annotated by a single term. (So a smaller value of

p results in a longer tail.) Figure 3.1 suggests a value of p between 0.35 and 0.50.

The second variation we made over the experiments of Section 4.1 is in the distribu-

tion ω0. Our results in Section 4.1 used a uniform distribution for initial distribution

ω0. We now examine the effect of non-uniformity of the ω0 on the τ correlation coeffi-

cient for each similarity measure using skewed ω0, where non-uniformity is measured

by the normalized entropy H0:

H0(ω0) =
H(ω0)

Hmax

=

−
m∑
i=1

P (ci) log2 P (ci)

log2m

.
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To sum up, similarity measures are characterized by five annotation parameters:

• n: the number of annotations

• r: the number of terms annotating a gene product

• γ: the sparseness the annotation of a gene product is distributed in the ontology

• p: the probability that a randomly selected gene product is annotated by a

single term

• H0: the entropy of ω0, the initial distribution of choosing starting terms.

3.2 Evaluating the Correlation Between Ontology

Usage and Definitions

3.2.1 Real Data: Partial Ontology

We empirically compare Rel, Cosine, Resnik’s, Lin’s, and Jiang’s similarity mea-

sures using annotations from UniProtKB [8] with a corresponding sub-ontology from

GO. UniProtKB is comprised of two sections, UniProtKB/Swiss Prot and UniPro-

tKB/TrEMBL. UniProtKB/Swiss Prot contains curated annotations while UniPro-

tKB/TrEMBL contains entries with computationally analyzed annotations generated

by automatic procedures. These are not reviewed and curated by an author. Thus,

UniProtKB/Swiss Prot may have data of higher quality than UniProtKB/TrEMBL.

Note that 98% of the records are electronically annotated. We first compute correla-

tions using only UniProtKB/Swiss Prot, then using the entire set (UniProtKB).
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3.2.2 Real Data: Full Gene Ontology

We studied each of GO’s three ontologies by computing the Kendall τ rank correlation

coefficient for every pair of measures in Section 2.2 as well as the ontology DAG

distance D. In order to compute τ for m terms, we would need to compute the sorted

similarity measure list on all
(
m
2

)
term pairs. Thus the algorithm for computing the

Kendall τ rank correlation coefficient in our case has a complexity of Θ(m4 log(m)) [4].

Given that the number of terms ranges from 1653 to 9497 (Table 4.2), it is infeasible

to evaluate τ directly. Instead, we estimate τ by uniformly randomly sampling term

pairs from the list. In order to do so, each time we sample 1000 term pairs from the

list and compute τi, and then repeat this sampling process 50 times. We estimate τ

as the mean of τ1, . . . , τ50. Since the standard deviation of τ1, . . . , τ50 between each

measure was < 0.01, we consider the mean to be a good estimate.

3.3 Identifying Similar Terms Across Ontologies

Semantically similar terms may occur in different ontologies. For example “zinc ion

transmembrane transporter activity” (GO:0005385) from molecular function ontol-

ogy and “zinc ion transmembrane transport” (GO:0071577) from biological process

ontology are highly related with each other. Even though the two terms come from

different ontologies, 98% of gene products they annotated are the same. Correlated

pairs may be of great interest to biologists to refine terms within the ontologies. For

instance if term A from CC ontology correlates very highly with terms B and C from

MF ontology but only a weak correlation exists between term B and C, then it could

be argued to redefine term A from CC, A1 and A2 as two terms in CC, such that all

A1 would correlate with term B and A2 would correlate with term C.
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3.3.1 Unified Semantic Similarity

High semantic similarity values usually imply similar terms. Section 2.2 lists measures

that quantify the semantic similarities between terms within the same ontology. These

measures exploit both statistics in the term usage and the term to term relations

defined in the ontologies.

There are problems in these approaches to measuring semantic similarity. First,

terms not sharing a set of identical gene products are considered to be uncorrelated.

Even though there is no overlapping gene product in the two sets, gene products in

one set might have a synonym with almost identical gene sequence, function and hence

annotation in the other set. Second, these measures rely on the ontology structure to

compute IC (information content). If there is no direct path in the ontology between

two terms (like terms each from a different ontology), the measures cannot be applied.

The term frequency–inverse document frequency weight (tf-idf) [10] is a weight

often used to quantify term’s importance against a document (a gene product in our

scenario):

tfidf(c, e) = tf(c, e) ∗ idf(c) , (3.2)

where tf(c, e) is the posterior probability to see term c given gene product e and

idf(c) is the inverse of the probability to see term c in any gene product. The method

is not suitable in our study because of two reasons. First the weight considers the

statistic in the occurrence of terms alone and unable to exploit the relations between

terms. For example, two synonymous terms are treated as two distinctive terms in

tf-idf. Second there are only unique annotations in Gene Ontology. Gene product

e can be annotated by c at most once. Thus it is not possible to compute tf(c, e)

since we cannot compute probability solely based on annotations. Thus instead of

using tf-idf to search for correlated terms, we use a semantic similarity measure we
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proposed.

