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The Square Root of i 
 

While Girolamo Cardano was working on solving cubic and quadratic equations 

in 1539, he encountered some formulas that involved square roots of negative 

numbers.  In 1545 Cardano published Ars Magna, where he presents the first 

recorded calculations that involve complex numbers.  Then in 1572, Rafael Bombelli 

published the first three parts of his Algebra.  He is known as the inventor of 

complex numbers, because he identifies some rules for working with them.  Bombelli 

also shows how complex numbers are very important and useful.  From Bombelli’s list 

of rules for adding, subtracting and multiplying the complex numbers, he was able to 

analyze the cubic equations that Cardano was trying to solve in his paper Ars Magna.  

Bombelli was able to use his rules for operations with complex numbers to solve the 

cubic equations that produced an expression that contained a square root of a 

negative number. 

The next big discovery in complex numbers was made by Abraham de Moivre.  

De Moivre published papers in 1707 and in 1722 where he used trigonometric 

functions to represent complex numbers.  He developed the representation  [r (cos 

x + i sin x)].  This was a very important in the development and theory of complex 
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numbers.  However, it was Leonhard Euler’s publications that really brought complex 

numbers to the forefront.  In 1748, Euler published Analysis of the Infinite.  

Mathematical analysis is said to have started with Euler where he used Bernoulli’s 

ideas of functions and refines them.  From this mathematical analysis Euler based 

his study on functions and introduced the formulas eπ i = −1  and 

eix = cos x + isin x .  Then in 1751, Euler published his theory of logarithms of 

complex numbers and introduced the symbol i  to represent −1 .  Still, most 

mathematicians of that day rejected the notion of complex numbers, despite Euler’s 

publications. 

In 1799, Caspar Wessel published a paper giving a geometrical representation 

of complex numbers.  This was not a well know paper and was not even published in 

English until 1999, 200 years after its first publication.  Jean Robert Argand 

rediscovered Wessel’s work in 1806 with his publication of the Argand diagram.  In 

this geometrical representation  of complex numbers, Argand interpreted i  as a 

rotation of 90o. 

Complex numbers are of the form x + iy  where x and y are real numbers and 

i  is the imaginary part.  The diagram below is the Argand diagram that shows a 

graphical representation of a complex number.  The x-axis is the real number line 

and an ordered pair that represents a point on this line has coordinates (x, 0) or the 
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complex number x + 0i .  The y-axis is the imaginary axis and an ordered pair that 

represents a point on this line has coordinates (0, y) or the complex number 0 + iy , 

a pure imaginary number. 

This graph gives us a two-dimensional view of a complex number.  Using the complex 

plane, or Argand diagram, de Moivre’s formula and Euler’s formula we now have 

z = x + iy = r(cosα + isinα ) = reiα
, where . 

.   
In this equation, multiplication by i  results in a counter-clockwise rotation of 90o 

about the origin, or π
2

radians.  So, when we look at the geometric representation of 

i2 = −1 , it is shown as two 90 o turns (180o) or π  radians. 
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Pure Imaginary Numbers 
a + bi, a = 0, b ≠  0 

Ex.  7i, −i 2  

Complex Numbers 
a + bi where a,b ∈°  
Ex.  3 + 2i, 7i, 5 + 0i, 

−i 2 , 5, 3 5 , π , −2

7
, 5.67  

R 

Real Numbers 
a + bi, b = 0 

Ex. 5, 3 5 , π , −2

7
, 

5.67 , 2  

Imaginary Numbers 
a + bi, b ≠  0 

Ex.  3 + 2i, 2

3
−

1

2
i , −i 2  

Rational Numbers 
a

b
,   

Ex.  5, −2

7
, 5.67  

Irrational Numbers 
Infinite & non-repeating 

decimals 
Ex. 3 5 , π , 2  
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Now using our knowledge of complex and imaginary numbers where 

i = −1,i2 = −1  we can look at basic operations with them. 

