Parasite Pathoecology of Salmon Pueblo and Other Chacoan Great Houses: The Healthiest and Wormiest Ancestral Puebloans

Karl Reinhard
University of Nebraska-Lincoln, kreinhard1@mac.com

Follow this and additional works at: http://digitalcommons.unl.edu/natresreinhard

Part of the Archaeological Anthropology Commons, Ecology and Evolutionary Biology Commons, Environmental Public Health Commons, Other Public Health Commons, and the Parasitology Commons

http://digitalcommons.unl.edu/natresreinhard/25

This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Karl Reinhard Papers/Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Parasite Pathoecology of Salmon Pueblo and Other Chacoan Great Houses
The Healthiest and Wormiest Ancestral Puebloans

KARL J. REINHARD

ARCHAEOPARASITOLOGY AND PATHOECONOMY IN THE SOUTHWEST

Two fields of paleopathological investigation originated in the Southwest. Archaeoparasitology is the study of ancient parasite infection (Reinhard 1990, 1992b). It includes comparisons between time periods of single societies as well as comparisons of parasitism between different, contemporaneous cultures. For example, Fry (1980) compared Fremont and Anasazi parasitism, and also Archaic hunter-gatherer and ancestral Pueblo parasitism. All of these studies fall into the definition of archaeoparasitology.

By contrast, pathoecology is the reconstruction of relationships among behavior, environment, and disease organisms in the development of illness (Martinson et al. 2003; Reinhard and Buikstra 2003; Reinhard et al. 2003; Santoro et al. 2003). This field developed from the need for fine-grained analysis of prehistoric ecological and behavioral conditions to assess factors that affected disease. Pathoecological interpretation depends on archaeological information regarding parasitism, community size, trade patterns, water sources, subsistence practices, environment, medicinal use, and many other topics. Although the term is new, pathoecology developed over several decades. I view El-Naijar et al.'s (1976) study of ancestral Pueblo anemia as the first pathoecology study. Perhaps the most advanced example of pathoecology is Stodder and Martin's (1992) multifactorial perspective on ancestral Pueblo disease. My study (Reinhard 1996) of the factors that affected parasitism at Antelope House and Salmon Ruin is another application of pathoecology.

Ancestral Pueblo communities have long been the focus of archaeoparasitology. Samuels (1965) developed the methods for helminth (parasitic worm) egg recovery with coprolites from Mesa Verde. Subsequently, Stiger (1977) provided the first intersite comparison analysis for sites on Mesa Verde. Fry and his colleagues conducted the first regional comparisons of parasitism, focusing on Canyon de Chelly and Glen Canyon (Fry 1977; Fry and Hall 1975, 1986). Fry (1977) also presented the first cross-cultural analysis of Archaic, ancestral Pueblo, and Fremont sites, and pioneered the comparison of parasitism among populations practicing different subsistence strategies. Building on this previous work, I have analyzed the diversity of helminths that parasitized ancestral Pueblo peoples (Reinhard 1985a, 1985b, 1985c, 1990; Reinhard et al. 1987). By 1985, archaeoparasitologists had identified eight species of helminths that infected ancestral Puebloans (Figure 5.1).

Aidan Cockburn’s insight into the origins of disease influenced the development of pathoecology in the archaeoparasitology of ancestral Pueblo sites. Cockburn (1967, 1971) argued that the evolution of infectious diseases followed human evolution and the development of human cultures. Inspired by Cockburn, Reinhard (1985a) compared the parasitic state of Colorado Plateau Archaic peoples to ancestral Puebloan sites. He verified Cockburn’s hypothesis that occasional infections
in hunter-gatherers became major health hazards in agricultural populations. Reinhard (1988) presented a number of pathoecological findings regarding the development of parasitic disease in ancestral Puebloans relative to earlier hunter-gatherers. Parasitism was limited in hunter-gatherers due to small band size, band mobility, diffuse regional populations, and the presence of natural anti-helminthics (worm poisons) in hunter-gatherer diets. Hunter-gatherer parasitism was promoted by the consumption of uncooked meat and insects. Parasitism was promoted in ancestral Puebloan communities by contaminated water sources, concentrated populations, a more sedentary lifestyle, crowded (apartment-style) living conditions, establishment of large latrines, activities centered on water (agriculture), and activities that expanded wetlands (including irrigation of all types).

