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Exchange Interactions and Curie Temperature of
Y–Co Compounds

A. Kashyap, R. Skomski, R. F. Sabiryanov, S. S. Jaswal, and D. J. Sellmyer

Abstract—The Curie temperature of rare-earth Co in-
termetallics is investigated by self-consistent spin-polarized
electronic-structure calculations on Y–Co compounds. The total
exchange interaction of a given site with all other sites (Jo) is
calculated by the linear-muffin-tin-orbital method using the local
force theorem and employed to obtain mean-field Curie-tem-
perature estimates. The theoretical predictions for YCo3, YCo5,
and Y2Co17 are in fair agreement with the experimental Curie
temperatures. For YCo5, the variation of exchange interactions
(Jij) with distance is analyzed, and it is discussed how the presence
of nonequivalent cobalt sites affects the Curie temperature of the
compounds.

Index Terms—Curie temperature, exchange interactions,
magnetic moment, permanent magnets, rare-earth cobalt inter-
metallics, YCo5.

I. INTRODUCTION

RARE-EARTH transition-metal intermetallics have long
been valued as permanent-magnet materials. Rare-earth

cobalt intermetallics combine reasonably high magnetizations
with high or very high anisotropies and high Curie temperatures
[1]–[3], which makes them suitable for advanced high-tem-
perature permanent magnets [4]. Due to the smallness of the
de Gennes factor of samarium, the Curie temperature is largely
determined by the interatomic exchange of the cobalt atoms
[2], [5], and in fair approximation it is sufficient to consider
isostructural intermetallics with a nonmagnetic rare earth, such
as yttrium.

It is interesting to study the interatomic exchange from an
atomic point of view because of its crucial importance for the
Curie temperature, and because it plays an important role in the
realization of the leading rare-earth anisotropy contribution [2].
The tools for the first-principle study of the interactions have
been developed in the context of Y–Fe compounds [6]. Here,
we perform the calculations for Y–Co compounds and investi-
gate how the magnetic properties are affected by the local envi-
ronment. The calculated results are compared with the available
experimental data.
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II. M ETHOD OFCALCULATION

For rhombohedral YCo, hexagonal YCo, and hexagonal Y
Co , self-consistent, semirelativistic, spin-polarized electronic
structure calculations are performed using the linear muffin-tin
orbitals (LMTO) method within the atomic sphere approxima-
tion [7]. A minimal basis set consisting of s, p, and d orbitals is
used for both type of atoms and Barth–Hedin exchange-corre-
lation potential is used. The spin up and spin down local densi-
ties of states (DOS) and magnetic moments are calculated using
the linearized tetrahedron method. Due to the considerable dif-
ferent sizes of Y and Co atoms it is necessary to assume dif-
ferent Wigner–Seitz (WS) cell radii. The ratio of WS radii is
kept at 1.35 for all compounds, as suggested by Coehoorn [8],
and the crystallographic data for Y–Co compounds are taken
from Pearson’s Handbook [9]. The interatomic exchange inter-
actions ( ) are calculated in the Heisenberg approximation.

A method to calculate , based on the local approximation to
spin density functional theory has been developed by Liechten-
steinet al. [10], [11]. Using spherical charge and spin densities
and a local force theorem, expression foris

(1)

Here, is the scattering path operator in the site
representation for different spin projections , and

is the difference of the inverse single-site
scattering matrices. The total exchange of a given site with all
sites can also be calculated from the relation

(2)

The parameter reflects the energy change due to small-angle
rotation of the moment at one site. In contrast to the, it is
given by the site-diagonal scattering matrix (or Green function),
where .

III. RESULTS AND DISCUSSIONS

An approximate mean-field approach to calculate the Curie
temperature is to use the relation where
is the exchange interaction averaged over all inequivalent sites.
Here, we use this approximation to calculate the Curie tempera-
ture and discuss corrections due to the involvement of nonequiv-
alent sites.

Table I summarizes the theoretical predictions and compares
them with experimental data. For all compounds, it lists the WS
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TABLE I
THE WS CELL RADII (IN ATOMIC UNITS), DOSAT THE FERMI LEVEL (IN
STATES/Ry), MAGNETIC MOMENTS (IN � ), EXCHANGE PARAMETERS (IN

meV) AND CURIE TEMPERATURE(IN K) FOR Y–Co COMPOUNDS

radii, the calculated and DOS at the Fermi level, theoret-
ical and experimental magnetic moments, exchange constants,
and theoretical and experimental Curie temperatures. The ex-
perimental data are taken from [12].

We see that the agreement for the magnetic moment is quite
reasonable. The inclusion of spin-orbit interaction would fur-
ther improve the total magnetic moment but here we are mainly
interested in the nature of exchange interactions in these com-
pounds. The orbital moment of the cobalt atoms is reported to
be about 0.25 in YCo [13].