We look into using the measures described in Section 2.2 as the basis to construct

new measures. Under the same concept, we may arguably believe that two terms are

more similar if the two sets of gene products being annotated have higher semantic

similarity values. These values can be computed by extending Equation (2.6) from

Section 2.2.2.

Let ei and ej by any two arbitrary gene products. Equation (2.6) computes the

similarity between ei and ej with respect to each ontology. Measures in Equation (2.6)

consider only terms annotating ei and ej from a same ontology. We combine these

measures to utilize terms from all three ontologies. These measures reflect the similar-

ity between gene product in different aspect. Thus the weight between these measures

can be further fine tuned to match the application of the unified measure. For sim-

plicity, they are equally weighted in this thesis. We define the new similarity between

two gene products ei and ej as the arithmetic mean of the similarities from the three

ontologies:

Corr(ei, ej) =
1

3
[CorrMF (ei, ej) + CorrBP (ei, ej) + CorrCC(ei, ej)] , (3.3)

where CorrMF (ei, ej), Corr
BP (ei, ej) and CorrCC(ei, ej) correspond to the semantic

similarity values between gene products ei and ej in Molecular Function (MF), Bio-

logical Process (BP) and Cellular Component (CC). In this measure, the similarity

between ei and ej is determined by terms annotating them from all three ontologies.

Given two terms ci and cj, each annotating a set of gene products Ei, Ej, the

similarity between ci and cj is determined by the pairwise similarity between Ei and

Ej. Since we already have a measure defined for every pair of gene products, we define

the similarity between two sets of gene products as the average similarity between
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every pair of gene product from Ei and Ej. Formally, our unified term similarity

measure is defined as:

SimUni(ci, cj) =
1

|Ei||Ej|
∑

ek∈Ei,el∈Ej

Corr(ek, el) , (3.4)

where Ei is the set of gene products annotated by term ci and |Ei| is the size of set

Ei.

For example, we consider the unified similarity between ci and cj, which come

from two different ontologies. Methods in Section 2.6 cannot be used to evaluate

the semantic similarity because the two terms do not come from the same ontology.

Alternatively, we first compute the similarity CorrG(ek, el) between each pair of gene

products ek ∈ Ei and el ∈ Ej for each ontology G, where G can be either MF , BP

or CC. The similarity Corr(ek, ej) between ek and el is the mean of CorrMF (ei, ej),

CorrBP (ei, ej) and CorrCC(ei, ej). Now we have a semantic similarity Corr(ek, ej) be-

tween every pair of gene products annotated by ci and cj. Our method SimUni(ci, cj)

takes the average similarity Corr(ek, ej) between every pair of gene products as the

unified similarity. Since the similarity between gene products ranges in [0,+∞), the

unified similarity, which is the average similarity of a gene product pairs, ranges in

[0,+∞) as well. We can measure Simuni for every pair of terms in GO. In this thesis

we define term pairs with similarity value one standard deviation higher than the

average similarity value between every term pair as correlated terms and those below

as uncorrelated terms. When two correlated terms come from different ontologies,

we say they are correlated cross ontology terms. We will further differentiate highly

correlated terms from the others in Section 4.3.4.

Here we have a generalized semantic similarity between two terms. It differs from

previous methods by two aspects. First, the similarity of the two terms considers
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not only annotation from identical gene products but also those from similar gene

products. Second, the two terms are no longer restricted to coming from the same

ontology.

3.3.2 Validating Semantic Similarity

In Section 3.3.1, we created a method to measure the similarity between terms from

different ontologies. In order to justify the unified method we proposed, we validate

it against the Saccharomyces Genome Database (SGD). SGD project maintains a

database of genomic and biological information. Compared with general gene product

in GO, these yeast genomes, shown in Table 3.1, are better annotated with a smaller

set of terms, see Table 3.1. Since these annotations are maintained and updated only

by SGD curators, they may show a higher level of consistency. It is suitable for our

purpose of validation.

Table 3.1: Number of terms and annotation in Saccharomyces Genome Database.

Aspect Terms Annotations
Cellular Component 525 10516
Molecular Function 1346 13933
Biological Process 1682 16835

Total 3553 41284

We expect our new measure to correlate with similarities computed via the meth-

ods of Section 2.2. So highly similar terms within an ontology should also be highly

similar using the unified method. We will use an approach similar to that used in

Section 3.1.3 to compare two measures. Formally, we compute the similarity via the

Resnik method and our method for each pair of terms (ci, cj) from the same ontology,

organize them into sorted lists LResnik and LUni, and then measure the τ coefficient



25

τ(LResnik, LUni). Since there are three ontologies in GO, we will have three coefficients

τ(LMF
Resnik, L

MF
Uni ), τ(LCC

Resnik, L
CC
Uni) and τ(LBP

Resnik, L
BP
Uni).

We also expect that term pairs used together to annotate the same gene products

to have high semantic similarity. In order to show this, we first need to identify these

pairs. There is already plenty of research [21] invested in this topic. For simplicity,

we consider all term pairs appeared in SGD since there are a significant number of

term pairs that only appear once. For instance, for a gene product annotated by

k terms,
(
k
2

)
pairs of terms will be extracted pairwise. The

(
k
2

)
co-occurred term

pairs annotate the same gene product. Terms in these pairs appear together could

either do so by true biological correlation or just by accident. To demonstrate that

these co-occurred term pairs have higher semantic similarity values, average similarity

values are computed based on randomly selected term pairs. We would like to see

the difference between the value obtained from pairs occurred together and pairs in

random cases.