By the 1990s, Reinhard (1992a) had identified wide variation in parasitism among ancestral Pueblo villages (Figure 5.2). At some settlements, parasitism was controlled, but others were overwhelmed by their pathogens. This topic was explored with a comparison of pinworm (Enterobius vermicularis) prevalence in coprolites (Reinhard 1988). The pinworm was chosen as an indicator of general infectious disease because it is transferred by person-to-person and by environmental contamination (Figure 5.3).

Over millions of years of mutual evolution with hominids and modern humans, pinworms have evolved multiple routes of infection, including anal-oral, hand-to-hand, and airborne routes. Pinworms are exceptionally remarkable among human parasites because the female worm wriggles out of the anus of her host at night to scatter her eggs. Once outside of the intestine, she disperses eggs by two different mechanisms. Two types of eggs are produced in two parts of the pinworm uterus: light and heavy. Heavy eggs are laid on the perianal folds with an irritant excretion. The resulting itching (pruritis) and nocturnal host scratching transfers the infective eggs to the host fingers. Other eggs are distributed by aerosol when the female's desiccated body bursts, which releases thousands of light eggs into the air. Ultimately, these light eggs contaminate the environment, settling on food, in water, and throughout the

Figure 5.1. Diagram showing the wide spectrum of parasites that infected ancestral Puebloans.
FIGURE 5.2. Map showing variation in percentages of pinworm parasitism among ancestral Pueblo villages.

FIGURE 5.3. Diagram showing modes of pinworm transmission to human hosts.

habitation. How long these eggs remain infective depends on warmth and humidity. In general, even in arid environments, human habitations have an elevated humidity. Thus, several infection routes result from the pinworms' nocturnal excursions. Retroinfection occurs when the eggs hatch on the perianal region, and the larvae wriggle back into the host. Hand-to-hand transfer of the eggs occurs when humans interact upon waking. Autoinfection occurs when humans eat food contaminated with the eggs from their own hands. Airborne infection occurs when humans inhale the eggs, or
when the air dissemination of eggs results in the contamination of food and water. Of course, other pathogens follow the same hand-to-hand, hand-to-mouth, and aerosol routes as pinworm infection. Therefore, high rates of pinworm prevalence suggest high rates of infection by other pathogens that are passed through the same modes of infection (see Figure 5.1).

Some ancestral Pueblo communities were extremely parasitized. In fact, some sites have the highest levels of pinworm infection recorded for ancient or modern peoples. In a modern clinical setting, only 5 percent of feces from pinworm-infected people are positive for pinworm eggs. The percentages of coprolites positive for pinworm from several sites far exceed this level. For example, 29 percent of the coprolites from Antelope House, 19 percent of those from Inscription House, and 21 percent of those from Chaco Canyon sites were positive for pinworm eggs. This indicates that pinworm parasitism was unavoidable, and that in all probability people had heavy infections. In such populations, pinworm infection is not just a nuisance, but reflects a serious health risk, particularly when one considers that other pathogens are spread by the same means.

Reinhard (1992a) showed that the prevalence of pinworm parasitism covaried with porotic hyperostosis prevalence at ancestral Pueblo sites where both coprolites and skeletons were studied (Figure 5.4). Porotic hyperostosis is an indicator of general skeletal pathology that has been used to assess maternal-infant health. The fact that these indicators of disease had a positive, statistically significant correlation underscores the use of pinworms as a general gauge of ancestral Pueblo disease state (Reinhard 1992a).

Pinworms are not very pathogenic but are a good proxy for the infectious disease environment (Reinhard 1996). Rates of pinworm infection at ancestral Pueblo and Fremont culture sites were explored by Hugot and his colleagues (1999). They found that sites in rockshelters without walled villages (some Glen Canyon sites) had the lowest levels of parasitism. Such sites had pinworm prevalence comparable to hunter-gatherers. Next, village

