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Observability measures the support of computer systems to accurately capture, analyze,

and present (collectively observe) the internal information about the systems. Observ-

ability frameworks play important roles for program understanding, troubleshooting,

performance diagnosis, and optimizations. However, traditional solutions are either

expensive or coarse-grained, consequently compromising their utility in accommodat-

ing today’s increasingly complex software systems. New solutions are emerging for

VM-based languages due to the full control language VMs have over program execu-

tions. Existing such solutions, nonetheless, still lack flexibility, have high overhead, or

provide limited context information for developing powerful dynamic analyses.

In this thesis, we present a VM-based infrastructure, called marker tracing frame-

work (MTF), to address the deficiencies in the existing solutions for providing better

observability for VM-based languages. MTF serves as a solid foundation for imple-

menting fine-grained low-overhead program instrumentation. Specifically, MTF allows

analysis clients to: 1) define custom events with rich semantics ; 2) specify precisely the

program locations where the events should trigger; and 3) adaptively enable/disable

the instrumentation at runtime. In addition, MTF-based analysis clients are more

powerful by having access to all information available to the VM.

To demonstrate the utility and effectiveness of MTF, we present two analysis clients:

1) dynamic typestate analysis with adaptive online program analysis (AOPA); and 2)

selective probabilistic calling context analysis (SPCC). In addition, we evaluate the

runtime performance of MTF and the typestate client with the DaCapo benchmarks.



The results show that: 1) MTF has acceptable runtime overhead when tracing moderate

numbers of marker events; and 2) AOPA is highly effective in reducing the event

frequency for the dynamic typestate analysis; and 3) language VMs can be exploited

to offer greater observability.



iv

Acknowledgement

I am deeply grateful to Witawas Srisa-an for supporting and mentoring me throughout

my master studies. Dr. Srisa-an has provided invaluable technical expertise and

feedback in all projects we have taken. Dr. Srisa-an kindly accepted me into his group

and guided me enter the field of computer system research. He is always enthusiastic

and positive about research ideas and projects, and teaches me research and writing

skills. It has been a great honor and pleasure for me to conduct research under his

supervision.

I am also indeted to Matthew Dwyer, co-advisor of my master project. I am

thankful to his guidance, support and encouragement. Dr. Dwyer not only originated

the ideas in this research, but also offered invaluable expertises and insights. My

research has benefited greatly from his enthusiasm, patience, high standards, and

depth and breadth of knowledge. Without Dr. Dwyer’s original and critical thinking,

efforts, and encouragement, this project would not have been possible.

I would also like to thank my defense committee member, Xue Liu for his support

on my thesis work. Dr. Liu provided invaluable feedbacks when I presented the

preliminary results in his class. My thanks also go out to Ashok Samal, Leen-Kiat Soh,

and the other members of the CSE faculty who inspired me to pursue this academic

adventure.

I am thankful to have Xueling Chen, Du Li, Xueming Wu, Xiangnan He, Yujun



v

Wang, Yuanming Liu, and Jinjin Liu as friends. They are always by my side and help

me overcome all the hardship being far away from home.

This thesis would not have been possible without the open-source HotSpot JVM.

I am indebted to all HotSpot developers for their generous efforts maintaining and

improving the HotSpot JVM. The hotspot-dev mailing list and the entire HotSpot

community have been great resources for solving various technical problems I came

across during this project.

I am thankful for the unconditional love, support, and encouragement that my

parents have been providing throughout my life. I dedicate this thesis to my grandfa-

ther, who passed away last year but sadly was not able to have last words with me. I

love you all!



vi

Contents

Acknowledgement iv

Contents vi

List of Tables x

List of Figures xi

1 Introduction 2

1.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Observability by Exploiting Virtual Machine Information . . . 5

1.1.2 Marker Tracing Framework . . . . . . . . . . . . . . . . . . . 6

1.1.3 Effectiveness of Marker Tracing Framework . . . . . . . . . . . 7

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 10

2.1 Java Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Class File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Java Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Meta-data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



vii

2.5 HotSpot JVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Intepreters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 JIT Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.3 Runtime Systems . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.3.1 Object Representation . . . . . . . . . . . . . . . . . 18

2.5.3.2 Thread States and Safepoint . . . . . . . . . . . . . . 18

2.5.4 OpenJDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Bytecode Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Marker Tracing Framework 21

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Marker Descriptor . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Marker Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.4 Analysis Manager . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.5 Adaptive Marker Invocation . . . . . . . . . . . . . . . . . . . 29

3.2.6 Instrumentation Utility . . . . . . . . . . . . . . . . . . . . . . 32

3.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Extending HotSpot JVM . . . . . . . . . . . . . . . . . . . . . 35

3.3.1.1 Class Loader . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1.2 Shared Runtime . . . . . . . . . . . . . . . . . . . . 37

3.3.1.3 Interpreter . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1.4 JIT Compiler . . . . . . . . . . . . . . . . . . . . . . 39



viii

3.3.2 Instrumentation Utility . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . . 45

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Adaptive Runtime Typestate Analysis 48

4.1 Runtime Typestate Analysis Client . . . . . . . . . . . . . . . . . . . 49

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Finite State Automaton . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Per-object Storage . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.3 Adaptive Online Program Analysis . . . . . . . . . . . . . . . 55

4.2.4 Object Death Event Handling . . . . . . . . . . . . . . . . . . 56

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 File API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 DaCapo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Selective Probabilistic Calling Context 64

5.1 Probabilistic Calling Context . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Selective Probabilistic Calling Context . . . . . . . . . . . . . . . . . 66

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 PCC Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.2 Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.3 Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



ix

6 Related Work 73

6.1 Java Virtual Machine Tool Interface . . . . . . . . . . . . . . . . . . . 73

6.2 Dynamic Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Aspect-Oriented Programming . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Quality Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Future Work 80

7.1 Runtime Overhead Reduction . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Implementation Improvements . . . . . . . . . . . . . . . . . . . . . . 82

7.3 Tracing Allocation Sites . . . . . . . . . . . . . . . . . . . . . . . . . 84

8 Conclusions 86

Bibliography 88



x

List of Tables

3.1 Analysis client interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Instrumentation client interface. . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Marker bytecodes definitions. . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Basic characteristics of each benchmark in DaCapo 2009 suite. . . . . . . 44

3.5 Execution time of running DaCapo benchmarks on MTF. . . . . . . . . . 45

3.6 Marker invocations of running DaCapo benchmarks on MTF. . . . . . . 45

4.1 Marker descriptors for the File API property. . . . . . . . . . . . . . . . 52

4.2 Self-loop and out-going symbols in the File API [27]. . . . . . . . . . . . 53

4.3 Micro-benchmarks to test the File-API property. . . . . . . . . . . . . . . 58

4.4 Marker invocations of the File-API benchmark. . . . . . . . . . . . . . . 59

4.5 Execution time of the File-API benchmark. . . . . . . . . . . . . . . . . 59

4.6 Execution time and marker invocations of HasNext property. . . . . . . . 61

4.7 Execution time and marker invocations of HasNextOnce property. . . . . 62



xi

List of Figures

1.1 Tracing the entry and exit of a loop in the program. . . . . . . . . . . . . 4

2.1 Overview of the architecture of a JVM. . . . . . . . . . . . . . . . . . . . 12

2.2 The structure of a Java class file. . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Class loaders in a JVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 A simplified view of the interpreter instruction cycle [47]. . . . . . . . . 15

3.1 Overall architecture of MTF. . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 An example application of markers. . . . . . . . . . . . . . . . . . . . . . 25

3.3 The structure of a marker descriptor. . . . . . . . . . . . . . . . . . . . . 26

3.4 Per-thread marker stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Adaptive online program analysis: the MPS approach. . . . . . . . . . . 29

3.6 Adaptive online program analysis: the MDP approach. . . . . . . . . . . 31

3.7 Control flow of the dispatch preamble for each marker bytecode. . . . . . 31

3.8 Workflow of marker instrumentation. . . . . . . . . . . . . . . . . . . . . 34

3.9 Marker descriptor parsing routine. . . . . . . . . . . . . . . . . . . . . . . 36

3.10 markerenter handler in SharedRuntime. . . . . . . . . . . . . . . . . . . 37

3.11 markerenter code template generator on x86 64. . . . . . . . . . . . . . 39

3.12 The algorithm of marker bytecode instrumentation. . . . . . . . . . . . . 41

3.13 Layout of the constant pool after instrumentation. . . . . . . . . . . . . . 41



xii

3.14 Instrument return statements in a method with markerexit bytecode. . 42

3.15 Execution time of running instrumented DaCapo benchmarks on MTF. . 46

4.1 The File API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 The FSA for the File property . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Dead object typestate checking. . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Finite-state automatons for HasNext (left) and HasNextOnce (right). . . 60

4.5 Execution time of DaCapo with HasNext property. . . . . . . . . . . . . 60

4.6 Execution time of DaCapo with HasNextOnce property. . . . . . . . . . 62

5.1 Marker descriptor format for SPCC. . . . . . . . . . . . . . . . . . . . . 67



1



2

Chapter 1

Introduction

Observability represents the level of support inside the computer systems to accurately

capture, analyze, and present (collectively observe) [49] the internal information, e.g.,

data structures and program states, about the system. Observability tools assist pro-

gram developers to understand the code, troubleshoot problems, diagnose performance

bottle-necks, and perform optimizations. Traditional observability solutions including

assertions, print statements, and debuggers, are useful in many cases. For example,

most debuggers support examining program variables, machine registers, and current

call stacks at breakpoints. Hand-crafted print statements are more convenient where

the state cannot be easily captured by a breakpoint. However, such solutions are either

expensive and coarse-grained (debuggers), or static and intrusive (print statements

and assertions), consequently defeating the utility of such solutions in accommodating

today’s increasingly complex software systems.

The introduction of Virtual Machine (VM) based languages, e.g., Java and C#,

have improved software observability by offering new infrastructures. For example,

Java Virtual Machine Tool Interface (JVMTI) [2] is a comprehensive Application

Programming Interface (API) for implementing analysis clients that can inspect the
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internal states of the JVM and control the execution of Java programs. Moreover,

the DTrace support [1] built into the HotSpot Java Virtual Machine also provides

a collection of event probes for low overhead analysis clients. The .NET Profiling

API [59] offers similar features as JVMTI for .NET languages. Aspect-Oriented

Programming (AOP) can also be used to systematically instrument programs with

custom operations.

The proliferation of such instrumentation APIs for VM-based languages can

be attributed to the virtualized environments in which the programs are executed.

Since native languages, e.g., C and Fortran, execute directly on the bare machine,

observability for these languages requires operating system (OS) and hardware support,

which are rarely available, if practical at all. Conversely, it is much easier and superior

to extend a language virtual machine for observability, because such VMs not only

provide all the core services to the programs, but also manage their complete executions.

For example, a VM knows the status of every lock being used because programs rely

on VMs to perform all locking-related operations.

Although the existing instrumentation APIs have been proved to be useful [12, 46,

61, 68, 10] , they are still limited for implementing fine-grained and more sophisticated

analysis clients for the following reasons:

Event Types. For better modularity and ease of programming, most of these

infrastructures hide the details of the virtual machines by providing an API for writing

program instrumentation. Despite the comprehensive list of supported event types,

they only represent a subset of events that developers may want to observe. For

example, a developer may want to observe each time a program enters or exits a

particular loop. To do so, the developer needs to create an analysis client that traces

the entry and exit of a loop in the program and invoke the corresponding callback
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initialization

loop entry

test body post-processing
true

false

loop exit

Figure 1.1: Tracing the entry and exit of a loop in the program.

handlers, as shown in Figure 1.1. However, no existing tools support such an event.

Furthermore, existing tools do not support analysis that can specify which particular

loop to be traced1. This type of analysis needs instrumentation support at the basic

block level, whereas most existing APIs provide instrumentation support at the method

level.

Event Filtering. To minimize the space and time overhead, analysis clients require

the ability to filter out uninterested event occurrences from the interesting ones (e.g.,

invoking the handler only when method A or method B is called, while skipping any

other method calls). Most existing APIs indeed allow monitoring method entry and exit

events. Nonetheless, only few techniques, e.g., DTrace, supports user-defined filters

for excluding the unwanted occurrences. Without such feature, the instrumentation

can cause excessive event notifications because all events are notified but filtering is

only performed on the client side. When monitoring highly frequent events, client-side

filtering incurs significant overhead due to the frequent context switches, where most

1JVMTI supports bytecode instrumentation (via 3rd-party tools), which can be used to insert
custom code around loops to capture such event.
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VM operations must be stalled. Moreover, DTrace filters unwanted events by polling

all events, resulting in high runtime overhead.

Context Information. Most existing APIs expose various VM internal information

by means of a comprehensive set of utility routines. By invoking such routines, analysis

clients can query a wide range of context information about most aspects of the program

execution, e.g. thread status, current stack trace, object monitor usages, and reachable

heap objects. Nevertheless, it is still infeasible to provide specific context information

for all analysis clients in the real world. For example, an object allocation and lifetime

analysis needs to keep track of the sites where each object is allocated, i.e., allocation

sites. Although existing APIs support tracing object allocations and reclamation

events, they neither identify nor track the corresponding allocation sites.

1.1 Approach

In this thesis, we present an infrastructure that resides in the VM to address the

aforementioned deficiencies in the existing instrumentation APIs. The objective is

to provide better observability for VM-based languages with a flexible and generic

framework for implementing finer-grained low-overhead analysis clients.

1.1.1 Observability by Exploiting Virtual Machine

Information

High-level language virtual machines (we will refer to them as virtual machines in

the rest of the thesis) are software systems supporting the execution of managed

languages, e.g., Java and C#. Because virtual machines serve as the complete

execution environments, they can generate rich runtime information during program
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execution. In addition, a language VM is a powerful infrastructure by itself, with many

useful facilities, e.g., garbage collectors and Just-in-Time (JIT) compilers. Past studies

have exploited runtime information and VM facilities to make programs execute more

efficiently [37, 75, 76]. In this work, we demonstrate that such exploitation can also

lead to improved program observability.