Our third expectation is that term pairs more heavily used tend to have higher

similarity values. In SGD, term usage is non-uniformly distributed. A few terms

prevail among hundreds or even thousands of gene products. This results in heavily

used term pairs from these terms. To deal with this fact, we define a degree of co-

occurrence. The degree measures the co-occurrence of two terms in a value between 0

and 1, 0 as never seen together and 1 as alway appear together. For term pair (ci, cj),

our degree of co-occurrence is defined as:

Freq(ci, cj) =

√
|Ei

⋂
Ej|2

|Ei||Ej|
, (3.5)

where Ei is the set of gene products annotated by term ci and |Ei| is the size of set

Ei. If Ei = Ej which means the two terms annotate identical sets of gene products,
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Equation (3.5) gives the highest degree. If the two terms are never used together in

a gene product, the equation gives a degree of 0. Also, we will organize this measure

into a list LFreq and compare it with LUni using τ coefficient. The τ coefficient shows

how the measure correlates term pair usage. Thus it can be another touchstone for

the unified measure.



27

Chapter 4

Result and Discussion

In this chapter, we follow the steps described in Chapter 3 to analyze semantic similar-

ity. We will use synthetic data as a tool to interpret results from real ontologies. Also

we will validate the cross ontology semantic similarity we proposed by comparing it

with existing measures and the degree of co-occurrence in term pairs using Kendall’s

tau coefficient and Pearson’s linear coefficient. After that we will apply the measure

to search for cross ontology term pairs by thresholding the minimal similarity values.

4.1 Analysis on Synthetic Data

4.1.1 Uniformly Distributed Number of Annotations

Before starting to choose parameters for synthetic data, we first need to understand

the structure of GO. Because of the size of GO, it is infeasible to analyze it as a

whole. Instead, we computed the number of descendants under each term in GO

and randomly picked 30 terms which have around 90–110 children each. Three were

from cellular component ontology, 9 were from molecular function and 18 were from

biological process. By visualizing the DAG under these terms (Figure 4.1.1), we found
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Figure 4.1: Four of the sampled ontologies from GO with approximately 100 terms
each.

these 30 DAGs to be reasonably well balanced with only one exception (shown in the

bottom right figure) which has a long chain in its branch.

We generated twenty sets of annotations with three configurations (n = 120, r =

15, γ = 0.6), (n = 50, r = 5, γ = 0.6), (n = 50, r = 15, γ = 0.3) following the

procedures in Section 3.1.2 for the 30 DAGs. The average τ values in each measure

for the DAGs in each configuration are close to each other (less than 0.15 maximum

difference) except for the skewed DAG, which correlates much lower than the others.

Because the 29 DAGs are more balanced than the skewed one, this indicates that the

structure of the ontology does not have a significant impact on the similarity values

as long as it is reasonably well balanced like the 29 DAGs. In order to extensively

test the annotation parameters, we need a representative DAG to avoid testing on all

possible DAGs. Thus for simplicity, we choose a complete binary tree of depth 7 as
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the DAG for our synthetic data since the effective branching factor over the 29 DAGs

is 1.76.

Twenty sets of annotations were generated on a complete binary tree of depth 7 for

each configuration of (n, r, γ), where n, r and γ range from [40, 200], [2, 20], [0.2, 0.9]

respectively with a uniformly distributed ω0. We evaluated the mean values of the

correlation by changing one parameters while fixing the other two.

Figure 4.2 shows the the average τ for a variable number n of gene products using

r = 15 and γ = 0.6. In Figure 4.2, the average correlation for Cosine increases with

the number of annotations n, while the four other measures are not affected by n.

Also, we notice that when n > 170, further increase of n will not increase τ for any

measure very much.

Figure 4.2: Average τ of each similarity measure with respect to n the number of
distinct gene product when fixing r and γ (n ∈ [40, 200], r = 15, γ = 0.6).

Figure 4.3 shows the results for variable γ when n = 200 and r = 8. For γ < 0.65,

the correlation for Jiang’s measure decreases with growing γ. In contrast, τ for Cosine

increases with growing γ. Also, the change of γ does not influence the correlation for

other three measures. When γ > 0.65, τ for every measure begins to decrease with

increasing γ, especially for Cosine, which decreases dramatically.
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Figure 4.3: Average τ of each similarity measure with respect to γ when fixing n and
r (n = 200, r = 8, γ ∈ [0.2, 0.9]).

In Figure 4.4, we chose a moderate γ = 0.6 and sufficiently large n = 200 to

examine the trend in the values of r. Similar to the results in Figure 4.2, correlations

for Resnik’s, Lin’s, and Rel change little with increasing r, Jiang’s decreases slightly,

and the correlation for Cosine increases significantly.

Figure 4.4: Average τ of each similarity measure with respect to r the number of terms
associated with each gene product when fixing n and γ (n = 200, r ∈ [2, 20], γ = 0.6).