FIGURE 5.4. Graph comparing pinworm parasitism with porotic hyperostosis prevalence for several southwestern locales. The chart shows that the prevalence of pinworm parasitism covaried with porotic hyperostosis prevalence at ancestral Pueblo sites where both coprolites and skeletons were studied (Reinhard 1992a).
sites outside of rockshelters had intermediate levels of parasitism. Finally, walled villages built within rockshelters had the highest prevalence of pinworm (see Figure 5.4). If we look at data from the Chacoan realm, we find that Chacoan great houses are anomalous: they include both the wormiest and healthiest sites. Salmon Pueblo has among the lowest prevalence values (7 percent). In contrast, Pueblo Bonito and Pueblo Alto in Chaco Canyon are among the highest (21 percent). Clearly, the pathoeconomy of great houses was defined by factors other than size. Puebloans living in great houses adapted their use of the structures in ways that either promoted or limited parasitism. The remainder of this chapter explores the factors that could have limited parasitism at Salmon relative to other great house communities.

Chacoan Great Houses as Nidi for Infection

Realizing that for parasitic disease to occur, all factors related to the survival and reproduction of the parasite must be present, Pavlovsky (1966) combined ecological factors into a predictive tool for infection. These can include vectors, reservoir hosts, humans, and favorable external environments. He defined a *nidus* as that portion of a natural geographic landscape that contains a community consisting of a pathogen, vectors, reservoir hosts, and recipient hosts, and that possesses an environment in which the pathogen can circulate. He further found that pathogens possessed nidality: the tendency of an infectious agent to occur in distinct nidi, such as being associated with particular geographic, climatic, or ecological conditions. Thus, a nidus is a focus of infection. For humans, a nidus can be as confined as a single room accessed by rodents carrying plague-infected fleas, or as large as an entire community and its agricultural use-area, as is the case for the transmission of hookworms.

Various types of parasites circulate in nidi. Temporary parasites, which live in the external environment and come to the host only to feed, include mosquitoes, chiggers, ticks, and leeches. In these species, every individual must have good dispersal capability and the ability to find hosts when needed. Also, they must possess attributes enabling them to survive in the external environment. Features of the host have less effect on survival and reproduction of these parasites.

Nidicolous parasites live in the host's immediate environment: in beds, walls, granaries, caves, rockshelters, and under floors. Fleas, mites, bedbugs, triatomid bugs, and the diseases transmitted by these bugs are examples of nidicolous parasites. They depend upon the host not only for food but for creation of their habitat.

Permanent parasites live on or in the host except when dispersing between hosts. These include most protozoa, roundworms, flukes, and tapeworms. They are completely dependent upon their host for food and all other environmental requirements.

Factors Outside Great House Environments

Water Source, Giardiasis, and Amoebic Dysentery
Water sources in desert environments are foci for human activity and can therefore become nidi. As long as they are plentiful and flowing, and populations are not too concentrated around them, water sources are not necessarily a pathoeological factor in the spread of parasitism. However, when water sources are few in number and stagnant, and when populations aggregate around them, these sources often becomes contaminated, providing a nidus and becoming significant pathoeological problems.

Giardia lamblia has been found in ancestral Pueblo coprolites (Gonçalves et al. 2002). This parasite is not highly pathogenic in most adults. In fact, most infected people show no symptoms. However, when *G. lamblia* becomes established in stagnant water sources, it becomes a problem. It is most perilous to pregnant women and their babies. Disease in mothers and children is due to poor maternal nutrition caused by malabsorption, resulting in intrauterine growth retardation. *G. lamblia* causes malabsorption when the intestinal villi become blunted and the function of intestinal mucous di-
Parasite Pathoeconomy

minishes (Carden and MacLeod 1988). Clinical symptoms include cramps, watery diarrhea, nausea, vomiting, and sometimes fever. Among pregnant women who exhibit symptoms, \textit{G. lamblia} causes malabsorption and dehydration at a period when there is a need for accentuated nutritional requirements. Such women fall into a negative nutritional balance, as demonstrated by Carden and MacLeod (1988), who summarized the effects of \textit{G. lamblia} on the fetus and newborn. With protracted maternal infections, normal fetal development is impeded. With asymptomatic maternal infections, low birth weight and infant anemia are common (De Morais and Suzuki 1997). Generally, infants become infected after three months of age. Islam et al. (1988) found that some immunity is conveyed from mother to infant, but this immunity is not effective in infected infants. Immunity to \textit{G. lamblia} increases with age (Shetty et al. 1992). Thus, the pathology caused by \textit{G. lamblia} is most significant in infants and toddlers (Hjelt et al. 1992).