1.1.2 Marker Tracing Framework

We have designed an infrastructure called: marker tracing framework (MTF), which

supports fine-grained program tracing by allowing analysis clients to define custom

events and register handlers. MTF is a generic framework that is completely agnostic of

the semantics and handling routine of each user-defined event. Besides fine specification

granularity, MTF is also designed to be light-weight, i.e., low runtime overhead and non-

intrusive. MTF provides the facilities inside the VM to perform essential operations for

analysis clients, e.g., class loading, callback and context management, event dispatch,

and JIT compilation.

Analysis clients define custom events by implementing new markers — special

language constructs for flexibly specify instrumentation points and scopes. A marker

consists of an event identifier and meta-data. Each marker encapsulates an arbitrary

code region in the program. Analysis clients instrument the programs with markers

at compile time. At runtime, MTF can look up and invoke corresponding handler

based on the marker identifier for each marker occurrence. Multiple analysis clients

can execute in parallel with no interference, even if they register common markers.

Being inside the VM, analysis clients have access to all information available to

the VM by implementing context providers — specialized VM modules for collecting

the needed runtime information by the analysis clients. Analysis developers can
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reuse existing context providers or implement new providers when necessary. Context

providers are mostly generic and reusable such that we can mix and match context

providers to create sophisticated runtime analysis.

MTF can mitigate the fixed-event-type problem in existing APIs by allowing

analysis clients to define custom tracing related events. For example, an analysis

client can trace every loop in the program by wrapping it with a marker, which then

signals the MTF at the loop header and exit respectively. The markers also serve as

fine-grained filters in the program where instrumentation is activated; whereas, the

rest of the program executes at the full speed. As an example, we can implement

an enhanced Probabilistic Calling Context (PCC) analysis [20] that can selectively

compute PCC values only for the user-specified methods. Because MTF-based analysis

and context providers are built inside the VM, they can leverage the VM services to

access any context information at runtime.

Although modifying a VM is non-trivial and non-portable, we argue that the

benefits with this solution (e.g., access to VM-only runtime information, efficient

instrumentation execution, less context switches) far outweigh the disadvantages in

many scenarios for enhanced observability.

1.1.3 Effectiveness of Marker Tracing Framework

To demonstrate the utility and versatility of the framework, we have developed two

distinct analysis clients, i.e., dynamic typestate analysis with Adaptive Online Program

Analysis (AOPA) [27] and selective probabilistic calling context analysis [20]. We

evaluate the runtime performance of both MTF and the typestate client.

MTF and the analysis clients are implemented for the Java language on the HotSpot

JVM. However, we believe the principles and methodologies should apply equally well
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for other VM-based languages with comparable effectiveness and runtime performance.

1.2 Contributions

In this work, we present Marker Tracing Framework (MTF), a novel technique

offering superior flexibility for the development of dynamic analysis clients for VM-

based languages. MTF and the analysis clients collectively improve observability for

programs written in these languages. Below we summarize the contributions made by

this work:

1. We identify the deficiencies in the current state-of-the-art observability infras-

tructures: 1) statically fixed event types and programming interfaces; 2) lack of

framework-side event filtering; and 3) insufficient context information for some

analysis clients.

2. We describe the methodologies behind MTF in detail. We also present an

prototype implementation of the framework, which is both efficient and extensible,

hence providing a solid foundation for future work.

3. We demonstrate the usefulness and effectiveness of MTF by implementing three

instrumentation clients: dynamic typestate analysis and selective probabilis-

tic calling context analysis. Thorough performance evaluations of both the

framework and the clients are conducted and presented in the thesis.

4. We show how to leverage internal VM facilities for building custom infrastructures

in a production quality JVM with very large code base.



9

1.3 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 describes the concepts

and technologies relevant for understanding the MTF methodology, followed by a

discussion of the related work. Chapter 3, 4, and 5 describes the design, implementation,

and evaluation of the MTF framework, typestate analysis client, and selective PCC

client respectively. We discuss the future work to be explored in Chapter 7 and finally

conclude the thesis in Chapter 8.
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Chapter 2

Background

To increase robustness, execution efficiency, portability, and standard compliances,

most modern JVMs have become very complex (e.g., the current version of Sun

HotSpot VM contains over half a million lines of code). Furthermore, applications

running on these VMs have also gained complexities over the past few years as

developers attempt to exploit thread-level parallelism available in modern multicore

processors. As such, it has been challenging for developers to observe the operation of

JVM internal mechanisms and structures and understand how these complex runtime

systems interact with their applications.

Past studies have shown that leveraging rich runtime information buried inside the

JVM can provide developers with the necessary insights to improve the quality and

performance of their software. As such, we believe that leveraging such information

far outweights the technical complexities to develop means to obtain the information.

Therefore, we have designed and implemented the observability framework inside the

HotSpot JVM, a production strength JVM that is widely deployed in commercial

settings. To facilitate the understanding of the design decisions, this chapter discusses

the relevant JVM technologies in general and HotSpot in specific; we leave the
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background information on each instrumentation client to the individual chapters.

2.1 Java Virtual Machine

Java is designed to be a high level language executed on top of a virtualized environment

— Java Virtual Machine. Such extra abstraction layer is the foundation behind Java’s

philosophy of portability — “Write once, run everywhere”. Therefore, Java programs

are not translated into platform-dependent machine instructions as programs written

in native languages are, e.g., C or C++, but into Java Bytecodes [47], a virtual and

platform-neutral instruction set suitable for execution on the JVM.

As the name suggests, each bytecode is one-byte in length with an opcode part

specifying the operation to be performed, followed by zero or more operands describing

the values to be operated upon. Although one byte can be encoded to represent 256

distinct patterns, not all are defined as bytecodes. Similar to existing instruction sets,

e.g. x86 and SPARC, Java bytecodes are defined to perform common operations essen-

tial for most modern architectures, e.g., memory load and store, arithmetics, object

creation and manipulation, control transfer, stack management, and synchronization.

Java virtual machines support automatic memory management based on the

concept of garbage collection (GC) [74]. The memory area where Java allocates from

and release memory to is called heap. Programmers do not explicitly reclaim memory as

they do using traditional languages; whereas, the garbage collectors can automatically

search for objects that are no longer useful and reclaim the memory. This mechanism

effectively release the burden of memory deallocation from the programmers as well

as mitigating a host of memory errors, e.g., memory leak. Modern JVMs typically

incorporate several GC algorithms to suit different requirements. Garbage collectors

are sophisticated systems that can provide highly useful information for program
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Figure 2.1: Overview of the architecture of a JVM.

instrumentation, i.e., allocation and object death. Figure 2.1 gives an overview of the

architecture of a typical modern JVM.

2.2 Class File Format

Java classes, once compiled into bytecodes, are represented by a hardware- and operat-

ing system-independent binary format, known as the class file format, similar to native

object formats like Executable and Linkable Format (ELF) [69] and Common Object

File Format (COFF) [51]. A class file not only contains the bytecode representation

of the class but also carry auxiliary information such as constant values, exception

tables, and access flags, as shown in Figure 2.2.

Class loaders are responsible for loading and parsing the class files. They create in

memory representations of each integral part of the class, e.g., methods, fields, and
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…

Figure 2.2: The structure of a Java class file.

constant values, for the JVM as shown in Figure 2.3. Besides the bootstrap class loader

provided by the JVM, programmers can also define custom class loaders to extend

the manner in which the JVM dynamically loads and creates classes. For example,

instead of loading a class stored in a disk file, we can supply a custom class loader

that generates the class on-the-fly directly in memory. In this work, we extend the

bootstrap class loader to parse information related to our framework.

2.3 Java Execution Model

Because Java bytecodes are platform-independent, they cannot be executed directly

on native processors but are interpreted by a specialized execution engine in the
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JVM, called bytecode interpreter. Akin to a microprocessor, the bytecode interpreter

performs the typical instruction cycle, i.e., fetching, decoding, and executing Java

bytecodes. Figure 2.4 gives a simplified illustration of the execution process of a JVM

interpreter. Java is a stack-based language such that computations are carried out

on the expression stack, i.e., bytecodes pop operands off and push results back onto

the expression stack. The interpreter only processes simple bytecodes, e.g. pushi and

iadd, but delegates the complex ones, e.g., new and monitorenter, to related VM

subsystems, e.g., heap allocator and object synchronizer.

Besides the interpreters, most high performance JVMs include Just-in-Time (JIT)

optimizing compilers, which perform dynamic compilation of bytecodes into optimized

machine instructions, which can be executed directly on the native processors, leading
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do {

fetch an opcode;

if (operands) fetch operands;

execute the action for the opcode;

} while (there is more to do);

Figure 2.4: A simplified view of the interpreter instruction cycle [47].

to orders of magnitude speed up. A method is a common compilation unit because of

its simplicity for profiling, which is the basis for determining the parts of the code to

be compiled. Intuitively, the methods with the most invocations or tight loops yield

the most performance gain after compiled by the JIT compiler.

Modern JVMs commonly incorporate multiple JIT compilers and invoke the most

appropriate versions with respect to the characteristics of the applications. For

example, an interactive application needs to remain responsive and is typically short-

running. Thus, a JIT compiler with the shortest compilation time is desirable since it

causes the minimum distraction to application activities, although it generates less

optimized code. Whereas, a highly optimized JIT compiler is suitable for long-running

server-like applications because one-time compilation latency is of less concerns.

2.4 Meta-data

Meta-data, when loosely defined, means the data that can describe the aspects of some

other data. There are several scenarios in the Java development process meta-data are

necessary for various purposes. For example, the JVM expects the meta-data about

the Java class, e.g. descriptors of fields and methods, to be present in the constant pool

[47] of the corresponding class file as defined the JVM specification. Another option

is to store meta-data in “side files” that are kept aside with the applications. For

instance, Java applications store configurations and internalization strings in property
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files. Moreover, JavaEE applications require XML-based deployment descriptors for

the configuration information of the various assets. With the release of Java 2 Platform

Standard Edition (J2SE) 5.0, Java introduces the Annotation meta-data facility [33]

for annotating Java code from within Java by allowing descriptive meta-data right

next to the language element being described. Programmers can decorate a class,

method, field, parameter, variable, constructor, and package with custom annotations.

Depending on the purposes, there are several ways to store meta-data in Java

programs. Using plain-text property files has the advantage of being human readable

and manually editable using text editors. However, it introduces extra files into the

workspace and raises maintenance cost. On the other hand, constant pool stores

low-level information essential for class loading and program execution, similar to a

symbol table for a conventional programming language. Thus, it is suitable for storing

information that is only accessed by the JVM. However, the default bootstrap class

loader has to be modified to handle custom meta-data. Java annotation is a high

level language feature for storing meta-data directly in source code. It eliminates the

needs for “side files” and is easy to edit. However, updating annotations requires

recompilation such that is is not suitable for direct use by the JVM.

2.5 HotSpot JVM

Sun HotSpot JVM is one of the most widely deployed production quality Java virtual

machine in the real world. HotSpot is a high performance and standard-compliant

implementation of the Java Virtual Machine specification [47]. HotSpot supports

a variety of mainstream platforms, e.g. IA-32, x86-64, and SPARC, and operating

systems, e.g., Solaris, Linux, Windows, and MacOS.
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2.5.1 Intepreters

There are two interpreter flavors in HotSpot, i.e. C++ interpreter and template

interpreter. As the name suggests, C++ interpreter is written in C++ with minimal

assembly code for low-level stack management, which is not accessible in C++.

The core of C++ interpreter is a giant switch-like structure that dispatches each

bytecode to the appropriate handling procedure. For performance reasons, HotSpot

currently invokes the template interpreter in default. Template interpreter is written

in native assembly instructions and generated on-the-fly durign VM startup [34] for

each bytecode. HotSpot maintains rich profiling information, e.g. invocation and back

branching counts, for selectingly the hot methods for JIT compilation.

2.5.2 JIT Compilers

HotSpot provides two JIT compilers: the client compiler [44] and server compiler [55].

The client compiler has faster compilation speed with fewer optimizations. Thus, it

is suitable for interactive and short-running applications where responsiveness is of

high priority. The server compiler applies more aggressive code optimizations, thereby

incurring longer compilation latency. It is suitable for long-running applications

where it is worthwhile to trade initial latency for higher code quality. In HotSpot,

the JIT compilers are threaded, thus they execute in parallel with the interpreter

cycle. Therefore, a method being compiled is kept interpreted until the compilation

is finished. Thus, the number of interpretations is non-deterministic and would vary

among runs.



18

2.5.3 Runtime Systems

2.5.3.1 Object Representation

HotSpot stores Java entities, e.g. instances, methods, classes, arrays, and string

symbols, in the runtime Java heap. HotSpot represents them using Ordinary Object

Pointer descriptor (oopDesc) and a variety of subclasses. For example, each array

object is represented by an arrayOopDesc; regular Java objects are represented by

instanceOopDesc. HotSpot references these entities by thin pointer wrappers — oop,

implemented as native machine addresses in memory. Thus, instanceOop is the

pointer to instanceOopDesc. Besides the payload data, e.g., object fields, array

elements, and constant pool entries, oopDesc encodes the information about each

heap object in the object header. For example, the header of arrayOopDesc records

the length of the array; the header of methodOopDesc stores the access flags of the

Java method.