Finding square roots of some negative numbers: 

a) −5     b) −25    c) −50  
= −1 5     = −1 25    = −1 25 2  
= i 5     = 5i    = 5i 2  
 

d) −16  – −49     e) −2 + −18  
= −1 16 − −1 49     = −1 ⋅ 2 + −1 ⋅ 9 ⋅ 2  
= 4i –  7i      = i 2 + 3i 2  
= -3i      = (1+ 3)i 2  

= 4i 2  
 

f) −4 ⋅ −25     g) i 2 ⋅ i 3  
 = −1 ⋅ 4 ⋅ −1 ⋅ 25    = i2 ⋅ 2 ⋅ 3  
 = ( −1)2 ⋅ 2 ⋅ 5     = −1⋅ 6  

 = -10      =− 6  
 

h) 
2

3i
    i) 

6

−2
   j) 2x2 + 19 = 3 

= 
2 ⋅ i
3i ⋅ i

    = 
6

i 2
        2x2 + 19 -19 = 3 - 19 

= 
2i

3i2     = 
6

i 2
⋅
i 2

i 2
   

2x2

2
 = 

-16

2
 

= 
2i

3(−1)
    = 

6i 2

2i2     x2 = ± −8  

= 
−2

3
i    = 

6i 2

2(−1)
   x = ± −1 4 2  

= −3i 2    x = ±2i 2  
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Some basic operations with complex numbers: 

Sum of Complex Numbers   Differences of Complex Numbers 

(a + b i) + (c + d i)    (a + bi) - (c + d i)   

= (a + c) + i(b + d)    = (a - c) + i(b - d)   

Ex.  (3 + 6i) + (4 + 2i)   Ex.  (3 + 6i) - (4 + 2i) 

= (3 + 4) + i(6 + 2)    = (3 - 4) + i(6 – 2) 

= 7 + 8i     = -1 + 4i  

Ex.  (3 + 6i) + (4 – 2i)   Ex.  (3 + 6i) - (4 – 2i)  

(3 + 6i) + (4 + -2i)    (3 + 6i) - (4 + -2i)  

= (3 + 4) + [6 + (-2)] i   = (3 - 4) + [6 – (-2)] i  

= 7 + 4i     = -1 + 8i  

Product of Complex Numbers   Quotient of Complex Numbers 

(a + bi)(c + d i)     
a + bi

c + di
 

= ac + bd i 2 + ad i + cbi   =
(a + bi)(c − di)

(c + di)(c − di)
 

= ac + (-1)bd + i(ad + bc)   =
ac − bdi2 − adi + cbi

c2 − d2i2  

= ac – bd + i(ad + bc)   =
ac − (−1)bd + i(cb − ad)

c2 − (−1)d 2  

      =
ac + bd + i(cb − ad)

c2 + d 2  
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Product of Complex Numbers   Quotient of Complex Numbers 

Ex.  (6 + 4i)(2 – 5i)    Ex.   
6 + 4i

2 − 5i
 

=(6)(2) + (4i)(-5i) + (6)(-5i) +(2)(4i)  =
(6 + 4i)(2 + 5i)

(2 − 5i)(2 + 5i)
 

= 12 - 20i 2 - 30i + 8i   =
6 ⋅2 + 4 ⋅5i2 + 6 ⋅5i + 4i ⋅2

2 ⋅2 − (−5)5i2   

= 12 – 20(-1) - 22i    =
12 + 20(−1) + 30i + 8i

4 + 25(−1)
 

= 12 + 20 - 22i    =
−8

−21
+

38

−21
i  

= 32 - 22i     =
8

21
+ −1

17

21
i  

 
 
 The algebra of complex numbers involves treating i as a number and using the 

basic number and operation properties (such as the distributive, associative, and 

commutative properties) to rewrite the expression in the form a + b i.  We can use 

the information about complex numbers and operations, along with formulas such as 

de Moivre’s formula and Euler’s formula, to study i . 

 

Evaluating i . 