The epidemiology of giardiasis is well known (Taus et al. 1998; Hjelt et al. 1992; Harter et al. 1982). Sullivan et al. (1991) showed that giardiasis is highly prevalent in children with chronic diarrhea and malnutrition, and that giardiasis does not respond to standard therapeutic measures. Children who have low iron or vitamin B12 levels have more severe giardiasis symptoms (Awasthi and Pande 1997; Olivares et al. 2002). Subadults in the age range of 9 months to 11 years are most susceptible to infection, though infections can occur at 3 months of age. In developing nations, 91 percent of infants of infected mothers become infected by 6 months of age. Of infected infants, 86 percent have diarrhea. Infected people tend to live in dwellings with dirt floors, simple latrines, groundwater drinking sources, and close contact with dogs. These aspects of life were common at ancestral Pueblo villages (Reinhard 1996). In addition, person-to-person transmission of \textit{G. lamblia} is common (Birkhead and Vogt 1989; Black et al. 1977; Keystone et al. 1978). The parasite \textit{Entamoeba histolytica} also afflicted ancient Pueblo groups (Gonçalves et al. 2002). Relative to \textit{G. lamblia}, \textit{E. histolytica} causes more dramatic pathology, creating ulcerations in the large bowel or ileum. Amoebas can cause nodular granuloma formation, colitis, and diarrhea. The disease can become systemic and eventually an ulcerative disease of the large intestine, liver, lung, brain, or other organs. Amoebiasis can be symptomatic or even fatal during pregnancy (Abiyoue 1973; Lee 1929; Lewis and Antia 1969; Rivera 1972). Deaths that occur are due to a rapid onset of profuse diarrhea with dehydration and severe anemia. Premature delivery results from colitis, diarrhea, dehydration, ketosis, or shock (MacLeod and Carden 1988). Weigel et al. (1996) found that high \textit{E. histolytica} load in asymptomatic infections was associated with decreased maternal serum hemoglobin and hematocrit levels, and iron-deficiency anemia. Among women who had severe problems (spontaneous abortion, stillbirth, low-birthweight babies), there was a fourfold increase in the prevalence of amoebiasis relative to normal births (Czeizel et al. 1966). In infected but asymptomatic mothers, Weigel et al. (1996) found increased indicators of diminished intrauterine growth. Despite immunity conveyed by antibodies passed through the placenta and in milk, infants can become infected. When this happens, infants exhibit fever with severe watery, sometimes bloody, diarrhea. Colitis, appendicitis, intestinal rupture, and peritonitis result in a high mortality among infected infants (MacLeod and Carden 1988).

The Pueblo III occupation of Antelope House, at Canyon de Chelly in Arizona, is the best-documented case of an ancestral Pueblo village that suffered declining health due to water source nidi. Morris (1986) describes the pathoeological conditions that led to water contamination. Towards the end of the occupation, drought affected the region. As more distant water sources dried up, the population of Antelope House and Canyon de Chelly burgeoned. The increased population and decreased water resulted in contamination. Gonçalves et al. (2003) found both \textit{E. histolytica} and \textit{G. lamblia} in Antelope House coprolites. El-Naijar (1986; El-Naijar et al. 1976) found increased skeletal evidence of systemic disease during the Pueblo III occupation of Canyon de Chelly relative to other time periods. Thus, there is a relationship
between environmental stress, increased parasitism, and skeletal indicators of morbidity in mother and infants.

For Chacoan great houses, coprolites from Salmon Ruin were tested for *G. lamblia* with negative results (Wilson et al. 2006). The absence of giardiasis at Salmon is logical given the presence of a flowing water source (the San Juan River) within 200 m of the community. Given these conditions, there was little chance for contamination. No coprolites from Chacoan great houses have been tested for *E. histolytica.*

Irrigation, Hygiene, and Hookworm

Hookworm has been found in coprolites from Antelope House and Pueblo Bonito, but at no other ancestral Pueblo. Hookworm is the greatest parasitic threat to the mother, fetus, and infant. Iron-deficiency anemia resulting from intestinal blood loss is the major consequence of hookworm infection (Variyam and Banwell 1982; Ali et al. 1990). Treatment for this type of anemia is administration of iron supplements. According to Gilman (1982), development of hookworm-induced iron-deficiency anemia is dependent on the intensity of infection, the species of hookworm, and the ability of the host to resist infection and to maintain adequate stores of iron. Loss of blood is caused by direct ingestion of red blood cells and by tissue trauma produced by worm attachment and feeding.