2.5.3.2 Thread States and Safepoint

Like most sophisticated software systems, threads in the HotSpot JVM can be in

three execution states, i.e., the Java state, VM state, and native state. The default

state is Java state when HotSpot is executing Java bytecodes. At this state, GC is not

allowed since the programs are constantly mutating the Java heap. Similarly, other

VM operations that might allocate memory or acquire locks are also prohibited in the

Java state. To perform such operations, HotSpot has to switch to the VM state. Thus,

entries of runtime routines are guarded by state transition prologues, e.g. Java-to-VM

and native-to-VM. In VM state, HotSpot can invoke GC when it reaches a safepoint,

where all threads in Java state are stalled and GC roots are known. Most call sites and

runtime routine entries qualify as safepoints. When HotSpot executes JNI methods,
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it switches to the native state. Thread state transitions should be avoided whenever

possible because some directions are expensive, e.g., native-to-Java.

2.5.4 OpenJDK

OpenJDK 1 is an open-source implementation of the J2SE specification released by

Sun in 2006. The majority of OpenJDK is licensed under the General Public License

(GPL), except for some encumbered components that can only be distributed as

binaries. To date, HotSpot is the only open source implementation of a production

quality JVM. Thus, we chose HotSpot in OpenJDK as our research JVM in this work

for its production quality, high performance, ubiquitous deployment, and open source

code base.

2.6 Bytecode Instrumentation

Because Java classes are compiled into bytecodes and stored in binary class files,

it is possible to alter the behaviors and structure of a Java class by transforming

the bytecodes and the class files respectively. This technique is called Bytecode

Instrumentation (BCI). For example, we can introduce new fields and methods,

rename classes, and add new interface implementations, on an existing class through

BCI. There are many BCI libraries and tools in use, e.g., BCEL [24], ASM [30],

JavaAssist [23], and SOOT [71].

Recently, ASM has become one of the most popular BCI libraries due to its small

footprint, fast bytecode processing, and ease of use. Unlike previous solutions, ASM

does not rely on object representations for the various kinds of nodes in the class

tree structure or the various kinds of bytecode instructions. Thus, ASM avoids the

1OpenJDK and related projects are hosted at http://openjdk.java.net/.

http://openjdk.java.net/
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bloatness and is both time and space efficient in encoding and decoding class files.

ASM is based on the Visitor pattern [32] and supports two APIs for generating and

transforming class files: the core API provides an event-based representation of classes,

while the tree API provides an object-based representation similar to BCEL. Core

API is useful for context-free transformations, whereas the tree API is suitable for

more complex ones. Each event in the core API represents an element of the class,

e.g., header, field, method, and instruction. Transforming class files using the core

API requires overriding the virtual methods of several interfaces, e.g., ClassVisitor,

FieldVisitor, and MethodVisitor.

In this work, we have developed an ASM-based instrumentation utility based on

the core API for the MTF framework, which relies on BCI for embedding markers

and associated meta-data into class files. The core API is sufficient for such purpose

because marker-related BCI only references the constant pool and related methods,

thus is context-free.

2.7 Platform

All experiments of this work are performed on a workstation with Intel Core 2 Duo

CPU at 2.40GHz and 4GB physical memory running Ubuntu Linux with x86 64

kernel at version 2.6.32. We base our implementation on OpenJDK 1.7 build 80.

We configure to build with the template interpreter and server JIT compiler for

x86 64/Linux architecture.
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Chapter 3

Marker Tracing Framework

In software engineering, tracing is the process of continuously recording and analyzing

certain aspects of the program execution. The utility of trace-based techniques have

been demonstrated by a large number of previous research works with diverse focuses,

e.g. profiling [36, 35], debugging [73, 21, 60], and dynamic program analysis [48, 62].

Näıve program tracing mechanisms can slow down program execution by orders of

magnitude and generates massive trace logs. Tracing also introduces code bloatness

into the target program because of the extra logic for recording and processing the

traced data. In this chapter, we present a JVM-based infrastructure, the core of which

is a light-weight and non-intrusive tracing framework – Marker Tracing Framework

(MTF).

3.1 Motivation

Tracing is a core technique for effective program instrumentation. Researchers and

application developers have been using trace-based techniques for solving real world

problems with desirable results. A variety of techniques exist for incorporating tracing
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logic into Java programs. The most straightforward approach is implementing custom

tracing code directly in the target programs. However, this solutions can pollute the

source code and the trace code might not be reusable for other projects. A more

elegant and flexible solution is using AOP-based utilities for adding tracing into exiting

programs. For example, one of the most widely-used AOP implementation — AspectJ

[42], supports highly sophisticated schemes for precisely specifying the parts of the

program that should be instrumented. Moreover, since the instrumentation code is

written in plain Java, programmers can quickly develop effective instrumentation

code leveraging all the language features and the standard libraries of Java. AOP

dynamically weaves aspects at compile time, thereby the instrumentation code is

completely de-coupled from the target program.

Such application-level tracing techniques are incapable for certain kinds of analyses

where low-level information is required. For example, resource and memory leak

detections for Java need to monitor object deaths, which is only accessible within

the JVM. To address such needs, people have been using VM-based approaches,

e.g., JVMTI and DTrace because such frameworks provide interfaces for accessing

and mutating VM-only data. Arnold et al. [9] summarizes the advantages of using

VM-based instrumentation as:

VM only information. Client analyses can access existing runtime information

and record new information that is not possible at the language level, such as stealing

free bits in object headers, caching data in thread local storage, and re-using existing

VM services.

Performance. Profile data from interpreters and JIT compilers can be used to tune

the analysis clients.
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Dynamic updating. Advanced techniques, e.g. code patching and on-stack replace-

ment (OSR) can be used to dynamically adjust the instrumentation at runtime.

Deployment. The instrumentation is built inside the JVM, thus the application is

free of modifications such that any applications can leverage the framework if run on

such JVM.

Although these infrastructures have been shown to be generally useful, they are

still limited in certain aspects and can be improved in the following aspects:

Event Types. Existing solutions uses programming interfaces for providing the

services while hiding the details of the virtual machines. Although, the interface is

comprehensive, it is still impossible to accommodate all requirements from instrumen-

tation tasks in real world. One of the most confining factors is the fixed event types,

which limits the capturing of the exact program states.

Event Filtering. Most existing solutions do not support user-defined filters that are

evaluated inside the JVM before invoking the callback functions. Thus, the analysis

clients need to listen to all event occurrences and discard the uninteresting ones. The

resulted context switches can cause significant overhead for the executions. Therefore,

it is desirable if the framework can allow programmers selectively choose which events

should be delivered and even dynamically adjust them at runtime.

Context Information. Existing APIs give access to VM information by providing

sets of programming interfaces. By calling such routines, analysis clients can query a

wide range of context information that is available to the VM. However, programming

interfaces cannot suit all possible needs of real world program analyses. The capability

of frameworks allowing such analyses to obtain the needed information is necessary.
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Figure 3.1: Overall architecture of MTF.

3.2 Framework

As shown in Figure 3.1, the MTF framework consists of three parts: VM Services,

which extend existing VM components and implement the marker bytecodes and

tracing mechanisms; Analysis Manager, which manages all analysis clients and exposes

the underlying VM services to the clients; and Instrumentation Utility, a framework

for instrumenting programs with marker bytecodes. In this section, we explain the

core concepts and sketch the designs of both the analysis manager and instrumentation

utility. Because VM services are platform-specific, we discuss them in Section 3.3.



25

public java.lang.Object next();
Code:

0: markerenter 2 (mid)

3: aload_0
4: getfield nodeModCount:I

7: aload_0
8: getfield LEDU/purdue/cs/bloat/util/Graph$1;

...

...
36: invokeinterface java/util/Iterator.next:()Ljava/lang/Object;

39: markerenter 1 (mid)

42: checkcast java/util/Map$Entry

44: putfield last:Ljava/util/Map$Entry;
47: markerexit 1 (mid)

50: aload_0

51: getfield last:Ljava/util/Map$Entry;
54: markerexit 2 (mid)

57: areturn

Figure 3.2: An example application of markers.

3.2.1 Marker

The core concept of the framework is marker, a special “tag” that can be inserted

around a region of code anywhere inside a method. Each marker is represented and

referenced in code by an 1-based integer identifier, called marker id. We differentiate

the entry and exit of a marker (code region) by inventing two new bytecodes into the

Java instruction set, i.e., markerenter and markerexit, similar to the Java monitor

synchronizing bytecodes. Both bytecodes take an integer marker id as the only operand.

Figure 3.2 shows an example of instrumented with a marker of identifier 2 in a next

method 1.

Each marker instance is associated with a essential set of context information,

i.e., marker id, thread id, and active method and receiver object. Such information is

necessary for implementing sophisticated analysis clients with thread- and context-

1The next method is defined by an iterator class inside the EDU.purdue.cs.bloat.util.Graph

class of the bloat benchmark in the DaCapo suite 2006).
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mid: integer

oneway: bool

predicate: String

clients: Client[] register (markerDescriptor)

enter (marker)

exit (marker)

print ()

method_loaded ()

object_freed ()

Marker Descriptor

Client

Figure 3.3: The structure of a marker descriptor.

sensitivity. Since the instrumentation clients are implemented inside the JVM, more

information can be obtained by exploiting existing runtime services, e.g., interpreter,

JIT, and garbage collectors.s

In MTF, a marker can also be without an exit bytecode; such markers are called

one-way markers, which are suitable when the they are used to signify an event at a

specific program location where scope is unnecessary. In this scenario, we can define

one-way markers to reduce the overhead resulted from unnecessary context switches.

3.2.2 Marker Descriptor

A marker descriptor is the specification of a class of markers that share the same

semantics and processing routines, just as Class is the template of a set of Objects

in Object-Oriented Programming. A marker descriptors consists of three parts, i.e.,

marker id, predicate, and set of callback handlers, as shown in Figure 3.3. Marker

descriptors are directly embedded in the constant pool of the class file.

The second slot is shared by two string fields: token and predicate. The token

field indicates the kind of the marker for interested analysis clients to recognize and
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Figure 3.4: Per-thread marker stack

subscribe. On the other hand, the predicate field is optional and is used to specify

auxiliary information for the marker handlers to operate upon. Both fields are freely

encoded by the clients to properly represent the information necessary for carrying

out the analyses.

3.2.3 Marker Stack

Marker stack is a memory buffer for storing marker instances in a last-in-first-out

(LIFO) order. Each thread has its own marker stack such that the marker push and

pop operations are thread-safe yet lock-free. Figure 3.4 illustrates the per-thread

marker stack scheme. Such feature is designed for analysis clients which require

context-sensitivity of markers. Walking the marker stack has much lower overhead

than the call stack and is more flexible because markers can be inserted in any program

locations.
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Method Description
register Registers an analysis client to the framework
subscribe Decides whether to subscribe to a specific marker.
marker enter Marker enter event callback
marker exit Marker exit event callback
object death Object death event callback
method loaded Callback for processing loaded methods that have markers
print Callback for printing analysis-specific results

Table 3.1: Analysis client interface.

3.2.4 Analysis Manager

In MTF, analysis manager controls and interacts with all analysis clients. For mod-

ularity and ease of management, each analysis client must implement an interface

defined by the framework, whose members are listed in Table 3.1. Additionally, the

communications between the analysis clients and the framework are also based on this

interface.

Specifically, analysis clients register themselves with MTF and stays on the

analysis client list. During class loading phase, MTF parses the constant pools looking

for marker descriptors. For each found descriptor, MTF polls the registered clients

with the predicate string as an argument. The subscribe routine of each client is

expected to return a boolean value, indicating whether it wants to subscribe to the

events of the marker as specified by the descriptor. When MTF receives a true

response, it attaches the client to a per-descriptor list that holds all the subscribers.

During program execution, when MTF observes a marker occurrence, it indexes into

the descriptor list with the marker id and iterates through the list while invoking each

handler. MTF creates a marker structure with the descriptor and current context

information, such as the thread id and stack pointer, and pass the marker to the

handlers as the only argument.
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Figure 3.5: Adaptive online program analysis: the MPS approach.

3.2.5 Adaptive Marker Invocation

For allowing analysis clients to adaptively turn on and off marker instrumentation

at runtime, we explore two alternative VM-based solutions in MTF focusing on low

switching overhead.

Method Pointer Swapping. As described previously, modern JVMs compile Java

bytecodes into native instructions for frequently executed methods by using the JIT

compiler. Typically, compiled methods are stored in code buffers and are referenced

by pointers. Once the compilation is finished, the very next invocation to each such

method follows the pointer to the corresponding code buffer and starts execution.

Based on this design, Method Pointer Swapping(MPS) adds two new pointer,

instr_code and clean_code into the method header alongside the original code
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pointer code. Moreover, MPS extends the JIT compiler to perform two compilations,

including and excluding the marker instrumentation. The resulted code buffers are

referenced by instr_code and clean_code, respectively. During analysis, MPS can

adaptively switch between the instrumented and uninstrumented code by assigning

either instr_code or clean_code to code, which is the global entry point used

throughout the VM. MTF performs such switching on behalf of each analysis client

as requested. Figure 3.5 shows Method Pointer Swapping approach.

This scheme is similar to the Full-Duplication version of the instrumentation

framework presented in [8]. One of the benefits is that the uninstrumented code runs

at full speed when no instrumentation is needed. However, it also has several critical

disadvantages. First, each compiled method requires two compilations and two code

buffers, thus wasting both time and space. Performance is further degraded when JIT

compilers perform multiple recompilations to get the best optimization, which is a

common optimization in modern JVMs. Second, this technique requires extensive VM

modifications to keep the method header and two buffers in synchronization. Based

on these drawbacks, we did not use the MPS approach in our final MTF solution.

Marker Dispatch Preamble. To dynamically switch instrumentation code, Marker

Preamble Dispatching (MDP) injects a tiny piece of check-and-dispatch code preamble

for each compiled marker. Unlike MPS, MDP generates only one code buffer per

method and the marker bytecodes are always compiled and integrated into the final

buffer as shown in Figure 3.6. To achieve the same adaptivity, MDP checks an extra

flag in the object header which is accessible by each analysis client. The flag is a

bit-mask with fields for all markers. Depending on the state of the bit, MDP either

executes or jumps over a particular marker instrumentation. Figure 3.7 shows the

control flow of the preamble checking code inserted for each marker bytecode.
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Figure 3.6: Adaptive online program analysis: the MDP approach.
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Figure 3.7: Control flow of the dispatch preamble for each marker bytecode.
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Method Description
getClassVisitor Returns the custom class visitor for annotating the bytecodes.
postProcess Optional post-processing step for some instrumentation clients.