We begin by reiterating that any complex number, z, can be written as  

z = a + b i.  We also note that the complex numbers we are looking for will satisfy 

the equation z4 + 1 = 0, which, by the Fundamental Theorem of Algebra, has four 



 8

solutions (two of which satisfy z2 - i = 0, two which satisfy z2 + i = 0).  Then, 

applying Euler’s formula for writing complex numbers, we can write z as: 

( ) ( ) cos( ) sin( ) (cos sin )i n i n nz re e n i n iθ θ θ θ θ θ= = = + = +  

From the first part of Euler’s formula we write i = e
iπ
2 .  Then, proceeding formally 

(and admittedly abusing some notation) we take the square root of both sides: 

i = e
iπ
2  

  = e
iπ
2
•

1

2  

= e
iπ
4   

= cos(
1

4
π ) + i sin(

1

4
π )   

      y 
  

sinθ =
opposite

hypotenuse
 

  

         cosθ =
adjacent

hypotenuse
 

 
 
 
             x 
 
 
 
 
 

The radius of the 
circle is 1 unit. 

θ  

1 

cosθ  

sinθ  
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Thus we need to evaluate the sine and cosine of π/4.  Since 
π
4
= 45o , the reference 

triangle for our calculations is an isosceles,  45o-45o-90o triangle.  To find the 
length of each side of the triangle we use Pythagorean’s Theorem a2 + b2 = c2;  the 
hypotenuse is 1 unit and we let the legs each be of length x units. 

Then solving for x we have: x2 + x2 = 12
 

2x2

2
=

1

2
 

x2 =
1

2
 

x2 =
1

2
 

x =
1

2
 

x =
1

2  

Thus, cos
π
4
=

1

2
 and sin

π
4
=

1

2
,  so we write i = cos

1

4
π⎛

⎝⎜
⎞
⎠⎟
+ isin

1

4
π⎛

⎝⎜
⎞
⎠⎟ .    

However, we stated previously that we were actually looking for four complex 
numbers of the form z = a + bi which satisfy z4 + 1 = 0.  Based on the calculation 

above, it makes sense to consider four possibilities for z = i ; specifically   

   
1

2
+

1

2
i ,    

−1

2
+

1

2
i ,    

−1

2
−

1

2
i ,    

1

2
−

1

2
i . 

To determine which are actual answers to i ,  I will square each and solve for i  

which should equal −1 . 
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Does  i =
1

2
+

1

2
i   ?      Does i =

−1

2
+

1

2
i  ? 

i
2
=

1

2
+

1

2
i

⎛
⎝⎜

⎞
⎠⎟

2

    i
2
=

−1

2
+

1

2
i

⎛
⎝⎜

⎞
⎠⎟

2

 

i =
1

2
− i +

1

2
i2

     i =
1

2
− i +

1

2
i2

 

i + i −
1

2
⎛
⎝⎜

⎞
⎠⎟
=

1

2
− i +

1

2
i2 + i −

1

2
⎛
⎝⎜

⎞
⎠⎟     i + i −

1

2
⎛
⎝⎜

⎞
⎠⎟
=

1

2
− i +

1

2
i 2 + i −

1

2
⎛
⎝⎜

⎞
⎠⎟  

−
1

2
=

1

2
i2

      2i −
1

2
=

1

2
i2

 

−
1

2
⎛
⎝⎜

⎞
⎠⎟
⋅2 =

1

2
i2⎛

⎝⎜
⎞
⎠⎟
⋅2     2i −

1

2
⎛
⎝⎜

⎞
⎠⎟
⋅2 =

1

2
i2⎛

⎝⎜
⎞
⎠⎟
⋅2  

−1= i2
      4i −1 = i2

     

i =
1

2
+

1

2
i         i ≠

−1

2
+

1

2
i  

Does i =
−1

2
+
−1

2
i   ?       Does i =

1

2
+
−1

2
i  ? 