The species that causes the more serious pathology and that has been identified in ancient New World remains is *Ancylostoma duodenale* (Allison et al. 1974). This is a fascinating, human-specific parasite that has evolved several infection modes and adaptations. Perhaps the most remarkable aspect of *A. duodenale* is its hypobiotic ability. Hypobiosis occurs when a parasite suspends its development in host tissues in a way that prevents a strong immunologic response. *A. duodenale* can go into hypobiosis in winter and come out of hypobiosis in summer. This is a significant adaptation because the females can lay their eggs in the season that is optimal for larval survival. The larvae hatch within a few days, exit the feces, and develop through three larval stages as free-living soil nematodes. Subsequently, as third-stage larvae, they locate human hosts and burrow through the skin. Also, *A. duodenale* can achieve transmammary and transplacental infection. Thus, fetuses and infants can be infected without ever coming in contact with contaminated soil.

Hookworm causes specific problems in pregnancy. One of the most common causes of death in labor in the developing world is cardiac failure from severe anemia attributed to hookworm infection (Cintron Villaronga 1967). As many as 90 percent of pregnant women are infected in endemic areas (Ananthakrishnan et al. 1997; Navitsky et al. 1998). Crompton and Whitehead (1993) present calculations comparing effects of hookworms on a nonpregnant woman versus a pregnant woman. The model predicts that hookworms more rapidly deplete stored iron, with a rapid effect on red cell density per milliliter of blood in pregnant women. MacLeod (1988) verified this model from the clinical perspective. Each worm consumes 0.27 ml of blood per day, and only 20 weeks after initial infection, hypochromic, macrocytic anemia can develop. The minor symptoms of infection are indistinguishable from complaints of pregnancy (epigastric pain, heartburn, and so on). However, with moderate infections there is low-grade fever, fatigue, dyspnea, heart palpitations, flow murmurs, and anemia. In heavy infections, constipation or diarrhea, jaundice, emaciation, cardiac failure, or pre-eclampsia occur. If a woman survives labor, she cannot recover as easily from post-partum hemorrhage, which can contribute to maternal death.

Hookworms also have a negative impact on fetuses and infants (MacLeod 1988). Abortion, stillbirth, and premature labor are associated with severe hookworm infection. Women infected with hookworm give birth to low-birth-weight infants (a 2 percent hematocrit drop in the mother correlates to a 100 gram decline in birth weight). Because of transplacental migration, infants are infected at birth. Severe and sometimes fatal hemorrhage occurs in infants less than four months of age. Chaudhary and Jayaswal (1984) first described an anemic infant resulting from transplacental migration. In a survey of hundreds of transplacental-infected infants in China, Yu et al. (1995) defined the symptoms of transplacental infection, which include
bloody stools, melena, anorexia, listlessness, and edema. *A. duodenale* was the species implicated in these types of infection. Transplacental migration is not rare. Nwosu (1981) documented that 10 percent of 316 Nigerian newborns (four to five weeks old) were infected with *A. duodenale*. Transmammary infections from mother to infant also occur, with similar health results (MacLeod 1988). Studies of many groups from around the world link hookworm disease, especially from *A. duodenale*, to severe iron deficiency and anemia in children (Albonico 1998; Stoltzfus et al. 1998).

Hookworm infection is dependent on moisture, shade, and warmth. The Colorado Plateau is normally too dry to promote infection, and in historic times hookworm was unknown. Thus, the discovery in Anasazi sites of hookworm eggs and another parasite with a similar infection mode, *Strongyloides stercoralis*, was surprising (Reinhard 1985; Reinhard et al. 1987). Clearly, ancestral Puebloans created microenvironment nidi where parasite larvae could hatch and mature in moist, warm, and shaded soil. Puebloans also spent time in these nidi, where they spread eggs and became infected by larvae. It is very likely that irrigated fields were hookworm and *S. stercoralis* nidi.