From the three figures, we can see that γ affects τ of all similarity measures,

though less so for Lin’s, Rel, and Resnik’s. A gene product can be associated with a
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number of distinct terms, and γ defines how sparse the annotation of a gene product

is distributed in the ontology. A small γ indicates that the gene product has been

annotated by several terms close to each other. Results show that Cosine correlates

more when γ ≈ 0.65 while the correlation for the other four increases when γ is low.

The parameter r defines the number of terms assigned to a gene product. Higher r

indicates that an individual gene product receives more annotations. This parameter

affects Cosine significantly: its correlation goes high with increasing r. In contrast,

Resnik’s, Lin’s and Rel show a very slight decrease when r increases, though they are

still quite stable.

In contrast to γ and r, the number of gene products n has limited influence on

the correlation. Generally, higher τ can be obtained for all measures when more

annotations are made. However, as long as there is a sufficient number of annotation

records (n > 170), further increase brings only a slight increase to the correlation.

From these results we see that Cosine is only suited for evenly annotated data

with moderate γ ≈ 0.65 and high r, which means each gene product is annotated by

many moderately concentrated terms in the ontology. Jiang’s measure is best suited

for data with low γ and r, which means each gene product is annotated by very few

closely related terms in the ontology. Also, we found that Resnik’s, Lin’s and Rel are

almost independent of the three parameters.

4.1.2 Non-Uniformly Distributed Number of Annotations

To understand how skewed popularity in gene product impacts the semantic similarity

measures, ten sets of annotations were generated on each configuration of n = 100,

γ = 0.3 and p (see Section 3.1.4), whose values ranged from 0.1 to 0.9, on a complete

binary tree of depth 7. In Figure 4.5, we show the average value of τ that resulted
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from running our experiments for variable values of p. The figure suggests that larger

values of p tend to increase the correlation for all measures, except for Cosine (which

decreases) and Resnik’s (which is the most stable of all). The correlation of Jiang’s

increases dramatically with p.

Figure 4.5: Average value of τ based on variable number of annotations r geometri-
cally distributed with parameter p (n = 100, γ = 0.3).

To understand how heavily used terms impacts the semantic similarity measures,

two hundred sets of annotations were generated from the configuration n = 200,

γ = 0.6 and r = 2. In each set, we chose m values at random from [0, 1] according to

an exponential distribution with parameter λ ∈ [0.5, 10] and then normalized them

to get ω0. Figure 4.6 shows the impact of ω0’s normalized entropy on τ . We can see

that increasing H0 (making ω0 more uniform) generally increases the correlation of

all five measures, though Resnik’s and Lin’s are fairly stable. In particular, Cosine

and Jiang’s increase dramatically with increasing H0.

From these results we can see that Cosine and Jiang’s are not well suited for

skewed data (with a low-entropy ω0), and Cosine is not well suited for data with a

short tail (high p value). Also, unlike Cosine and Jiang’s, the correlation values of
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Figure 4.6: Average value of τ versus the normalized entropy H0 of the starting
distribution ω0 (n = 200, γ = 0.6, r = 5).

Resnik’s, Lin’s and Rel (especially Resnik’s) are more stable across many parameter

values.

4.2 Analysis on Real Ontologies

4.2.1 Analysis on Partial Ontology

We used a subset of 25593 annotations from UniProtKB along with the subtree from

GO, rooted at the term “GO:0005275: amine transmembrane transporter activity.”

This annotation set consists of 25105 identified genes and contains 25 unique terms.

The electronic annotations in UniProtKB/TrEMBL have many gene products

that are each annotated by a single term. Further, the annotation in UniPro-

tKB/TrEMBL contains only a subset of GO terms and is significantly larger than

UniProtKB/Swiss Prot. Thus, in Table 4.1 we see that Cosine’s correlation de-

creased dramatically while only Rel and Jiang’s have slightly improved correlation

when switching from UniProtKB/Swiss Prot to UniProtKB. Since Resnik’s, Lin’s

and Jiang’s are almost immune to changes in parameter values (according to Sec-
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tion 4.1.2), we can use their correlations from our tests on synthetic data as a base-

line for our experiments here. The results (τ ≈ 0.6) for these three measures from

Table 4.1 are very close to the baseline suggested by Figures 4.2–4.4. This leads us

to believe that this partial ontology correlates well to its usage.

Table 4.1: Comparison of τ on “GO:0005275”

Measure UniProtKB/Prot UniProtKB

Cos 0.424 0.319
Resnik 0.596 0.576

Lin 0.621 0.602
Rel 0.618 0.630

Jiang 0.441 0.480

Terms 17 25
Genes 895 25105

Annotations 907 25593

4.2.2 Analysis on Full Gene Ontology

Our experiment on the full ontology was performed on a copy of GO annotations dated

April 2010, which consisted of 32, 651, 844 annotations of 6, 729, 320 gene products

using terms from three ontologies (see Table 4.2). There are 43, 645 relations defined

over the 26, 664 terms. From the table we see that the three ontologies differ in size.

The Biological Process ontology is much larger than the other two. Also, the table

shows that more than one third of the terms are defined but have never been used.

For Biological Process, almost half are unused.