i
2
= (

−1

2
+
−1

2
i)2

    i
2
= (

1

2
+

−1

2i
)2

 

i =
1

2
+ i +

1

2
i2

     i =
1

2
− i +

1

2
i2

 

i + (
−1

2
− i) =

1

2
+ i +

1

2
i2 + (

−1

2
− i)    i + (

−1

2
+ i) =

1

2
− i +

1

2
i2 + (

−1

2
+ i)  

−1

2
=

1

2
i2

      2i −
1

2
=

1

2
i2

 

(
−1

2
) ⋅ 2 = (

1

2
i2 ) ⋅ 2     (2i −

1

2
) ⋅2 = (

1

2
i2 ) ⋅2  

−1 = i2
      4i −1 = i2

 

−1 = i       4i −1 = i  

i =
−1

2
+
−1

2
i      i ≠

1

2
+
−1

2
i  
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Therefore there are two solutions to i ;  they are i =
−1

2
+
−1

2
i  and 

i =
1

2
+

1

2
i .   

 

The two complex numbers which are solutions to i lead us to consider the 

question:  Is there a pattern for finding the nth roots of i ?  To look for a pattern  

I will return  to the case where n = 2, the square root of i : 

 i = eiθ( )
1

2 = e
i
θ
2

 

I can rotate any point in the complex plane about the origin by 360o or 2π radians 

and return to the same location on the Argand diagram.  Likewise I can rotate the 

point again by 360o for a total of 4π radians.  Each time I perform this rotation I 

need to take 2π times k, where k is the number of times I have gone around the 

circle.  Thus, I can write 2
2

kπθ π= + .  When calculating a root, I need to check 

where 
θ
2

 is less than 2π  because the sine and cosine functions are periodic with a 
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period of 2π .  Thus, to determine all values for
θ
2

 (since we are considering the 

square root) we consider 
θ
2
=

1

2

π
2
+ 2kπ⎛

⎝⎜
⎞
⎠⎟ , where k = 0, 1, 2, …  .   

So, for the specific cases where k = 0, 1, and 2  I calculated the following: 

 
θ
2
=

1

2

π
2
+ 2kπ⎛

⎝⎜
⎞
⎠⎟  for k = 0  

θ
2
=

1

2

π
2
+ 2kπ⎛

⎝⎜
⎞
⎠⎟  for k = 1 

θ
2
=

1

2

π
2
+ 2(0)π⎛

⎝⎜
⎞
⎠⎟    

θ
2
=

1

2

π
2
+ 2(1)π⎛

⎝⎜
⎞
⎠⎟  

θ
2
=

1

2

π
2

⎛
⎝⎜

⎞
⎠⎟      

θ
2
=

1

2

5π
2

⎛
⎝⎜

⎞
⎠⎟  

θ
2
=
π
4
< 2π     

θ
2
=

5π
4

< 2π  

 

 
θ
2
=

1

2

π
2
+ 2kπ⎛

⎝⎜
⎞
⎠⎟  for k = 2 

θ
2
=

1

2

π
2
+ 2(2)π⎛

⎝⎜
⎞
⎠⎟     

θ
2
=

1

2

9π
2

⎛
⎝⎜

⎞
⎠⎟  

θ
2
=

9π
4

> 2π  

Thus I need only consider the cases where k = 0 and k = 1, since for larger values of 

k  I have 
θ
2

 > 2π .  Now, replacing 
θ
2

 with 
π
4

and
5π
4

,  I can return to the formula  
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and calculate the following: 

i = cos
1

4
π⎛

⎝⎜
⎞
⎠⎟
+ isin

1

4
π⎛

⎝⎜
⎞
⎠⎟   i = cos

5

4
π⎛

⎝⎜
⎞
⎠⎟
+ isin

5

4
π⎛

⎝⎜
⎞
⎠⎟  

i = cos 45o + i sin 45o
         i = cos135o + i sin135o

 

i =
1

2
+

1

2
i     i =

−1

2
+
−1

2
i  

These are the same values for i  that I found before.   