Table 3.2: Instrumentation client interface.

MDP has a similar design as the No-Duplication approach as presented in [8].

Unlike MPS, MDP requires no extra compilation or code buffer. In addition, the

checking code consists of only several machine instructions such that it adds only

negligible overhead. Nonetheless, massive event stream can cause a noticeable overhead,

although we believe such scenario is very rare in practice. Moreover, the bit-vector

implementation does not scale as the complexity of analysis grows when fixed-length

vectors are used for simplicity and efficiency. In reality, we expect the number of all

active markers in an analysis session to be below 32 or 64, which requires only word-

or double-word-length vectors.

Despite the limitations of MPD, we implemented the MPD approach in the final

solution for its conceptual and technical simplicity.

3.2.6 Instrumentation Utility

Because standard Java does not specifies the marker bytecodes, i.e., markerenter and

markerexit, none of the existing instrumentation utilities can be used for MTF-based

analyses without modification. In this work, we propose a prototype utility based

on bytecode instrumentation for annotating programs with marker bytecodes. The

utility is designed to be extensible such that new instrumentation clients can be easily

developed and added to support new analyses. The utility operates on an input class

file and outputs an instrumented copy with the existing bytecodes kept intact such

that the original semantics is preserved.

The utility leverages an existing BCI framework, ASM [30], for manipulating
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bytecodes stored in a binary class file. Each analysis client is required to implement

the InstrumentationClient interface (Table 3.2) defined by the utility. In ASM,

ClassVisitor is the top-level interface that can traverse and transform class-related

elements, such as access flags, class name, and constant pool. Specific visitors, e.g.,

MethodVisitor and FieldVisitor, are created by the ClassVisitor for processing

the methods and fields respectively. Each InstrumentationClient defines a custom

ClassVisitor for embedding marker descriptors into the constant pool. A custom

MethodVisitor is also required for adding marker bytecodes into the appropriate

methods.

The main utility performs the I/O of the class files and instantiates the instru-

mentation client as specified by the user with reflection. The utility then traverses

the class file with the ClassVisitor returned by the client. Consequently, the corre-

sponding instrumentation tasks are executed by the selected client. Once the tasks are

finished, the utility saves the instrumented class into a designated class file. Figure

3.8 illustrates the workflow of marker instrumentation as performed by this utility.

3.2.7 Summary

MTF is based on the hybrid approach, i.e., runtime VM-based analysis clients in

conjunction with compile-time instrumentation clients, to provide fine-grained analysis-

driven tracing functionality. Figure 3.1 shows the overall architecture of the marker

tracing framework at a high level. Analyzing programs using MTF involves the

following steps:

• characterize the program locations, e.g., method entry, loop header, where the

analysis should be notified;

• define the format of the predicate string of the marker descriptor;
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Figure 3.8: Workflow of marker instrumentation.

• insert the markers at those locations and embed the marker descriptors in the

constant pool;

• implement and plug in the analysis client in the VM for marker event handling;

• execute the instrumented program on an MTF-enabled VM with the analysis

client.

3.3 Implementation

Since MTF extends the Java instruction set and class loading process, several com-

ponents inside the VM need to be modified for implementing MTF support. Figure

3.1 shows the overview of the architecture of our MTF implementation. This section

describes the details of each major component of our implementation in the HotSpot

JVM.
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3.3.1 Extending HotSpot JVM

Sun implemented HotSpot JVM to support two architectures: x86 and SPARC for

both the 32-bit and 64-bit memory models. The majority of the VM is platform

independent. Parts of the runtime system, e.g., interpreter, native code generator, and

frame manager, are however platform dependent. Although our MTF implementation

is OS neutral, it executes only on x86 32 and x86 64 because template interpreter

and JIT need to be modified for MTF. However, the implementation should be easily

portable to other architectures with equal effectiveness.

3.3.1.1 Class Loader

The bootstrap class loader in HotSpot is extended to parse the marker descriptors

from the constant pool of each class file. Specifically, the constant pool parsing routine

is modified to record the index of the delimiter represented by a 32-bit integer, i.e.,

0xbabecafe, in our implementation. The marker desciptor parsing routine works on

entries starting at the index and performs the operations as sketched in Figure 3.9.

The routine checks whether the current class has markers. If such condition holds,

it retrieves the marker id, direction (one-way), and predicate string (preds) from the

pool entries. A marker descriptor is then created with the class name and the collected

values. Afterwards, it invokes the accept method of the analysisManager, which

iterates over all registered analysis clients with the marker descriptor. The clients can

return a true value indicating they want to receive notifications on the occurrences of

the marker as described by the descriptor. After processing all descriptors, the routine

caches the presence of code markers in the Klass object of the current Java class.

This flag is consulted by the framework for specialized handling in the interpreter and

JIT compiler. Analysis clients can also consult the flag if necessary.
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bool has_markers = marker_index() > 0 ? true : false;

if (has_markers) {

for (int i=marker_index(); i<length; i+=2){

// parse marker id

symbolOop sym = cp->symbol_at(i);

{

ResourceMark rm(THREAD);

buf = sym->as_C_string();

int len = strlen(buf);

if (strchr(buf, ’*’)) { // one-way marker

oneway = true;

buf[len-1] = ’\0’;

}

mid = atoi(buf);

// parse predicates

sym = cp->symbol_at(i+1);

buf = sym->as_C_string();

copy_str(buf, preds);

}

markerDescriptor* md;

if (mid != 0) // regular marker

md = markerDescManager::add(mid, class_name, preds, oneway);

else // psuedo marker

md = new markerDescriptor(mid, class_name, preds, oneway);

analysisManager::accept(md);

}

}

Klass* clazz = cp->pool_holder()->klass_part();

clazz->set_has_code_markers(has_markers);

Figure 3.9: Marker descriptor parsing routine.
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void SharedRuntime::markerenter(JavaThread* thread, int mid) {

pid_t tid = thread->tid();

intptr_t *sp = thread->last_Java_sp();

markerStack *st = thread->mkstack();

// notify predicate watchers

analysisManager::marker_enter(st->push(mid, tid, sp));

}

Figure 3.10: markerenter handler in SharedRuntime.

3.3.1.2 Shared Runtime

In HotSpot, complex runtime operations, such as slow-path allocation, biased lock-

ing, and virtual method resolution, are handled by two underlying runtime systems:

InterpreterRuntime and SharedRuntime. InterpreterRuntime serves the bytecode

interpreter only, whereas SharedRuntime provides services to both the interpreted

and compiled code. It is non-trivial to implement the marker routines by either gener-

ating assembly templates (interpreter) or constructing intermediate representations

(JIT). Thus, we implement the marker routines in SharedRuntime such that both

interpreted and compiled code can process markers by requesting such services from

SharedRuntime. Figure 3.10 shows the implementation of markerenter as a method

of SharedRuntime.

As marker context information, markerenter gathers the current thread id and

stack pointer and pushes the marker on the per-thread marker stack. Then, it notifies

the analysisManager, which in turn propagates the marker event to the subscriber

clients. Other unsubscribing clients are skipped being off the per-descriptor list of the

current marker.
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Bytecode Format Result Stack Exception

markerenter bcc VOID 0 true
markerexit bcc VOID 0 true

Table 3.3: Marker bytecodes definitions.

3.3.1.3 Interpreter

We extend the template interpreter to support the marker bytecodes in HotSpot.

In template interpreter, each bytecode is interpreted by an assembly code template

generated during VM startup. Except for branching and return bytecodes, the epilogue

of each template retrieves the next bytecode and dispatches to the corresponding

template. Each template can specify runtime attributes, e.g., operand format, result

type, stack effect, and throwing exception. Table 3.3 shows the definition of our marker

bytecodes, where “bcc” means one bytecode followed by two bytes (one short); VOID

means no value is returned; 0 indicates the bytecode does not change stack; and true

indicates the bytecodes might throw exceptions.

The generator of each code template is a C++ method in the TemplateTable

class, which is implemented specifically for each architecture, i.e., x86 32, x86 64, and

SPARC. In HotSpot, low-level code generation is performed by a macro assembler,

which not only implements the underlying instruction set, e.g., MOV, CMP, XOR, it also

provides essential macros for common tasks, such as runtime call, bytecode access, and

null pointer check. Assisted by InterpreterMacroAssembler, we implemented marker

bytecodes as two methods in TemplateTable for x86 32 and x86 64. Figure 3.11 gives

the implementation of markerenter on x86 64. The template starts by loading a

two-byte unsigned integer (marker id) at the current bytecode pointer (bcp) and

saving the value to register rbx. Then, it invokes SharedRuntime::markerenter with

the the marker id in rbx as an argument.
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void TemplateTable::markerenter() {

transition(vtos, vtos);

_masm->get_unsigned_2_byte_index_at_bcp(rbx, 1);

_masm->call_VM(noreg, CAST_FROM_FN_PTR(address,

SharedRuntime::markerenter), rbx);

}

Figure 3.11: markerenter code template generator on x86 64.

3.3.1.4 JIT Compiler

In HotSpot, a Java method is JIT-compiled if it is discovered to be frequently executed

or contains a tight loop. To support markers in such methods, we extend the server

JIT compiler (C2) in HotSpot to compile marker bytecodes into native instructions

same as the regular bytecodes.

C2 is based on a program dependence graph (“sea-of-nodes”) like intermediate

representation [56] with several phases, e.g., parsing, optimization, and code generation.

To support MTF, we modified the do_one_bytecode method of the Parse class, which

has a comprehensive switch statement for each Java bytecode. We introduced two

new labels for parsing the marker bytecodes in the switch statement. Similar to

the marker code templates in the interpreter, we generate an equivalent sequence of

actions using the compiler’s IR. However, we do not have to load the marker id under

the current bcp as in the interpreter templates, which are generic routines for all

marker invocations, because the marker id can be retrieved statically by examining the

bytecode stream being compiled. Thus, the compiler can simply generate an integer

constant node as the operand for the VM call, e.g., SharedRuntime::markerenter.

C2 compiles runtime calls using the Java calling convention, which is different

from the C++ convention used by the runtime methods. Thus, C2 generates an

adapter code for each runtime method with the proper signature specification. The
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adapter code bridges the two calling conventions and eventually makes the runtime

call. Specifically, the signature is defined by a “{method} Type()” method, where

“{method}” is the name of the runtime method. Similarly, the adapter code is

named “{method} Java” and the C++ method pointer is named “{method} C”.

Thus, we implemented marker handler Type to provide the same signature for both

markerenter and markerexit.

3.3.2 Instrumentation Utility

Figure 3.12 sketches the algorithm in processing the input class file with the spec-

ified instrumentation client (error handling is omitted for brevity). The routine

getBytesFromFile reads the class file into a byte buffer. To make the instrument

procedure generic, we instantiate the instrumentation client from the the class name

using Java reflection. For example, “client 2” is instantiated as the instrumentation

to be performed on the program in Figure 3.8. In our utility, the path of the class

file, the class name of the client, and the output path are parsed from command

line arguments. The utility also supports instrumenting “exploded” JAR files by

recursively descending into the directories and process each class file. This feature is

particularly useful for batch instrumentation of class libraries with complex package

structures and large numbers of classes.

Marker Descriptors

As described previously, constant pool is used to store the marker descriptors for the

instrumented class. In ASM, a client can override the visit method in ClassAdapter

to append the marker descriptors to the constant pool. The original entries are

separated from marker entries by a delimiter — a magic number (0xbabecafe) Each

marker descriptor is represented by two entries, i.e., the marker id (integer) and
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public byte[] instrument(File classFile, String className) {

// Start processing the class file

byte[] input = getBytesFromFile(classFile);

ClassReader reader = new ClassReader(input);

ClassWriter writer = new ClassWriter(reader, 0);

InstrumentationClient client = (InstrumentationClient)

Class.forName(className).newInstance();

ClassVisitor visitor = client.getClassVisitor(writer);

reader.accept(visitor, 0);

client.postProcess();

return writer.toByteArray();

}

Figure 3.12: The algorithm of marker bytecode instrumentation.

0xbabecafe

Constant Pool

…

mid #1

token predicate

mid #2*

token predicate

magic

descriptor #1

descriptor #2

…

Figure 3.13: Layout of the constant pool after instrumentation.

predicate string (UTF8), created by newConst and newUTF8 of the ClassWriter object

in ASM. Figure 3.13 shows the layout of the constant pool with two marker descriptors

embedded with the second one being an one-way marker as indicated by the asterisk.
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public void visitInsn(int opcode){

if (opcode >= Opcodes.IRETURN && opcode <= Opcodes.RETURN){

mv.visitIntInsn(markerexit, <mid>);

}

mv.visitInsn(opcode);

}

Figure 3.14: Instrument return statements in a method with markerexit bytecode.

Markers

Markers are directly added to the methods to be traced at runtime. In ASM, this can

be achieved by overriding the corresponding visitor methods in MethodAdapter. For

example, the client can override the visitCode method to add markers at the method

entries. Since both marker bytecodes take an integer operand, the visitIntInsn in

the MethodVisitor interface can be used to insert marker bytecodes. For example,

visitIntInsn(markerenter,1) inserts markerenter for marker #1 at the current

location being visited. Figure 3.14 shows how to add marker exits to all return

statements in the current method, where mv is the current MethodVisitor object.

Post-processing

In the batch processing mode, it is typical for a client to generate marker identifiers as

the instrumentation proceeds. Thus, the number of instrumentation points might not

be available before starting. However, the constant pool is visited by the ClassVisitor

before instructions are visited by the MethodVisitor. Furthermore, marker descriptors

have to specify marker identifiers in the constant pool when visited. Therefore, our

utility provides an interface method postProcess for patching the constant pool after

all methods have been visited.