Tables 4.3–4.5 present the τ values for each pair of similarity measures for each of

the three ontologies. The first column of each table shows the correlations between

DAG distance and the five measures. Res, Lin, Rel and Jiang each correlate with

DAG at about the same values, while Cosine only shows a weak correlation. Also,

we noticed that the first four are highly correlated with each other, especially Jiang
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Table 4.2: Number of terms and relations for each GO ontology. Numbers exclude ob-
solete terms. “Active” refers to terms that have been used at least once. “Relations”
refers to is a relations.

Ontology
Terms

Relations
Total Active

Cellular Component 2626 1653 3992
Molecular Function 8659 5885 10132
Biological Process 18005 9497 29521

vs. Lin and Res vs. Rel, which correlate near 0.99. This is unsurprising given the

relationships among the definitions of these measures.

Table 4.3: Estimated τ between similarity measures on Cellular Component.

DAG Cos Jiang Rel Lin
Res 0.44 0.25 0.85 0.99 0.83
Lin 0.40 0.45 0.98 0.83
Rel 0.44 0.25 0.84

Jiang 0.40 0.43
Cos 0.23

Table 4.4: Estimated τ between similarity measures on Molecular Function.

DAG Cos Jiang Rel Lin
Res 0.40 0.20 0.90 0.99 0.89
Lin 0.37 0.33 0.99 0.89
Rel 0.40 0.20 0.90

Jiang 0.38 0.32
Cos 0.19

From Section 4.1, we understand how values for n, r, γ, p, and H0(ω0) for an

ontology and its annotations affect correlation values for the similarity measures we

use. The values of n, r, and p are directly estimated from the data. However, it is

not obvious how to directly estimate γ and H0(ω0) from the data. But if we look at

H0(ω) (the normalized entropy of the final distribution over the terms), we find that

it is generally low. From this we estimate that both H0(ω0) (the normalized entropy
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Table 4.5: Estimated τ between similarity measures on Biological Process.

DAG Cos Jiang Rel Lin
Res 0.37 0.25 0.96 0.99 0.96
Lin 0.37 0.29 0.99 0.95
Rel 0.37 0.25 0.96

Jiang 0.37 0.29
Cos 0.24

of the initial distribution) and γ are generally low in the real data. Specifically, we

use H0(ω) as an upper bound of H0(ω0). Table 4.6 shows values of the relevant

parameters in GO; γ is omitted and instead is qualitatively estimated as “low”, since

Table 4.6 gives H0(ω) as relatively low, ranging from 0.44 to 0.58.

Table 4.6: Corresponding parameters for each ontology.

Ontology n r p H0(ω)

Molecular Function 5860336 2.85 0.35 0.58
Cellular Component 3217382 2.13 0.47 0.44
Biological Process 5127003 1.94 0.52 0.55

Since increasing n beyond a sufficient number (170 in synthetic data) brings only

minimal changes in correlation, we expect n will have little effect on correlation values

even though it is four orders of magnitude higher than the values used in our synthetic

data. The τ ≈ 0.2 for Cosine in GO lies in the interval [0.1, 0.4] that is suggested by

Figures 4.4 and 4.5 for synthetic data of similar characteristics.

Table 4.6 gives low H0(ω) from 0.44 to 0.58, which suggests that both γ and

H0(ω0) are low. The τ ≈ 0.39 for Jiang’s is low compared to either 0.8 given by low

γ in Figure 4.3, 0.45 given by p ≈ 0.25 in Figure 4.5 or 0.6 given by H0(ω0) around

0.4 in Figure 4.6.

In addition, the average τ ∈ [0.37, 0.44] for Resnik’s, Lin’s and Rel are low com-

pared with those from the synthetic data and GO:0005275, where similar configura-

tions show that correlations around 0.6 are possible (and very stable in the case of
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Resnik’s). All these results suggest that GO’s use correlates less with its definition

compared to GO:0005275.

4.3 Result on Unified Similarity Measure

Based on results in Section 4.1, the Resnik measure is the most stable measure of those

we tested according to parameter sensitivity analysis. However, one of the limitations

of the Resnik measure is that it only works with term pairs within the same ontology.

That is the motivation for our unified similarity measure from Section 2.1.3. But

before we can apply our unified similarity measure to search for cross terms, we

should validate that the unified measure behaves in a way similar to that of Resnik.

In Section 4.3.1, we compare the Resnik measure with our unified similarity measure

to see how well it performs within the same ontology.

The degree of co-occurrence between term pairs reflects how terms are used to-

gether with each other. Term pairs frequently used together could indicate a rela-

tionship. In Section 4.3.2, we compare the degree of co-occurrence with our similarity

measure to find out how the measure correlates with term usage.

4.3.1 Comparison with Direct Measure

Since SGD is a relatively small database compared to full GO, we can directly compare

our unified measure to Resnik without sampling. For each ontology in SGD, we

compute the similarity using both Resnik method and our method for each pair of

terms in Table 3.1. That is, we compute the similarity via Resnik method and our

method for each pair of terms from BP, CC and MF and organize them into two lists

LResnik and LUni. We then measured both rank correlation and linear correlation

between the two lists.
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The results, shown in Figure 4.7, show that there is a good correlation. We can see

that when the similarity for unified measure increases the direct measure increases,

especially when the similarity value is below 4. Since there are very few term pairs in

the biological process ontology with similarity values over 5, we see a slower increase

beyond value 5.