 

I can extend this idea to calculate the cube root of i .  I begin by writing   

i3 = eiθ( )
1

3 = e
i
θ
3

 and rotating 
θ
3

 around the unit circle.  Then I determine the 

number of rotations, k, for which  1/3 (θ + 2kπ) < 2π : 
 
 

θ
3
=

1

3

π
2
+ 2kπ⎛

⎝⎜
⎞
⎠⎟  for k = 0  

θ
3
=

1

3

π
2
+ 2kπ⎛

⎝⎜
⎞
⎠⎟  for k = 1 

θ
3
=

1

3

π
2
+ 2(0)π⎛

⎝⎜
⎞
⎠⎟    

θ
3
=

1

3

π
2
+ 2(1)π⎛

⎝⎜
⎞
⎠⎟  

θ
3
=

1

3

π
2

⎛
⎝⎜

⎞
⎠⎟      

θ
3
=

1

3

5π
2

⎛
⎝⎜

⎞
⎠⎟  

θ
3
=
π
6
< 2π     

θ
3
=

5π
6

< 2π  
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θ
3
=

1

3

π
2
+ 2kπ⎛

⎝⎜
⎞
⎠⎟  for k = 2  

θ
3
=

1

3

π
2
+ 2kπ⎛

⎝⎜
⎞
⎠⎟  for k = 3 

θ
3
=

1

3

π
2
+ 2(2)π⎛

⎝⎜
⎞
⎠⎟    

θ
3
=

1

3

π
2
+ 2(3)π⎛

⎝⎜
⎞
⎠⎟  

θ
3
=

1

3

9π
2

⎛
⎝⎜

⎞
⎠⎟     

θ
3
=

1

3

13π
2

⎛
⎝⎜

⎞
⎠⎟  

θ
3
=

9π
6

=
3π
2

< 2π    
θ
3
=

13π
6

> 2π  

 

Thus, I only need to consider the cases where 
θ
3
=

1

3

π
2
+ 2kπ⎛

⎝⎜
⎞
⎠⎟  for k = 0, 1, 2; 

specifically when 
θ
3

 is  
π
6

,
5π
6

and
3π
2

.  Then, substituting these values into the 

formula  

 
leads to the following calculations: 
 

i3 = cos
1

6
π⎛

⎝⎜
⎞
⎠⎟
+ i sin

1

6
π⎛

⎝⎜
⎞
⎠⎟   i3 = cos

5

4
π⎛

⎝⎜
⎞
⎠⎟
+ isin

5

4
π⎛

⎝⎜
⎞
⎠⎟  

i3 = cos 30o + isin 30o
  i3 = cos150o + isin150o

 

i3 =
3

2
+

1

2
i     i3 =

− 3

2
+

1

2
i  

 

i3 = cos
3

2
π⎛

⎝⎜
⎞
⎠⎟
+ i sin

3

2
π⎛

⎝⎜
⎞
⎠⎟    

i3 = cos270o + i sin270o
 

i3 = 0 + (−1)i   
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Therefore, i3 = −i,
− 3

2
+

1

2
i,and

3

2
+

1

2
i . 

 

 Now I can generalize this idea to find the solution set for any root of i .  

From the previous two examples, I noticed that the number of rotations, k, is 

always one less than the root that I am trying to find.  This will allow me to list a 

complete set of the values of θ : 

θ
n
=

1

n

π
2
+ 2kπ⎛

⎝⎜
⎞
⎠⎟ for k = 0, 1, 2, …, (n-1). 

Then the complex solutions to the equation zn + 1 = 0 (i.e. the nth roots of i ) are 

given by 

in = cos
θ
n

⎛
⎝⎜

⎞
⎠⎟
+ i sin

θ
n

⎛
⎝⎜

⎞
⎠⎟  

where  

θ
n
=
π
2n

1+ 4k( ) for k = 0, 1, 2, …, (n-1). 
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