Additionally, postProcess can return a boolean value, which is checked by the



43

utility. If true is returned, the utility proceeds to the next class file; otherwise, the

whole instrumentation process is aborted. This feature is useful when the client

determines it has finished instrumenting all target classes and wants to quit all

subsequent traversing altogether.

3.4 Evaluation

In this section, we evaluate the performance of marker tracing framework (MTF). We

start by describing the experiment methodology. Then, we report and discuss the

experiment results.

3.4.1 Methodology

We choose DaCapo [13] benchmark suite release 09.12 (most current) for this evaluation

because DaCapo draws real-world applications with diverse behaviors 2. Table 3.4

displays the basic characteristics of each benchmark in DaCapo. Column “Executed

Methods” reports the total number of application methods (excluding library methods)

that are actually executed and recorded by MTF in profiling runs. In the experiments,

we exclude the batik benchmark because it requires the JPEG Codec API which is

retired and removed in the OpenJDK 7 code base 3. For such reason, our JVM cannot

execute batik.

We evaluate the runtime overhead of MTF by running programs with different

instrumentation levels on a “Nop” client, whose markerenter and markerexit meth-

ods perform null operations. Because the overhead of MTF is proportional to the

number of events, we randomly sample 10%, 25%, 50%, and 75% of all the executed

2 see http://dacapobench.org/
3see http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6527962

http://dacapobench.org/
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6527962


44

Benchmark Description Executed Methods

avrora Parallel discrete event simulator 1,437
batik Vector graphics renderer N/A
eclipse Eclipse JDT performance tests. 575,590
fop XSL-FO to PDF convertor. 2,921
h2 Banking application benchmark. 1,501
jython pybench Python benchmark. 4,610
luindex lucene-based index generation. 874
lusearch lucene-based text search. 469
pmd Java code analyzer. 2,516
sunflow Rendering system for image synthesis. 583
tomcat Webpages retrieval and verification against Tomcat. 602
tradebeans Daytrader benchmark via Jave Beans. 15
tradesoap Daytrader benchmark via SOAP. 15
xalan XML to HTML transformation. 2,064

Table 3.4: Basic characteristics of each benchmark in DaCapo 2009 suite.

methods, which are obtained by profiling using MTF. For each sample size, we execute

the benchmarks 10 times and take the arithmetic mean as the final results. To show

the worst-case performance, we also instrument 100% of the executed methods. For

comparisons, we run the uninstrumented DaCapo benchmarks on an unmodified Open-

JDK with the same version as our MTF-enabled JVM (we refer to this unmodified

JVM as vanilla). We set the -converge option of the DaCapo suite which runs

each benchmark multiple times such that the reported execution times are within a

confidence interval of 3%.

In the experiments, we only instrument application methods because we believe

these methods are more interesting and relevant for the end users to verify, consequently

are more representative than the methods from the Java runtime library.
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3.4.2 Results and Discussions

In this section, we report the performance of MTF tracing DaCapo benchmark with

the nop analysis client in Table 3.5, 3.6 and Figure 3.15.

Benchmark Vanilla 10% 25% 50% 75% 100%

avrora 13,087 8,642 16,819 24,892 33,454 43,976
eclipse 41,364 47,547 98,392 153,362 212,275 275,831
fop 446 469 845 1,033 1,452 1,768
h2 7,159 7,345 15,130 23,222 31,842 41,861
jython 3,360 3,521 7,250 10,811 14,487 18,513
luindex 1,039 1,235 2,652 4,108 5,596 7,345
lusearch 3,940 4,679 9,964 15,680 22,561 30,193
pmd 3,808 3,735 7,819 12,026 16,619 21,575
sunflow 7,558 9,118 19,504 30,936 43,328 55,111
tomcat 5,448 5,473 10,909 16,510 22,926 29,033
tradebeans 7,639 9,102 19,194 31,479 46,423 61,839
tradesoap 17,088 19,709 42,154 67,216 94,924 123,100
xalan 2,727 3,282 7,250 11,686 17,880 25,037

Table 3.5: Execution time of running DaCapo benchmarks on MTF.

Benchmark 10% 25% 50% 75% 100%

avrora 201 13,420,619 42,872,995 90,676,427 543,934,712
eclipse 338 47,255 104,674 211,352 358,208
fop 1,775 183,711 714,998 1,925,066 10,755,787
h2 68,335,094 155,329,573 251,138,862 350,215,459 1,325,200,083
jython 223 244,681 5,867,601 21,013,345 356,096,651
luindex 159 9,845 22,598 45,680 62,876,224
lusearch 23 20,420,789 81,029,620 284,642,316 886,577,763
pmd 809,858 1,948,717 3,152,651 6,948,307 91,662,920
sunflow 300 1,263 2,885 2,842,068 239,384,047
tomcat 29 136 7,152 803,893 3,795,574
tradebeans 1 4 11 22 39
tradesoap 1 5 11 23 45
xalan 84,693 15,457,628 63,626,175 147,161,490 367,424,093

Table 3.6: Marker invocations of running DaCapo benchmarks on MTF.
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Figure 3.15: Execution time of running instrumented DaCapo benchmarks on MTF.

Table 3.6 shows the number of marker invocations captured by MTF while running

the instrumented DaCapo benchmarks.

As shown in Figure 3.15, MTF’s overhead is acceptable with small sample sizes,

e.g. 10% and 25%. This confirms the intuition that the base overhead is low when

the target program has little or no marker instrumentation. However, as the sample

size grows, the overheads are increasingly larger. The largest overhead, i.e., 8 times

slowdown, occurs when running the fully-instrumented xalan benchmark. Larger

samples reveal the overhead of frequent context switches caused by the excessive

invocations of marker handlers as shown in Table 3.6.

It is to note that the bold numbers in 3.5 of running 10% instrumented avorora

and pmd are smaller than those of the vanilla runs. This does not indicate MTF

runs faster than the regular VM does, but is due to intricate VM reactions with the

presence of MTF, which might slightly change some VM behaviors, e.g., JIT and

cache.
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3.5 Conclusions

In this chapter, we present the design and implementation of a flexible dynamic tracing

framework, i.e., MTF, for VM-based languages. MTF provides the analysis clients

with the ability to define new event types based on program locations represented by

markers. Furthermore, rich semantics can be attached to each class of markers by

means of a marker descriptor, which can be used to encode analysis-specific data related

to the marker. The framework allows flexible handling of each marker invocation that

can also be shared by multiple clients. To demonstrate the feasibility and effectiveness

of the framework, we have implemented MTF for Java in SUN HotSpot JVM by

applying only a small change-set. We also evaluate the performance of the framework

by instrumenting and analyzing the DaCapo benchmarks. It is shown that MTF offers

great flexibility for developing program analysis clients with low overhead in most

applications.
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Chapter 4

Adaptive Runtime Typestate

Analysis

Modern software engineering practices encourage reusing existing software libraries,

e.g., Java Runtime Library, .NET Base Class Library, and C++ Standard Template

Library (STL), in implementing new software systems. Most such reusable components

have specified interfacing restrictions that must be followed by the developers for

implementing well-behaved programs. An example rule regarding the usage of the

Iterator class in Java specifies that an Iterator object has be to queried for

availability hasNext before advanced (next). The violation of such rule may lead to

a runtime exception to be thrown, which, if uncaught, may cause the application to

crash. Though most such rules are well documented, application developers may not

always adhere to these rules. Thus, programming errors due to non-conforming API

usages still occur quite frequently in software development.

A typestate property describe the set of valid operations that can be performed on

an object, depending on the object’s typestate [65]. Thus, typestate properties are

suitable for representing API constraints. Typestate analysis is an effective technique
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for checking whether a program violates given typestate properties. A typestate

analysis can be static [11, 31, 16], dynamic [22, 17, 27, 9], or hybrid [18, 28].

In this chapter, we present a Finite State Automaton (FSA) based dynamic

typestate analysis client that leverages the power and utility of MTF. Furthermore, we

apply the Adaptive Online Program Analysis (AOPA) [27] optimization to the client

to demonstrate the benefits of developing program analyses inside the JVM. We use

the instrumentation utility to incorporate typestate properties into the programs to

be checked. Our preliminary evaluation of running standard Java benchmarks on top

of our JVM shows that the implementation can find actual violations with acceptable

runtime overhead.

We structure the remainder of the chapter as follows. In section 4.1, we present the

concepts related to FSA-based typestate analysis and AOPA, followed by a description

of the MTF-based analysis client. We describe the implementation of the client in

section 4.2. Section 4.3 reports the results of our preliminary experiments to show the

performance. We conclude the chapter in section 4.4.

4.1 Runtime Typestate Analysis Client

In object oriented programming languages, the type of data objects specifies the set

of operations allowed to be executed on them as the receivers. Whereas, typestate

determines the subset of these operations that are permitted in a certain context

[65]. For example, a File can be only read or written after it has been opened; the

operating system resource associated with each graphic user interface (GUI) widget

must be eventually released after use. Such requirements are commonly seen in

software documentation and can be naturally represented as typestate properties,

which can be checked for improving software quality.
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public class File {

public void open(String name);

public void close();

public char read();

public void write(char c);

public boolean eof();

}

Figure 4.1: The File API.

Several formalisms, e.g., finite-state automaton (FSA) [27, 9], linear temporal logic

[15], and history-based languages [17], have been used in the past studies. In this work,

we used FSA as the underlying formalism to represent typestate properties because:

1) FSA naturally models the dynamic execution stages of a program; and 2) FSA

can be easily constructed from regular expressions (REGEX) and most developers

can conveniently express typestate properties in REGEX. For example, the File API

shown in Figure 4.1 can be described by the following regular expression:

(open (read|eof|write)* close)*

Modeling. In our FSA-based analysis, we map each typestate in the property by a

state in the FSA. Moreover, we use two special types of states, source and sink, to

represent the the initial state before program executes and the error states, respectively.

The switch between two states are represented as a deterministic transition labeled by

the event that triggers the transition. Figure 4.2 shows the FSA for the File property.

Formally, a typestate property p can be represented it by a FSA — (Q,Σ, δ, q0, F ),

where: 1) Q is the set of states; Σ is the set of markers (alphabet); δ is the transition

function, i.e., y = δ(x) (x, y ∈ Σ); q0 is the source and F is the set of sinks. For the

File example shown in Figure 4.2, we have: 1) Q = {s1, s2, s′}; 2) Σ = {open, read,
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Figure 4.2: The FSA for the File property

write, eof, close}; 3) q0 = s1; and 4) F = s′.

Tracing. Our typestate analysis client needs to continuously trace program flows

and record program states to drive the internal FSA for online typestate property

checking. This mechanism is supported by MTF. Specifically, we can trace each

state in the FSA by placing a marker around the corresponding code region. For

the File example, we can insert markers at the entries of open, read, write, eof,

and exit, respectively. When a program using File is executed, MTF can recognize

the markers and raise events to notify the analysis client. The analysis clients can

incorporate typestate properties into the target classes using MTF using the layout

shown in Table 4.1, where: 1) each method is represented by a transition with a single

letter symbol, e.g., o for open; 2) marker 0 is a special marker to hold the regular

expression of the File API property; and 3) each predicate string is formatted as:

“<method-name>,<method-signature> | symbol”.

Checking. The typestate analysis client defines handlers for monitoring the marker

events, based on which the FSA is maintained. In addition, each object is associated
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Marker ID Predicate String Description

0 (o(r|e|w)*c)* specifying the regex of the property
1 open,(Ljava/lang/String;)V|o descriptor for the open method.
2 read,()C|r descriptor for the read method.
3 write,(C)V|w descriptor for the write method.
4 eof,()Z|e descriptor for the eof method.
5 close,()V|c descriptor for the close method.

Table 4.1: Marker descriptors for the File API property.

with a data structure that records its current typestate information, which is updated

by the analysis client at every transition. Every marker event signifies a transition in

the FSA according to the property. The analysis verifies the legality of the transition

against the property before actually performing the transition and further update the

per-object data structure.

Checking the final state of a typestate property for each monitored object requires

support from the garbage collector because programs do not explicitly deallocate

objects but GC does. Thus, only GC has object death information. To check whether

an object dies at one of the final states, we can iterate over the list of dead objects and

verify its current state at the end of each collection. Final state checking is critical for

many analysis, e.g., resource leak [43, 9] and data structure consistency [45, 26].

Adaptive Online Program Analysis. Because most online typestate analyses

incur high overhead and slows down executions by orders of magnitude, recent re-

searches have proposed various optimization techniques [22, 9, 27, 16]. AOPA is one

of effective techniques and is based on the observation that at any point during a

typestate analysis, only a subset of all transitions can change the program state, i.e.,

out-going transitions. The other transitions are called self-loop transitions where

source and destination is the same state. Therefore, events that are symbols to the
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State Self symbols Out-going symbols

1 {} Σ
2 {read, write, eof} {open, close}

sink Σ {}

Table 4.2: Self-loop and out-going symbols in the File API [27].

self-loop transitions can be safely ignored to reduce event frequency, leading to a

significant reduction in monitoring overhead. Moreover, the set of ignoring symbols

are dynamically updated as programs makes out-going transitions. Typestate analysis

with AOPA produces the same result as the non-adaptive version but executes more

efficiently.

For example, a program has opened a read-only File (Figure 4.2), which then

stays at state 2 regardless of any subsequently reads, writes, or queries (eof), until the

eventual close is issued. Thus, we can safely apply the AOPA on this File object by

disabling the monitoring on {read, write, eof} because they are events of self-loop

transitions. Since out-going events {open, close} are being monitored, the analysis

can still detect API violations and update the set of self-loop events as shown in Table

4.1. Ideally, there should be exactly two events, i.e. open and close, with all the read

and eof events ignored.