Figure 4.7: Comparing semantic similarity between Resnik’s measure and unified
measure in SGD.

Since the unified measure is in the same scale as Resnik’s direct measure, in

addition to Kendall’s τ , we compute the linear correlation coefficient ρ between the

two as well. Table 4.7 shows the correlation values between the two measures. From

the table we can see that ρ > 0.5 in all three ontologies. Thus we can see that our

unified measure correlates with Resnik, which evaluates semantic similarity between

terms within the same ontology.

4.3.2 Correlation in the Co-occurred Term Pairs

In SGD the 6353 gene products have 41284 annotations, and gene products are usually

labeled with multiple terms. The terms appearing together could be correlated. If
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Table 4.7: Correlation value between Resnik’s measure and unified measure in each
ontology of SGD using Kendall’s τ and Pearson’s linear correlation coefficient ρ

Ontology τ ρ

Molecular Function 0.4452 0.6326
Cellular Component 0.3915 0.5801
Biological Process 0.3517 0.5093

they are correlated, we expect them to have higher semantic similarity values. Since

there are not very many of them, we measure the degree of co-occurrence between

every pair of term terms using the method described in Section 3.3.2 and examine only

those with degree greater than zero. Table 4.8 shows the average semantic similarity

values for these term pairs. In order to get a sense on how large these similarity

values can be, we use the similarity between two uniformly randomly chosen term

pairs selected from all term in the three oncologies as a baseline. Average similarity

over 100000 arbitrary chosen term pairs shows a value of 1.8312. Table 4.8 shows

that the average similarity values are much larger than 1.8312.

Table 4.8: Average semantic similarity for co-occurred term pairs grouped by source
ontology.

Ontology Number of pairs Average Similarity
Biological Process 20008 4.2284

Cellular Component 5137 3.3822
Molecular Function 2707 5.7382

BP and CC 23211 3.4174
BP and MF 18719 4.515
CC and MF 11725 3.250

Total 81507 3.922

When evaluating co-occurrence results, we consider the results involving pairs from

the same ontology separately from pairs from different ontologies. The first three rows

in Table 4.8 show results for pairs from the same ontology. We can read that term

pairs from molecular function have significantly higher similarity values. This could
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mean that terms from molecular function have a higher tendency to be used in groups.

The second three rows show results for pairs from different ontologies, which we refer

to as cross ontology term pairs. We can see that term pairs between biological process

and molecular function have higher correlation values. Quick examination on these

term pairs shows that they describe related activities from different perspectives.

For example GO:0006864 “pyrimidine nucleotide transport” from biological pro-

cess and GO:0015218 “pyrimidine nucleotide transmembrane transporter activity”

from molecular function both describe the transfer of a pyrimidine nucleotide. The

former refers to the directed movement process itself while the latter focuses on the

catalysis function from labelled gene products in the process. Similarly, we have

GO:0008277 “regulation of G-protein coupled receptor protein signaling pathway”

and GO:0005057 “receptor signaling protein activity” from molecular function. The

two terms both describe the process that proteins pass signals. GO:0005057 mainly

refers to the gene product’s function that can convey a signal and trigger another state

change or activity, while GO:0008277 focuses on the protein’s role in the modulation

process of such signaling pathway.

4.3.3 Correlation with Degree of Co-occurrence

In the previous section, we have shown that co-occurred term pairs usually have high

semantic similarity compared with uniformly randomly selected term pairs. Term

pairs that appear more frequently should have higher semantic similarity. To test this,

we compare the degree of co-occurrence with unified similarity for all 81507 pairs in

Table 4.8, where the degree is in the interval of (0, 1] by Equation 3.5. Figure 4.8 plots

the degree of co-occurrence against the unified similarity measure. From this figure,

we can see that the average degree of co-occurrence grows with semantic similarity
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when the similarity is over 4. When the similarity is lower than 4, the degree of

co-occurrence is 0, which means such term pairs have been never be used together.

Figure 4.8: Comparing degree of co-occurrence and unified semantic similarity. (τ =
0.6603, ρ = 0.6919)

Kendall’s τ and Pearson’s correlation coefficients between degree of co-occurrence

and semantic similarity show values of τ = 0.6603 and ρ = 0.6919 respectively. This

indicates a strong correlation between degree of co-occurrence and our semantic simi-

larity measure. The similarity given by our measure for three ontologies is correlated

with their direct measure. Terms used together have higher average semantic simi-

larity, which grows with their degree. These correlations serve as validation of our

unified similarity measures.

4.3.4 Cross Ontology Term Pairs

Using the unified similarity measure, we can evaluate the semantic similarity for

term pairs from different ontologies. Term pairs with low similarity are more likely

to be correlated by accident than the others. From Section 4.3.2, we see there are
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linear correlations between similarity values and degrees of co-occurrence. The linear

correlation should increase if we choose only term pairs with higher similarity values.