Studies of hand and foot washing in Bengal show that the larvae can be washed off easily within a few minutes of coming into contact with the skin. The infection occurred in defecation grounds, and washing was prescribed by religious rules (Nawalinski et al. 1978). We do not know if ancestral Puebloans had similar rules, but it is very likely that hookworms could penetrate the skin of Puebloan farmers as they worked in irrigated fields. If the division of labor resulted in men working more in irrigated fields, it may be that they were more often infected than women.

Internal Great House Factors

Apartment, Plazas, Kivas, and Second-Floor Living

Pat Horne (1985) attributed the remarkable pinworm prevalence among ancestral Pueblos to crowded, apartment-style living conditions. As noted above, Hugot et al. (1999) elaborated this theme by detailing the aspects of architecture and village location that aggravated pinworm infection. Although pinworm prevalence was highest in walled villages built within rockshelters, it is important to note that no thoroughly studied ancestral Pueblo site has been found to be pinworm free. Related cultures also were infected. The earliest Basketmaker II coprolites from Bighorn Cave (Grand Gulch, Utah) have a prevalence of 25 percent. Later, the diffuse populations of ancestral Pueblo and Fremont in the Glen Canyon area were infected. Even the Sinagua inhabitants of Elden Pueblo were infected (Hevly et al. 1979). The infections resulted from air humidified by human activity and contaminated with floating eggs within confined spaces.

Although pinworm infection tends to be asymptomatic, a high prevalence of heavy infections can result in severe pathology, including secondary bacterial infections in juveniles. However, to my mind the real relevance of pinworm relates to other diseases that are also airborne transferred. For the ancestral Pueblos, tuberculosis was the other airborne disease. Among the most poignant epidemiological descriptions of the tuberculosis threat to Pueblos, is applicable to pinworms as well, is provided by Fink (1985), who examined details of Anasazi life such as communal living, lack of knowledge of germ theory, and cramped living conditions that promoted infectious diseases.

The San Juan period at Salmon Pueblo is enigmatic in the context of pinworm prevalence at other sites. Only 7 percent of 112 coprolites studied contained pinworm eggs—approximately one-fifth the prevalence recorded for other Pueblo III sites, including Pueblo Alto and Pueblo Bonito. A probable explanation for this relates to Paul Reed’s (2006c) finding that the San Juan residents of Salmon used primarily the second-floor rooms for human activities. Air conditions in the lowest rooms, and those closest to the windowless rear wall, would have been more likely to increase pinworm infection. Such rooms would have had the most stagnant and humid air, promoting airborne infection with pathogens. Use of hearths in second-floor rooms would have produced a much less humid environment, and any rooms opening towards the large Salmon plaza would have been healthier.
with ventilation from the dry, relatively breezy air outside the pueblo.

Subterranean rooms such as kivas would have provided the primary vector for transmitting airborne disease. In kivas, the air would have been humid, and the air flow around the ventilator would have been sufficient to transmit particles around the room, but not to remove infectious particles from the structure. This would explain, in part, why Basketmaker groups, who lived in pithouses with little or no circulation, developed a high prevalence of infection. After Basketmaker times, however, kivas would have been the most likely subterranean nidi of pinworm dissemination. One way to test this hypothesis is through analysis and comparison of sediment samples from kiva, living room, and milling room floors.

By far the healthiest place to work and live at Salmon was outside, in the plaza and on rooftops. Sunlight would have desiccated and radiated pathogens, thereby reducing the number of infectious airborne contaminants, and the clean air moving across the plaza would have provided people with alternate, healthy air. Humidity also was undoubtedly much lower in these open spaces compared to confined rooms and kivas.

Sanitation and Hymenolepidid Tapeworm Infection

With regard to tapeworms, there are two main types of hosts. The definitive host is the animal in which tapeworms accomplish sexual reproduction, whereas intermediate hosts are infected with nonsexual stages. Usually, tapeworm infections in humans occur through ingestion of infected intermediate hosts.

The most common tapeworm (*Hymenolepis nana*) found in ancestral Puebloan coprolites took a different infectious pathway. This tiny tapeworm evolved the ability to use an intestinal villus as its intermediate host. The larvae emerge and become adults in the intestinal lumen, thus using humans as both their definitive and intermediate hosts.