4.2 Implementation

The original implementation of AOPA is called “Sofya” and it is based on the Java

Debugger Interface (JDI) [67] for intercepting method entry/exit events by setting

breakpoints. In this work, we substitute JDI with MTF for the same purpose but

with much lower overhead because all executions are stalled when Sofya re-instrument

the target classes for adaptive monitoring. Sofya suffers worst-case overhead when the
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execution involves mostly out-going transitions.

In this section, we present the implementation details of FSA-based typestate

analysis client using MTF.

4.2.1 Finite State Automaton

Our typestate analysis client incorporates Libfa [25], an FSA library implemented in

C, for the FSA data structures, such as states, transitions, and common operations.

The most relevant operations for our analysis are: 1) regular expression parsing for FSA

construction; and 2) minimization for converting NFA to DFA to reduce unnecessary

states and transitions. Thus, developers can easily specify typestate properties using

regular expressions as inputs to the analysis client, which makes the client generic for

any typestate properties. In addition, the determinism resulted from minimization

speeds up property checking and eases the analysis code.

To save space, we only keep one instance of the FSA in memory per typestate

property. Each Java object holds and refers to only the current state structure, i.e.,

the states and transitions of FSAs are completely shared. Moreover, multiple Java

classes with the same typestate property are checked by a single FSA. For example,

all iterators in the program are to be checked by the typestate property hasNext,

our JVM would cache the regular expression and uses the same FSA instance for

all iterator objects. With the two optimizations, our Libfa-based representation has

negligable memory footprint.

4.2.2 Per-object Storage

Our typestate analysis performs verification on a per-object basis. Thus, we need

to individually monitor and update the state of each target object. There are two
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approaches, centralized and distributed depending on the place where the typestate

information is stored. In the centralized theme, a global hash table is maintained

and indexed by object identifiers. The distributed approach stores information in the

object header. Although the per-object storage solution has larger memory footprint

due to the added fields, it saves the overhead in looking up and update the hash table,

which can be significant when a large number of objects are being monitored.

In this work, we choose to implement the per-object storage solution for efficient

retrieval and update of typestate information. Specifically, we can extend the object

header as represented by the instanceOopDesc structure by adding an extra pointer

field pointing to the typestate structure. This scheme adds a 4 or 8 bytes to each

object on 32- and 64-bit platforms, respectively. With a single pointer, we trade extra

pointer-dereferences for space when we need to access the fields inside the typestate

structure.

4.2.3 Adaptive Online Program Analysis

To dynamically switch method instrumentation based on the typestate, Sofya utilizes

JDI to perform a redefinition and reloading on the target class at runtime, which suffers

high overhead. In this work, we leverage the adaptive marker invocation mechanism

as supported by MTF to implement AOPA. Specifically, our typestate client, at each

transition, sets the bits corresponding to the markers with out-going symbols whereas

clearing those for markers with self-loop symbols. Thus, the instrumentation of

methods marked by self-loop symbols are automatically skipped during the subsequent

calls. Following the typestate property and FSA transitions, such methods can resume

their instrumentation when the symbols they carry become out-going symbols in the

future.
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4.2.4 Object Death Event Handling

For certain typestate properties, it is essential to verify whether objects die at the final

accept state. However, Java uses automatic memory management based on garbage

collections. Thus, we need to collaborate with the GC subsystem to capture object

death events.

HotSpot by default uses generational garbage collection with a semi-space for

the young generation and a parallel mark-compact collector for the old generation.

Thus, the space of the dead objects are simply overwritten by copying the live ones

over when reclaimed. Consequently, HotSpot does not trace object death event.

Fortunately, HotSpot supports a mechanism called JNI handle, a managed pointer

that is transparent to the referrer when the referenced object is relocated in memory

by GC. When a Java object is referenced by a JNI handle, GC cannot reclaim the

object. Unlike regular JNI handles, weak handles do not withhold GC from reclaiming

the referenced objects, similar to a weak reference. We leverage the heuristic that the

weak handles of dead objects resolve to NULL pointers.

Since tracking dead objects requires special support from HotSpot, an object death

event context provider (ODE) is implemented to provide such feature. To track dead

objects after each GC, ODE keeps a linked-list of typestateHandle structures, i.e.,

pairs of per-object typestate and weak JNI handle for all monitored objects. ODE

registers the GC-end event where it can check the liveness of the objects by repeatedly

resolving their JNI handles. For each dead object, it notifies the handlers that register

the object-death event with the object’s typestateHandle structure. Our typestate

analysis client registers the object-death event provided by ODE. Thus, it can verify

the eventual typestate where each object dies at.

To minimize the overhead from invoking handler, we bundle the typestateHandle
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Handle List

…

Typestate

cur_event

cur_state

self_symbols

Java Heap

…

JNI Handlelive dead

foreach (h in handle_list) {

obj = JNIHandles::resolve(h->handle());

if (obj == NULL) {  // object is dead

check_final_state(h->state());

);

}

state handle

Dead Object Checking

Figure 4.3: Dead object typestate checking.

structures of all dead objects on a linked-list and pass the list to the handlers as a

batch. To further reduce the overhead of creating a different list, we simply slice

out the live objects onto a new list because we observe much more deaths than lives

in profile runs. Thus, the typestateHandle of dead objects are left in-place on the

original list, which can be used as the bundle. In the end, the list with the live objects

becomes the new handle list for the next pass. With such optimization, a single GC

execution triggers only one method call per registered handler. Figure 4.3 illustrates

the mechanism of ODE and our optimization.

4.3 Evaluation

In this section, we present the evaluation of our adaptive FSA-based dynamic typestate

analysis powered by MTF with a set of experiments.
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4.3.1 File API

We show the effectiveness of both the analysis and optimization by verifying the File

API on a micro-benchmark suite as shown in Table 4.3. The suite contains conforming

programs and non-conforming ones with manually injected violations to show the

effect of the optimization and functionality of the typestate analysis, respectively.

Benchmark Description

Main Open two files for reading and writting (conforming).
NoEof Open a file for reading but never call eof().
NoOpen Read a file that is not opened.
NoClose Read a file but do not close it in the end.

Table 4.3: Micro-benchmarks to test the File-API property.

Except Main, other benchmarks all violate the File API property in certain ways.

NoClose is a special benchmark because it tests the ability of the framework to capture

the object death event, which is necessary for verifying the final state where each

target object dies. For example, our analysis should be able to detect in NoClose that

the file is kept unclosed when the program ends.

In the experiment, the typestate client successfully found and reported all the

violations. For example, it reported the violation

Found invalid transition ^ -> r (tests.file.File) <tid=14068>

while executing the NoOpen benchmark which reads (r) the file (tests.file.File)

that is not opened (^) by thread 14068. For dead object violations, the client reports

Dead object (0x01ebcb48) violation @ {r} state

for the NoClose program, indicating that the object at memory address 0x01ebcb48

dies at the read state and violates the property requiring the final state to be close.
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For Main, we record the numbers of marker invocations before and after the

application of the AOPA to show its effectiveness. Because the benchmark is short-

running, we do not make comparisons based on the run time, but on the reduction of

marker invocations. We executed Main five times and reported the best, the worst,

and the geometric mean in Table 4.4 and 4.5.

Non-adaptive Adaptive
Max Min Geomean Max Min Geomean

6,000,008 6,000,008 6,000,008 31,224 29,418 30,439

Table 4.4: Marker invocations of the File-API benchmark.

Non-adaptive (msec) Adaptive (msec)
Max Min Geomean Max Min Geomean

378 444 401.0 22 22 22

Table 4.5: Execution time of the File-API benchmark.

4.3.2 DaCapo

We check the usages of iterator objects in the DaCapo suite to further show the per-

formance and effectiveness of our client. The intended usage of java.util.Iterator

classes requires that hasNext must precede each call to next, which is commonly

referred to as the HasNext property. In this experiment, we simplify HasNext into a

new property, called HasNextOnce, i.e., hasNext must be called at least once prior to

any subsequent next. We show the state machines of both HasNextOnce and HasNext

in Figure 4.4. As shown in the FSA, HasNextOnce has the adaptive structure because

we can eliminate the instrumentation as soon as we see a hasNext. Thus, we expect

adaptive typestate analysis to work well for hasNext. On the other hand, HasNext
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represents the worst-case scenario for AOPA because each time next is called, the

monitoring of hasNext must be restored, thus no instrumentation can ever be disabled.

start availhasNext
next

hasNext

start availhasNext

next,hasNext

Figure 4.4: Finite-state automatons for HasNext (left) and HasNextOnce (right).

In our preliminary studies, we observe that the bloat program in the October

2006 release of DaCapo (2006-10-MR2) has the most utilization of iterator class. Thus,

we include bloat in this experiment along with the programs in the newer DaCapo

release (2009-12). Moreover, tomcat, tradebeans, tradesoap, and xalan do not

utilize iterators in their execution, thus are excluded in this experiment.

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

avrora eclipse fop h2 jython pmd sunflow bloat

Vanilla Adaptive Non-adaptive

Figure 4.5: Execution time of DaCapo with HasNext property.

In Figure 4.5 and 4.6, we report the execution time of each DaCapo benchmark

with HasNext and HasNextOnce property, respectively. Beside marker invocation

counts, Table 4.3.2 and 4.3.2 also show the reductions of execution time and invocations

achieved by the AOPA.
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Figure 4.6: Execution time of DaCapo with HasNextOnce property.

Adaptive Non-adaptive Reduction
Benchmark Vanilla Time (ms) Count Time (ms) Count Time (%) Count (%)

avrora 12,066.6 12,308.0 2 11,937.8 26 -3.10% 92.31%
eclipse 42,476.0 47,273.0 3,613 46,714.0 140,774 -1.20% 97.43%
fop 445.6 723.2 16,205 635.6 181,353 -13.78% 91.06%
h2 6,962.1 8,596.7 6,519,560 8,692.3 25,330,249 1.10% 74.26%
jython 3,415.0 4,353.8 26,154 4,255.0 307,590 -2.32% 91.50%
pmd 3,519.0 4,102.2 566,214 4,374.6 1,868,874 6.23% 69.70%
sunflow 8,287.8 9,517.4 1,365,234 9,477.2 3,922,933 -0.42% 65.20%
bloat 3,277.2 6,503.2 941,270 14,920.6 147,604,481 56.41% 99.36%

Table 4.7: Execution time and marker invocations of HasNextOnce property.

Note that while we can achieve over 90% reductions in the number of events, they

have not directly translate to reductions in time as indicated by negative reductions.

Such results are due to that the overhead of applying the optimization outweighs

that of processing markers, when the number of marker invocations are not large

enough. For example, even without the optimization, avrora only has 26 invocations

such that the optimization becomes an overkill. Nevertheless, the measurements of

marker invocations in both tables clearly prove the effectiveness of the optimization in

reducing unnecessary marker events. The most representative case is the HasNextOnce

property on bloat, which has the heaviest usage of iterators among all benchmark
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programs, with 60.78% and 99.36% reduction in time and events.

In summary, we can conclude that when the number of marker events is sufficiently

large, e.g., over 1,000,000, it is worthwhile to apply the AOPA since it can significantly

reduces the instrumentation overhead. Otherwise, such optimization cannot yield

better performance because the inherent overhead might outweigh the gain from the

event reduction.

4.4 Conclusions

In this chapter, we present the design and implementation of our dynamic typestate

analysis client on top of MTF. The client uses FSA for typestate property checking

with AOPA optimization, which is implemented by the method preamble dispatching

technique. To support verification of the final typestate where object dies, we exploit

the JNI handle heuristic and capture object death event at the end of each garbage

collection. Experiment results show that our typestate analysis client is able to detect

property violations and incurs acceptable overhead. Our implementation allows for

incorporating complementary techniques, e.g., sampling and static analysis, to further

reduce the overhead. Such enhancements remain as future work.
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Chapter 5

Selective Probabilistic Calling

Context

Dynamic calling context is the set of active method invocations on the call stack during

program execution. Calling context is an essential tool for developers to understand as

well as troubleshoot programs because it reveals precisely the execution path down to

the current location. When debugging information is readily available, each activation

can be mapped to the exact lines of the source code. For example, when a memory

error happens, the developer can locate the faulting code by examining the calling

context as a stack trace at the error location using a source-level debugger, e.g. The

GNU Project Debugger (GDB). It is very hard to efficiently track the dynamic calling

context because of the huge number of method invocations in most applications.

To reduce the overhead in computing dynamical calling context, past studies have

proposed many optimizations, e.g., Probabilistic Calling Context (PCC) [20], Inferred

Call Path Profiling [52], and Precise Calling Context Encoding [66].

In this work, we implement an enhanced PCC, called Selective Probabilistic Calling

Context (SPCC), via an analysis client to the MTF framework with the purpose of
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computing calling context for a selected subset of all methods, whereas standard

PCC computes calling context values for all application methods. The focus is to

demonstrate the applicability of MTF in improving existing runtime analyses like

PCC. This chapter first reviews the concept of PCC and show how we extend PCC

with MTF into SPCC. Then, we describe our experiences in porting the original PCC

onto HotSpot JVM as well as the implementation of the SPCC client. We also show

the experiment results of running SPCC with the DaCapo benchmarks.

5.1 Probabilistic Calling Context

PCC uses an integer value V to represent and continuously track the current calling

context. PCC strives to compute a statistically unique number for each context. Thus,

a PCC-based context profiling typically involves two runs: 1) a training run aiming at

collecting PCC values at interesting locations; and 2) a production run for recording

calling contexts for the collected PCC values.

Computation. PCC adds instrumentation that computes V at each call site by

applying a function f as follows [20]:

method() {

int temp = V; // PCC: load PCC value

...

V = f(temp, cs_1); // PCC: compute new value

cs_1: calleeA(...); // call site 1

...

V = f(temp, cs_2); // PCC: compute new value

cs_2: calleeB(...); // call site 2

...