In order to identify those highly correlated cross ontology term pairs, we need to

set a minimum similarity threshold. The threshold can filter out low similarity term

pairs. For each of the 11 threshold values between 0 and 10, we plot the histogram of

SimUni/Freq for term pairs above it. Figure 4.9 shows the distribution of the term

pairs by choosing different similarity thresholds. The X-axis shows the ratio between

similarity value and the degree of co-occurrence. The Y-axis shows the number of

cross ontology term pairs for a given ratio. The number of pairs in the peak values

can be an order of magnitude higher than other X values, and the ratio can go very

high when the degree of co-occurrence is low. Thus, in order to better visualize the

data, we use log scale in both axes.

The wider the range of the ratio is, the lower the linear correlation between the

similarity measure and degree of co-occurrence. If the minimal similarity threshold

does not matter, we expect to see an identical distribution interval for all threshold

values. However, from the figure we can see that by increasing the threshold the

range of the distribution decreases, which means fewer accidental correlated term

pairs. When the threshold is lower than 6, the increase in threshold decreases the

range dramatically. In contrast, the range does not change significantly with the

threshold when the threshold is beyond 6. Thus, to ensure enough term pairs while

also maintaining the quality, we choose a threshold of 6 to filter cross ontology term

pairs. We consider these terms pairs to be highly correlated cross ontology terms.

Now we have identified a set of cross ontology term pairs1 which have high semantic

similarity (a similarity of 6.0 which is much higher than the 1.8312 average). We also

1The complete list of cross ontology term pairs (all pairs under curve threshold 0) can be down-
loaded from http://cse.unl.edu/~ymo/thesis/yeast-pair.zip

http://cse.unl.edu/~ymo/thesis/yeast-pair.zip
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Figure 4.9: Distribution of the ratio of unified similarity and degree of co-occurrence
by choosing different minimal similarity threshold (from 0 to 10).

would like to review a few of them case by case. Term pairs on the two sides of the

curves correspond to pairs which have either high similarity low occurrence or low

similarity high occurrence. These types of terms pairs occurred much less often than

pairs near the peak of the distribution. In this study, we want to investigate typical

term pairs only. Figure 4.9 suggests that a majority of term pairs has ratio around 2

in log scale. We consider term pairs around this ratio as typical.

Appendix A lists a few highly correlated pairs around the peak. After examining

these pairs, we found it makes good sense biologically for them to achieve a high

correlation values. The pairs in the list can be generally classified into three categories:

1) cellular component term that supports a specific molecular function correlates with

the term for that molecular function; 2) biological process term that consists of a

series of molecular function correlates each individual molecular function terms; 3)

biological process term that takes place in specific cellular component correlates with
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term for the cellular component. Results show a very high degree of actual correlation

between the term.

Figure 4.10: Comparing degree of co-occurrence and unified semantic similarity for
identified cross term pairs. (τ = 0.6661, ρ = 0.6862)

Similarly, we can examine how well of our unified measure correlates the degree of

co-occurrence on this portion of cross ontology term pairs. Figure 4.10 demonstrates

the correlation between degree of co-occurrence and unified semantic similarity for

these cross term pairs. From the figure, we can read that cross ontology term pairs,

which are identified as high semantic similarities using our method, are co-occurred

more frequently than others. This shows the similarity for highly correlated term

pairs also correlated with the degree of co-occurrence.

By examining the list of highly correlated term pairs, we found that there are

still many term pairs with value zero in the degree of co-occurrence because they are

not co-occurred in SGD. Admittedly, these pairs need to be verified against other

metrics beyond SGD. Also, the term pairs we identified are domain-specific because

of the SGD database we are using. Thus, these terms should be considered as similar

only within the scope of the yeast genome. In order to overcome these difficulties,
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additional databases need to be introduced. We will investigate them in the future

research.
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Chapter 5

Conclusion

The Gene Ontology (GO) terms are widely used to annotate gene products. However,

it is unknown whether the terms defined in GO are used to label gene products in

a manner consistent with their definition. Since there are many ways to measure

semantic similarity, we first used various synthetic data models to study several simi-

larity measures to characterize their sensitivity to various properties of the data. We

found that Cosine is only suitable for annotation sets that have with long tails (low p

values) and in which each term is annotated by many moderately concentrated terms

in the ontology. Jiang’s measure is not well suited for skewed data (with a low-entropy

ω0) and in which each gene product is annotated by very few closely related terms in

the ontology. Also, we found that Resnik’s, Lin’s and Rel are almost independent of

the these parameters, especially Resnik’s.

Then we investigated a small sub-ontology and its annotations of data from

UniProtKB and found that Rel, Resnik’s and Jiang’s measures indicate correlations

between the DAG and its application relative to what seems to be the best possi-

ble based on tests on synthetic data. Thus we conclude that this partial ontology’s

definition relates well to its usage.
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From our result on the full GO ontologies, we found that correlation results using

the more stable measures (especially Resnik’s) seem to indicate that the correlation

between GO’s use and its definition is low, especially when compared to the correlation

between GO:0005275 and UniProtKB.