Fig. 1 shows the distance dependence of the exchange inter-
actions for two different Co sites in YCo. The exchange inter-
action is very strong at small interatomic distances butde facto
short-range, its magnitude rapidly decaying with interatomic
distance. The same trend is found in YCoand in Y Co .
By contrast, in Y–Fe compounds the exchange interactions are
weaker, have a somewhat longer range, and exhibit more pro-
nounced RKKY-type oscillations [6]. This reflects the well-es-
tablished instability of the ferromagnetism of dense-packed Fe
intermetallics [2], [5].

Average exchange interactions for all the three compounds
studied are given in Table I. With the increase of Co concentra-
tion, the average exchange interactions for Co atoms increase
considerably, thereby increasing the Curie temperature. This is
in agreement with experiment and with mean-field type model
predictions. By contrast, in Y–Fe compounds band-structure ef-
fects tend to yield a decrease of with increasing transition
metal concentration.

Fig. 1. Distance dependence of the interatomic exchange for the two
nonequivalent Co sites in YCo. The data include 35 neighbors for both the
Co sites.

The average exchange interaction for YCois 128.85 meV,
corresponding to a Curie-temperature estimate of 998 K. This
is very close to the experimental value of 987 K. For YCo ,
the Curie temperature is slightly overestimated. By comparison,
for Y–Fe compounds the method overestimates the Curie tem-
perature by 25%. For YCo, the agreement is worse. The
values for YCo are small and very disparate in magnitude, in-
dicating that the mean-field approximation is poor in this case.
The main reason is that the comparatively low Co content causes
the alloy to remain close to the onset of ferromagnetism. This
leads to long-range spin fluctuations and to corrections to the
Curie temperature [16], [17].

Table I reveals a considerable dispersion of the. This
makes it necessary to distinguish between nonequivalent sites.
Note that even on a mean field level, site-resolved exchange
interactions yield Curie-temperature corrections.

The basic idea is to write down separate mean-field equa-
tions for the nonequivalent sites, as discussed in other contexts
[2], [5], [14], [15], [18]. Linearization of the Brillouin functions
then leads to an eigenvalue problem, and the largest eigenvalue
is equal to the exact mean-field Curie temperature. The calcula-
tion, which will be published elsewhere, involves intersublattice
exchange constants derived from (1).

The anisotropic exchange parameters listed in Table I yield a
pronounced anisotropy of the exchange stiffness, making it nec-
essary to distinguish between for magnetization gradients
parallel to the -axis and for magnetization gradients in the
basal plane. This yields a variety of micromagnetic phenomena,
such as a dependence of the Bloch wall width on the orientation
of the wall and a directional dependence of domain-wall ener-
gies. For example, in YCothe intra-sublattice interaction of the
Co 2c atoms corresponds to only about 127 K as compared with
the 2c–3g intersublattice exchange of about 770 K.1 However,

1The bond anisotropy considered in this paper is nonrelativistic, that is, it
does not involve spin-orbit coupling and is independent of the magnetization
direction. It must be distinguished from the much smaller exchange anisotropy,
which involves spin-orbit coupling and yields a small direction-dependent con-
tribution of typically less than 1% to the spontaneous magnetization.
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in the present case the strong intersublattice exchange ensures
a stable Co 2c magnetization, and the Curie-temperature reduc-
tion is very small, about 5%. Note that exchange anisotropy can
also be calculated by performing calculations of the total mag-
netic energy [19], but the present approach makes it possible
to assign the net exchange anisotropy to individual sites and
to trace the origin of the exchange anisotropy. From a formal
point of view, this will be achieved by a Fourier-transformation
method, in analogy to the use of the Lindhard function [20] to
discuss RKKY interactions in-space.

From the point of view of future research, this study estab-
lishes a new approach toward the understanding and develop-
ment of multisublattice permanent magnets. First, the exchange
parameters enable a direct access to many-sublattice mean-
field analysis [21], which provides reliable finite-temperature
predictions of magnetic properties. In the past, intersublattice
interactions were approximated in terms of parameters of the
type , , and [5], [21], [22], ignoring the transi-
tion-metal dispersion shown in Fig. 1 and in Table I. Second,
as mentioned above, the bond anisotropy of theleads to
far-reaching but largely unexplored anisotropic micromagnetic
phenomena. Third, a site-resolved analysis will make it possible
to gauge how specific substitutions will affect the finite-temper-
ature magnetization and anisotropy of high-temperature perma-
nent magnets.

In conclusion, we have investigated how the Curie temper-
ature of rare-earth cobalt intermetallics is realized by in-
teratomic exchange. Electronic-structure calculations on Y–Co
compounds have been used to analyze the leading transition-
metal contribution to . Compared with Y–Fe compounds,
the interatomic exchange is stronger but exhibits a more rapid
decay with increasing distance and less pronounced oscillations.
Further research is necessary to explore the consequences of
the existence of more two or more transition-metal sublattices,
particularly with respect to the temperature dependence of the
rare-earth and transition-metal sublattice anisotropies.
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