}

The following function f is used to compute the PCC values:
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f(V, cs) = 3× V + h(cs)

where V is the value of the current context and h is a hash function giving the random

number for cs. It has been shown in [20] that function f has the essential properties:

1) computes PCC values with acceptably small level of conflicts; 2) deterministic

(same calling context always computes the same value); and 3) efficient. Moreover, f

is non-commutative it is mandatory for f to compute distinct values for same methods

but different orders, to differentiate such contexts. h is computed for each call site

by hashing the method and line number. The hash value of each method can be

computed statically at class loading time by hashing the name and signature as the

method such that h can be easily computed subsequently.

Query. During a profile run, we can collect and record the PCC values of interesting

program locations during execution. In the tracing run, the VM can recognize the

exact locations according to the recorded values and track the calling contexts and

presents them with precise information in stack traces with line numbers.

5.2 Selective Probabilistic Calling Context

We extend PCC with MTF to support selectively computing calling contexts for a

subset of all methods. This approach is called Selective Probabilistic Calling Context

(SPCC). SPCC inherits all the advantages of standard PCC. Additionally, SPCC

can effectively lower the overhead of PCC since fewer call sites would result in less

computation. SPCC provides context sensitivity for other peer clients within MTF

by allowing them to control the set of methods participating in the calling context

computations. Essentially, SPCC introduces fine-grained filtering mechanisms, both

offline and online, over the original PCC.
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SPCC Marker. For method filtering, SPCC analysis client introduces a special

kind of marker, i.e., SPCC marker, which, when present, indicates the current method

requires PCC computation. One usage of SPCC marker does add marker bytecodes

into the application but only for method tagging purpose. A second usage is based

on marker bytecodes which triggers a custom routine for adaptive control of PCC

computation.

marker id <method-name> | <method-signature>

Figure 5.1: Marker descriptor format for SPCC.

The descriptor of each SPCC marker consists of a common fake marker id and

a distinct predicate string in the format of a pair of method name and signature as

shown in Figure 5.1.

Compile-time Filtering. SPCC client extends the header of each method struc-

ture to include a flag, which is set for all instrumented methods. The flags of the

uninstrumented methods are cleared. During the training run, SPCC checks the flag

before computing the PCC value at each call site. The flag is also consulted at the

method entry and exit such that methods with cleared flags do not cache PCC values

since they are not interesting to the clients.

The SPCC analysis client registers the subscribe and method_loaded events of

the handler interface for setting flags on the methods in the corresponding classes.

Because both events happen only once for each method during class loading, the

SPCC client introduces negligible overhead over the standard PCC.

Runtime Filtering. With the assistance of MTF, SPCC also features find-grained

runtime control similar to the typestate analysis client. Users can add SPCC marker
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bytecodes at arbitrary program locations to raise events at runtime. To receive such

events, the SPCC client can register the markerenter and markerexit events to

perform any desired analysis and adjustments. For example, SPCC supports adaptive

switching on and off PCC computations for certain methods based on the analysis

results by setting and clearing the per-method flag in the marker handler. With such

capability, SPCC can further lower the overhead of PCC as it provides a programmable

runtime filter over the existing methods selected at compile-time.

5.3 Implementation

The original PCC implementation is based on Jikes RVM [5], an open-source meta-

circular [70] JVM implemented in Java. However, HotSpot is programmed in mixed

C++ and platform-specific assembly language. Hence, re-implementing PCC on

HotSpot is a non-trivial task even though we have access to source code of both Jikes

RVM and PCC.

In this chapter, we describe our implementation of SPCC, i.e., a port of the original

PCC and an MTF-based analysis client on HotSpot. We highlight the design decisions

as well as extensions we have made to bridge the technical differences between Jikes

RVM and HotSpot.

5.3.1 PCC Stack

To maintain the V values throughout method invocations, original PCC instrument the

entry and exit of each method with a load and store operation respectively. Loading

the V value into a temporary slot on the Java stack saves the current PCC value which

can then be restored by the store operation when method exits. Unlike Jikes RVM,

HotSpot has a very complex frame layout system, e.g., interpreted, compiled, native,
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and runtime method each has a special frame layout. Moreover, HotSpot has fourteen

entries for different types of methods for optimizations. For such technical reasons,

we choose not to modify the frame layout as original PCC does, but use a dedicated

buffer as the PCC stack. Such PCC stack is thread-local such that it can support

multi-threaded applications on multi-processor machines. Each frame on the stack has

only one entry — the PCC value. Thus, at any time during execution, the number

of PCC stack frames equals the number of active methods on the calling context.

Since each PCC takes up 4-bytes in memory, a 256 KB stack can accommodate 65,536

method activations. Except for extremely deep recursions or massive parallel programs,

this solution should be able to support most real world applications with an acceptable

memory footprint.

Two modifications are necessary for maintaining the PCC stack in the byte-

code interpreter and JIT compiler. For the interpreter, we extend the existing

method entry and exit hooks: notify_method_entry and notify_method_exit in

the InterpreterMacroAssembler class by adding assembly code for saving and restor-

ing PCC values. For compiled methods, we extend the JIT compiler by constructing IR

nodes that perform the stack update in the do_method_entry and do_method_exit

code in the Parse class, which is the parser of the C2 compiler. The following pseudo

code presents a high level view of the stack update operations we have added to both

the interpreter (assembly code) and JIT compiler (IR nodes).

method_entry() {

pcc = thread.pcc_value();

*(thread.sp) = pcc;

thread.sp --;

}

method_exit() {

thread.sp ++;

saved_pcc = *(thread.sp);

thread.set_pcc_value(save_pcc);

}
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5.3.2 Computing

PCC values are computed at call sites, i.e., program locations where methods are

invoked, for both interpreted and compiled methods. Similar to the method entry and

exit codes, we incorporate the PCC computation code into the interpreter and JIT

compiler.

JVM specification [47] defines four bytecodes for invoking methods, i.e., invokeinterface,

invokespecial, invokestatic, and invokevirtual. Thus, the occurrences of these

bytecodes indicate call sites where a new PCC value needs to be computed. Thus, we

extend the code templates of these bytecodes in the TemplateTable class by adding

the PCC computation code. Likewise, we build IR nodes performing the same com-

putation in the the Parse::doCall() method, where IR nodes for compiled method

invocations are generated. the current As described in section 5.1, each call site is

represented by a unique hash code computed by function h. Same as the original PCC,

h consists of two parts: 1) hashing of method; and 2) hashing of the location of the

invoke instruction. h adds the two hash values to get the hash code for each call site.

HotSpot represents each string symbol by a symbolOopDesc. To save space,

HotSpot stores all symbols in a symbolTable by hashing the string content using the

hash algorithm developed by Kernighan and Ritchie [41]. Thus, we reuse existing

hash codes of the class name, method name, and method signature by simply adding

them up.

Hashing the invoke instruction is done by using its line number to query a fixed

random number table, which is created at VM startup. Unlike the original PCC, we

do not use line number to represent the location of the invoke bytecode because line

number table cannot be accessed efficiently by the interpreter or JIT compiler. Thus,

we instead use the bytecode index (BCI), i.e., the offset from the first instruction of the
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method. Interpreter derives the BCI by minus the readily available bytecode pointer

(BCP) by the method base. JIT already has access to the BCI by examining the code

stream being compiled. We use a fixed length random number table with 216 entries.

Thus, the BCI is rounded by masking off the upper bits and used to table lookup:

random_table[bci & 0xffff].

5.3.3 Query

The original PCC supports querying for a pre-defined set of methods, e.g., system

calls and library calls. With our MTF-based SPCC implementation, we can support

querying PCC values at arbitrary program locations during execution by tracing SPCC

marker bytecodes. We have developed a new client in the instrumentation utility to

add SPCC markers to programs. The SPCC client handles these markers at runtime

such that it can records the PCC values for the interesting events based on the results

of any analyses.

We provide a command line argument, i.e., TracePCCs that can accept a list of

PCC integers to be traced in the production run. These PCC values are stored in a

hash table for efficient lookup by the PCC computation routine in both the interpreter

and JIT compiler. For each matched PCC value, the calling context is retrieved

by walking the call stack. Moreover, we convert BCIs into line numbers for better

presentation. All recorded contexts are stored in a linked-list, which is dumped at

the end of execution. With method inlining, a single physical stack frame might

correspond to several inlined methods. Thus, HotSpot uses vframe as virtual stack

frames to represent source-level activations. Walking vframe stack can be done simply

by using the vframeStream class, which provides an easy-to-use iterator-like interface.

We repeatedly build up a stringStream and stores the content into the corresponding
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entry in the hash table.

5.4 Conclusions

In this chapter, we have described how MTF can be utilized to improve existing

dynamic analyses, e.g., Probabilistic Calling Context (PCC). We also show the design

and implementation of the Selective PCC (SPCC) analysis client, consisting of a PCC

port on HotSpot and a companion analysis client based on MTF. SPCC enhances the

original PCC by providing two filtering mechanisms, i.e., compile-time and runtime

filtering. Such mechanisms help to reduce runtime overhead and offer finer-grained

calling context computation. SPCC also introduces a new way for querying and

recording PCC values at locations defined completely by developers using SPCC

marker bytecodes.

The original PCC is implemented in Java on Jikes RVM, which has a drastically

different design as HotSpot. Therefore, we describe our experience in porting PCC

onto HotSpot while presenting our implementation in the final section.
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Chapter 6

Related Work

This chapter describes the existing techniques that are most relevant to the marker

tracing framework. To conclude the chapter, we summarize the techniques along with

MTF based on a set of criteria.

6.1 Java Virtual Machine Tool Interface

HotSpot JVM implements an infrastructure called: Java Virtual Machine Tool In-

terface (JVMTI) [2], a comprehensive programming interface used by developer and

monitoring tools. Numerous prior works are based on JVMTI, e.g., dynamic program

analysis [12, 57, 64], mixed-environment debugging [46], performance monitoring

[61, 50], and fault injection [38, 63].

JVMTI allows a user-supplied agent (a client of JVMTI) to access internal VM

states and control program executions. Agents can receive event notifications when the

registered events are triggered. Moreover, JVMTI passes arguments to the callback

functions to provide additional information about the event. Example JVMTI events

include but not limited to VMStart, ClassLoad, FieldAccess, MethodEntry and
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MethodExit. Through JVMTI functions, agents can query various program states,

e.g., stack traces, thread state, local variables, object monitors, and loaded classes.

JVMTI also enables agents to alter program executions, e.g. suspending threads,

setting breakpoints, and popping stack frames.

As a fixed interface, JVMTI limits the clients to the existing event types and

accessing functions. To address this issue, JVMTI supports bytecode instrumentation

such that users can insert extra bytecodes in the classes to capture the unavailable

events. This can be done at compile time and load time, or during program execution

with RedefineClasses. Since bytecode manipulation is not directly supported by

JVMTI, we have to use 3rd-party tools, e.g., ASM or BCEL, to transform bytecodes

before passing to JVMTI. The ability of JVMTI to allow such types of instrumentation

enables it to implement certain portions of our MTF framework. However, we

argue such solution is not as flexible or efficient as the MTF framework. First,

JVMTI agents do not have access to all VM resources at disposal as MTF clients do.

Second, RedefineClasses is an expensive operation involving class re-loading and

re-parsing, in addition to the overhead of online bytecode transformation. Whereas,

with techniques such as AOPA, MTF supports efficient program instrumentation

switching with much lower overhead. Lastly, it is non-trivial and not as integrated to

manually replicate the features of MTF as JVMTI agents.

Nevertheless, it is promising and beneficial to integrate MTF into JVMTI such

that MTF clients can leverage existing functions and events provided by JVMTI. In

addition, new facilities that are unavailable by JVMTI can be added along with MTF

clients into the VM as extensions, which in turn enhances the JVMTI infrastructure.
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6.2 Dynamic Tracing

Dynamic Tracing Framework (DTrace) is a component in Solaris 10 operating system.

DTrace is a powerful infrastructure for administrators and developers to explore

arbitrary behaviors of the operating system and user programs with very low overhead.

DTrace supports collecting performance metrics in the production environment by

dynamically modifying the operating system kernel and user processes at locations of

interest, i.e., probes, which are made available by providers. By writing programs in

the D programming language, users can precisely and concisely specify the probes

to enable and actions to perform when the probes are hit. DTrace allows probe

filtering via predicates, which are evaluated at runtime. All instrumentation in DTrace

is completely dynamic, i.e., probes are enabled only when they are used and no

instrumentation is present for inactive probes. Thus, the rest of programs outside

probes run at full-speed.

The Java Platform, Standard Edition 6 (Java SE 6) introduces DTrace support

in the HotSpot JVM with two DTrace providers: hotspot and hotspot_jni, which

are built as JVMTI agents. The hotspot provider supports probes within various

subsystems in HotSpot, e.g., VM lifecycle, garbage collection, class loading, JIT compi-

lation, object allocation, and method entry/exit. Similar to the JVMTI, hotspot and

hotspot_jni contains a fixed set of probes and do not support bytecode instrumenta-

tion, which is essential for extending the existing event interface. Whereas, MTF is

designed specifically to allow users to define custom events based on arbitrary program

locations of interest and attach callback handlers, which can access all VM services

and potentially have complex logics. Moreover, DTrace is platform-dependent since it

relies on supports inside the OS kernel. MTF, on the other hand, can be supported

on all paltforms regardless and does not rely on any OS services. Nonetheless, we
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speculate that D scripts, when extended, can be used for dynamic marker specification

for MTF, as an alternative for compile-time constant pool based solution.

6.3 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) has also been used for profiling [58, 7] and

dynamic program analyses [72, 6]. In this section, we consider AspectJ [42], the most

widely used AOP implementation for Java. AspectJ supports systematic program

instrumentation by providing language constructs for describing instrumentation points

(join points) and adding custom actions (advices). An advice can be attached to either

a single join point or a set of them with point cuts. Example join points supported by

AspectJ include: method calls and executions, types of sender and receiver objects,

exception handlers, and control flows. Advices are written in standard Java language

and have access all Java libraries. In addition, aspectJ supports advice weaving at

both compile-time and load-time with the AspectJ compiler (ajc) and weaving class

loaders respectively.