It is also unknown whether terms from different aspects of GO correlate with each

other. Although the Resnik measure is the most stable measure to identify similar

term pairs according to parameter sensitivity analysis, the Resnik measure is limited

only to measure term pairs within the same ontology. Hence we proposed a unified

similarity measure which can compute semantic similarity between any two terms

either within the same ontology or across ontologies.

By comparing with direct measure which evaluates semantic similarity between

terms within the same ontology, we can see that our unified measure correlates with

the existing direct measure. Then we compare it with the degree of co-occurrence,

which reflects the likelihood of two terms to annotate a same gene product, for pairs

in SGD. Results show that term pairs with degree greater than zero have much higher

similarity values than others. We noticed that the level of similarity correlates well

with the degree of co-occurrence. This evidence shows our unified similarity measures

are suitable to evaluate term similarity.

We further identified a list of highly correlated cross ontology term pairs by thresh-

olding the unified semantic similarity values. After examining a few of them with high

similarity values (see Appendix A), we found high level of biological correlation be-

tween these terms. For instance, when a term from cellular component ontology cor-

relates another term from biological process ontology, the former term defines physical

cell structure which supports the chemical reaction defined in the latter term. These

relations can be useful to refine term definition.
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Appendix A

List of a Few Highly Correlated

Cross Ontology Term Pairs

The correlation value between cross ontology term pairs are above 6 according to

Section 4.3.4 using the unified similarity measure proposed in Section 3.3.1. This list

shows a few top hits the ratio of which between the semantic similarity and degree

of co-occurrence (defined in Section 3.3.2) is around 7.38 suggest by Figure 4.9. The

label BP, CC and MF in term ID represent term’s source biological process, cellular

component and molecular function respectively.

Term1 ID Term2 ID Term1 Name Term2 Name

BP

GO:0051123

CC

GO:0005669

RNA polymerase II tran-

scriptional preinitiation

complex assembly

transcription factor TFIID

complex

BP

GO:0032568

CC

GO:0005669

general transcription from

RNA polymerase II pro-

moter

transcription factor TFIID

complex
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CC

GO:0070860

MF

GO:0010843

RNA polymerase I core fac-

tor complex

promoter binding

CC

GO:0017053

MF

GO:0016565

transcriptional repressor

complex

general transcriptional re-

pressor activity

MF

GO:0034246

BP

GO:0006391

mitochondrial transcription

initiation factor activity

transcription initiation from

mitochondrial promoter

MF

GO:0003840

BP

GO:0042908

gamma-glutamyltransferase

activity

xenobiotic transport

BP

GO:0006550

MF

GO:0004148

isoleucine catabolic process dihydrolipoyl dehydroge-

nase activity

BP

GO:0006550

MF

GO:0004738

isoleucine catabolic process pyruvate dehydrogenase ac-

tivity

BP

GO:0006574

MF

GO:0004148

valine catabolic process dihydrolipoyl dehydroge-

nase activity

BP

GO:0006574

MF

GO:0004738

valine catabolic process pyruvate dehydrogenase ac-

tivity

BP

GO:0042743

MF

GO:0004148

hydrogen peroxide

metabolic process

dihydrolipoyl dehydroge-

nase activity

BP

GO:0042743

MF

GO:0004738

hydrogen peroxide

metabolic process

pyruvate dehydrogenase ac-

tivity

MF

GO:0070463

BP

GO:0070462

tubulin-dependent ATPase

activity

plus-end specific micro-

tubule depolymerization

MF

GO:0015129

BP

GO:0015727

lactate transmembrane

transporter activity

lactate transport
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MF

GO:0034202

BP

GO:0034203

glycolipid-translocating ac-

tivity

glycolipid translocation

CC

GO:0043626

MF

GO:0030337

PCNA complex DNA polymerase processiv-

ity factor activity

MF

GO:0051575

BP

GO:0071047

5’-deoxyribose-5-phosphate

lyase activity

polyadenylation-dependent

mRNA catabolic process

CC

GO:0030678

BP

GO:0001682

mitochondrial ribonuclease

P complex

tRNA 5’-leader removal

MF

GO:0034084

BP

GO:0034210

steryl deacetylase activity sterol deacetylation

CC

GO:0000802

MF

GO:0032184

transverse filament SUMO polymer binding

MF

GO:0015505

BP

GO:0015857

uracil:cation symporter ac-

tivity

uracil transport

CC

GO:0005962

MF

GO:0004449

mitochondrial isocitrate

dehydrogenase complex

(NAD+)

isocitrate dehydrogenase

(NAD+) activity

CC

GO:0005950

MF

GO:0004049

anthranilate synthase com-

plex

anthranilate synthase activ-

ity

CC

GO:0009328

BP

GO:0006432

phenylalanine-tRNA ligase

complex

phenylalanyl-tRNA

aminoacylation

BP

GO:0006830

MF

GO:0000006

high-affinity zinc ion trans-

port

high affinity zinc uptake

transmembrane transporter

activity
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BP

GO:0015879

MF

GO:0015226

carnitine transport carnitine transporter activ-

ity

BP

GO:0015890

MF

GO:0015663

nicotinamide mononu-

cleotide transport

nicotinamide mononu-

cleotide transmembrane

transporter activity
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