Unlike JVMTI and DTrace, AspectJ-based instrumentation does not require special

support from the JVM or the OS kernel, as the target program is modified directly.

Thus, AspectJ-based instrumentations are easier to develop and more portable than

JVMTI agents and DTrace scripts. However, this kind of instrumentation is restricted

to only user level information, e.g., receiver objects and method arguments. At such

level, internal VM information is completely inaccessible to AspectJ. For example,

AspectJ-based instrumentation can interact with neither the garbage collectors nor

the JIT compilers. Furthermore, the weaved aspects are full-blown Java code that not

only bloat the target programs but can introduce noticeable runtime overhead. MTF

solves both problems by implementing clients as part of the VM using only single or
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two bytecodes, although MTF clients are more difficult to implement. Despite the

drawbacks of AspectJ for fine-grained low-level program instrumentation, its language

and compiler can potentialy be extended for MTF users to systematically specify

markers; such solution can sometimes be more convenient than developing a client on

top of our BCI-based instrumentation utility.

6.4 Quality Virtual Machine

Quality Virtual Machine (QVM) is a specialized runtime environment on top of IBM’s

J9 JVM [9]. The objective of QVM is to provide an infrastructure for detecting

software defects that occur in the post-deployment stage in production environment.

QVM continuously yet efficiently monitors the execution of the application against

user-specified correctness properties, e.g., typestate properties, Java assertions, and

heap properties.

To control the overhead, QVM uses a novel overhead manager to enforce a user-

specified overhead budget. QVM collects as much useful information as possible from

the executing program while staying within the specified budget with object-centric

sampling, which allows sampling at object instance level. Analysis clients receive

profile events only from the objects that are marked as tracked as indicated by a

bit in the object header. QVM samples the objects based on the allocation sites

and uses a short inlined code sequence to check the tracking bit before any QVM

callbacks are made. Thus, QVM can adjust the sample size at each allocation site

to control the event frequency such that the overhead can stay within budget. For

fair sampling, sites with lower allocation frequencies receive larger sampling quanta.

QVM supports emergency shutdown, i.e., discarding a hot and long lived object to

avoid severe performance degradation.
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Similar to MTF, QVM supports VM side event filtering by allowing users to specify

the methods to be monitored such that the rest of the program runs at full speed.

However, QVM instruments programs at method or field level, not at basic block level

as MTF does. Thus, it is impossible to trace only a subset of all the statements in a

method. Nevertheless, QVM’s approach in controlling the monitoring overhead based

on fine-grained adaptive property-guided sampling is highly effective. Since MTF is

also a VM-level solution, it can also implement such mechanism and achieve similar

performance guarantee as QVM. Moreover, the assertion and heap property clients are

readily ported to MTF. Lastly, MTF excels QVM by supporting user-defined events

which greatly improve the flexibility and versatility for program instrumentation.

6.5 Summary

For different objectives, program instrumentation frameworks have different trade-offs.

We have developed the following criteria to evaluate the frameworks introduced in

this chapter and highlight our objectives and trade-offs in designing MTF.

Flexibility. A flexible framework needs to suit the development of program anlayses

by supporting: 1) fine-grained specification of instrumentation points; 2) user-defined

event types; and 3) runtime dynamic update of instrumentation. All frameworks

support instrumentation points at method and field level. MTF improves the state-of-

the-art by allowing specifying instrumentation points within basic blocks. Though

JVMTI supports user-defined events by bytecode instrumentation, such mechanism has

high costs and is not as powerful as MTF’s approach. All techniques support dynamic

instrumentation update to certain extent. However, the mechanisms are either too

costly (class redefinition in JVMTI and probe predicates in DTrace), or primitive and
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high level (advices in AOP). QVM and MTF address such limitations using dynamic

compilation techniques, which are more flexible and have lower overhead.

Observability. To assist the development of program analyses, instrumentation

frameworks should provide the analyses with runtime observability, i.e., the access to

various runtime information. Both JVMTI and DTrace offer comprehensive sets of

routines for accessing such information. As standard APIs, such routines are fixed

and cannot meet every need that real world program analyses might have. AOP-based

analyses are limited to program level information, thus cannot perform operations

that depend on low level access. Being VM-based solutions, clients of QVM and MTF

have all information and runtime services at disposal. Consequently, QVM and MTF

give the clients most observability, albeit such observability comes with the prices of

less abstraction, worse portability, and technical complexity of VM modifications.

Overhead. Both DTrace and QVM are designed with performance as one of the most

important rationales since the targets are deployed systems in production environments.

On the other hand, JVMTI- and AOP-based analyses typically have higher costs due

to their respective mechanisms. In reality, the largest instrumentation overhead can

be attributed to the number of instrumentation events. Thus, reducing the event

frequency is the most effective optimization. Among all frameworks, only QVM and

MTF supports VM side event filtering, which are much more efficienty than client side

filtering as JVMTI, DTrace, and AOP-based analyses do. In addition, MTF clients

can be even more efficient because the filtering is performed at a finer granularity

(basic blocks) than QVM clients (methods).
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Chapter 7

Future Work

In this chapter, we describe the main areas of future work related to the Marker

Tracing Framework (MTF) and the analysis clients. The first area is to develop new

techniques in reducing the runtime monitoring overhead resulted by MTF. The second

area is to make improvements over the existing implementation of MTF and the

analysis clients. The effort of this area is to make MTF more usable. The last area

shows a new analysis client we plan to develop based on MTF to further enhance

program observability.

7.1 Runtime Overhead Reduction

As described in the previous chapters, the current design of MTF still can result in

significant runtime overhead under highly frequent marker events, especially when

the analyses require more sophisticated runtime support, e.g., locking and memory

allocation. We observe that the dominating factor of the overhead comes from the

frequent state transitions between the application and VM states. During such

transitions, several expensive operations maybe performed such that the consistency of
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the VM is ensured. For example, HotSpot needs to update thread state and deallocate

unused resources before the final transition. Thus, the aggregated transition overhead

is proportional to the number of events. To reduce such overhead, we can approach in

two directions:

• simplifying the transition operations; and

• reducing the number of runtime marker events.

We have taken the first approach in our implementation by separating the clients

into two groups, i.e., simple and complex, and treat them differently at runtime. For

simple clients, we do not perform the expensive transition operations. For complex

ones, we have to issue the transition operations for proper execution. For simple

analysis, this solution works well such that the runtime overhead is acceptable event

under heavy event load. However, it has no effect for complex analysis clients, which

are more interesting and capable in solving real world problems.

State transition overhead is a fact of life when the analysis clients might intervene

with the normal VM execution. Thus, only by lowering the event frequency can reduce

the resulting proportional overhead. To this end, we identify and summarize two

promising techniques that can help achieve such goal.

Static Analysis. There is a stream of research that attempts to use static analysis

techniques to reduce the runtime overhead of dynamic analyses [16, 18, 29] by reducing

the number of deployed monitor probes. MTF can benefit from the results of such

static analyses and performs more efficient online tracing for certain analysis clients.

For example, we can design special markers to guide MTF to skip the events that are

provably violation-free for the typestate analysis client. We are optimistic that such

hybrid approach is promising to significantly reduced runtime overhead.
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Sampling. Past studies have investigated sampling-based techniques to reduce the

overhead of dynamic analyses. However, näıve sampling is incomplete due to possible

false positives and negatives. Recently, QVM [9] has implemented a highly precise

and fine-grained sampling scheme, which supports user-defined overhead threshold

and can dynamically adjust the sampling rate accordingly. Its overhead manager

samples objects to be monitored by their allocation sites. Specifically, QVM samples

less objects at the sites that are allocation intensive to keep the accumulated overhead

under the threshold. For the sampling to be fair for the sites that allocate object

infrequently, QVM dynamically increase their sampling rates to raise the chance.

We are planning to adapt QVM’s sophisticated sampling technique and implement

it in our solution.

7.2 Implementation Improvements

In the remainder of this section, we describe improvements that can be made to our

MTF.

Markers as VM Intrinsics. Currently, markers are implemented as two new

Java bytecodes, i.e., markerenter and markerexit. However, extending the Java

instruction set is not the best way to support new semantics in the JVM. First,

programs instrumented with marker bytecodes cannot be loaded by other JVMs.

Second, such programs cannot be processed by existing bytecode utilities and libraries,

e.g., javap for classfile printing and SOOT for program analysis. Third, supporting new

bytecodes requires extensive modifications of the JVM code, though many of them

are unnecessary boiler-plate code. Lastly, JVM has no knowledge of how to apply

optimizations on such bytecodes i.e., marker bytecodes can pollute JIT compilation.
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In the future work, we propose to support markers by native methods implemented

as VM intrinsics. Example intrinsics include: Object.getClass, Class.isInstance,

and java.math.sin. This solution can mitigate the aforementioned drawbacks because

all existing libraries, utilities, and JVMs can easily handle methods. Furthermore,

the existing optimizations in the JIT compilers are readily available for methods

with markers invocations. Lastly, adding a new native method saves the unnecessary

modifications in the irrelevant modules, thus leading to more maintainable and portable

code.

Constant Pool. MTF stores analysis-specific information in the constant pool

area of each classfile because of the convenience and portability. Nonetheless, this

solution has several drawbacks. First, such binary format is neither human-readable

nor manually editable. It would be desirable allowing easy modification by storing the

data in a text-based satellite file alongside each classfile. Second, JVM specification

[47] requires each string constant in the constant pool must be unique. Thus, ASM

eliminates duplicate strings before writing the classfiles. However, marker-related

information is not always represented by distinct strings, which can lead to an ill-

formed marker specification. Currently, we add trailer data to ensure the uniqueness

of the marker-related strings. Currently, we are exploring alternative mediums for

storing marker meta-data, e.g., annotation.

Native Method. In Java, each native method is implemented by the host JVM

typically in a different language than Java. The JVM knows all the built-in native

methods and handle them differently. Example native methods include: System.gc(),

FileInputStream.read(), and Object.getClass(). Since such methods are not

implemented in Java, the instrumentation utility cannot add markers inside them.
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Alternatively, the markers have be inserted around their call sites. However, due to

reflection and polymorphism, it is very difficult to reliably identify all such call sites.

Thus, we cannot trace native methods easily using MTF. One possible solution would

be to extend the VM to call back MTF when each native method is executed. As

such, at least each entry and exit becomes traceable.

Multi-object Typestate Analysis. Besides the single object properties we have

discussed in Chapter 4, multi-object typestate properties have also been used for

verifying more complex API usages involving multiple interacting objects. An example

property with two objects is that a Reader should not be used after its InputStream

has been closed. Supporting the verification of such properties is very important for

checking the usage of real world APIs. However, the current design of our typestate

analysis verifies each individual object based on its typestate and does not account

for the a cluster of objects sharing the same state. This drawback limits the utility of

this client. There have been some recent work to analyze typestate properties with

multiple objects [4, 53]. We plan to review the existing techniques and eventually

adapt the one that fits into the dynamic analysis setting.

7.3 Tracing Allocation Sites

Allocation sites are program locations that allocate objects at runtime. Tracking

allocation sites is useful for improving software reliability and performance. For

example, memory error detectors [19] can report the the allocation sites associated

with the errors to facilitate debugging. Garbage collections can also benefit from

allocation site analysis to perform the pre-tenuring optimization [14, 39]. Most

past studies focus on reducing the space and time overhead of tracking allocation
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sites using sampling- and probabilistic-based approaches [3, 19, 54, 40]. Whereas,

MTF can also reduce the overhead of allocation site analysis because it supports

fine-grained specification of the code regions that are most relevant to the analysis

instead of tracking the whole program. In addition, context-sensitivity can be achieved

by incorporating the PCC analysis discussed in Chapter 5. As a future work, we

will develop such selective allocation site analysis with context-sensitivity client and

integrate it into existing profiling APIs, e.g., JVMTI and DTrace to further improve

program observability.
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Chapter 8

Conclusions

Observability is useful for improving program understanding, reliability, and perfor-

mance. In this thesis, we present a novel framework, Marker Tracing Framework

(MTF), to improving program observability for virtual machine based languages.

MTF provides a solid infrastructure for developing fine-grained trace-based dynamic

program analyses. MTF allows the users to precisely specify code regions with special

markers that can raise runtime events, which are received and propagated to each

analysis client. The semantics of events are independently defined by each analysis

such that multiple analysis clients can handle the events simultaneously with different

logics. An extensible utility is also developed for adding marker instrumentation into

the programs. In addition, new instrumentation client can be easily added into the

utility to support new analyses.

Based on MTF, we have developed two analysis clients, i.e., typestate analysis and

selective probabilistic calling context analysis (SPCC). The typestate analysis uses

finite-state automaton to represent the typestate property and uses MTF to trace

state transitions at runtime. By performing analysis inside the VM, it can extend the

object header as well as collaborating with garbage collector for efficient and accurate
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typestate verification. SPCC generalizes the existing PCC analysis with the ability to

selectively computing PCC values for a set of methods, which can also be updated

adaptively by the SPCC client based on the analysis results. Thus, we claim that

MTF can offer great flexibility and adaptivity that collectively improve the precision

and efficiency of such existing program analyses.

We have implemented both the framework and the analysis clients on the industry

strength HotSpot JVM on the x86 platform. Experiment results indicate that our

MTF-enabled JVM offers sufficient runtime supports for both analysis clients with

acceptable overhead. In the future work, we plan to further reduce the overhead by

adopting existing techniques, e.g., static analysis and sampling. Moreover, several

improvements are being evaluated to enhance the utility of the framework and the

clients. Lastly, we propose to develop a selective allocation site analysis with context-

sensitivity to further improve program observability.
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