Tapeworms have two methods of laying eggs. The tapeworm's anterior end, the scolex, attaches to the intestinal wall. Proglottids are the sexually reproducing tapeworm organs that develop from the scolex. As the they progress downward along the length of the tapeworm, their ovaries and testes mature, fertilization occurs, and eggs mature. When a proglottid is filled with mature eggs, it is said to be gravid. In some tapeworms, such as those that infect humans who eat undercooked fish, the eggs are laid through gravid proglottid genital pores. In other species, such as those that infect humans who eat undercooked beef, entire gravid proglottids break off of the tapeworm. These proglottids are partly motile and squirm their way out of the host body.

Hymenolepis lays eggs through genital pores, and these eggs are infective when they pass into the environment. Although they have been found in Canyon de Chelly coprolites, they have not been found in Chacoan great houses.

Conclusion

The Chacoan great houses provided many potential nidi for temporary, permanent, and nidiculous parasites. Great house inhabitants created or eliminated nidi through different activities and practices. Although there is was no way to completely eliminate the transmission of permanent parasites, some aspects of life at Salmon reduced the prevalence of pinworm relative to other great houses. A lower population density, among other factors, would have accomplished this.

The absence of fecal-borne parasitism indicates that nidi of fecal exposure were eliminated at Salmon Ruin through the use of specific rooms as latrines, an effective way of stopping the spread of parasites such as *Giardia lamblia*.

Nidi external to Salmon Ruin where hookworm and *S. stercoralis* transmission could have taken place did not exist. This was probably due to a different type of irrigation (perhaps using the free-flowing San Juan River) and gardening relative to that of Pueblo Alto and Pueblo Bonito, where hookworms did infect humans.

In the future, more extensive analysis of ancestral Pueblo coprolites should be conducted using a variety of research methods. Some sites, such as Antelope House, are currently the focus of molecular, immunological, and microscopic analysis. Other sites, such as those in Glen Canyon, were studied
Parasite Pathoecology

only through microscopy and could yield beneficial data with newer approaches. Once a range of meth-ods has been applied to a larger sample of sites, we will be able construct a more complete picture of ancestral Pueblo parasite pathoecology.

In addition, parasitological methods must be developed for analysis of remains other than coprolites. Many nidiculous pathogens such as bed bugs and kissing bugs live in walls and roofing. There-fore, archaeological excavations should include soil samples from architectural remains to search for the presence of insect exoskeletons. Also, analysis of trash sediments for all types of parasites must be developed in order to obtain parasitological data from sites that lack coprolites. Once these ap-proaches are developed, then a true archaeology of parasitic disease will emerge.
Abbott, David R.
2001

Abioye, A. A.
1973

Acklen, John, and Sally Greiser
1977

Adams, E. Charles
1975

Adams, Karen R.
1998
Archaeobotanical Indicators of Seasonality: Examples from Arid Southwestern United States.

Adams, Karen R., and Vorsila L. Bohrer
1980a

1980b

1984

1990

1998

2006a

2006b

Adams, J. Keith
1975
Wall Abutments at Salmon Ruins. Ms. on file, Salmon Ruins Museum Library, Bloomfield, New Mexico.

Adams, Karen R.
1980a

1980b

1984

1990

1998

2006a

2006b

Adams, Karen R., and Vorsila L. Bohrer
1980a

1980b

1984

1990

1998

2006a

2006b
References

Adams, Karen R., and Vandy E. Bowyer

Adams, S.
1966 Museum of New Mexico Field Journal Form on Site LA 562. Completed for Farmington Town Planning project. On file, Laboratory of Anthropology, Museum of New Mexico, Santa Fe.

Adler, M. A.

Adler, M. A., and M. D. Varien

Adovasio, J. M.

Adovasio, J. M., and J. D. Gunn

Ahlstrom, Richard V. N.

Akins, Nancy J.

Akins, Nancy J.

Allison, James R.
References

Allison, M. J., A. Pezzia, L. Hasegawa, and E. Gerszten
Ananthakrishnan, S., P. Nalini, and S. P. Pani
Arnold, Dean E.
Ashmore, Wendy
Ashmore, Wendy, and A. Bernard Knapp (editors)
Awasthi, S., and V. K. Pande
Baker, Larry L.
Baker, Larry L., and Kurt T. Mantonya
Bannister, Bryant, William J. Robinson, and Richard L. Warren
Barlow, K. Renee
Basso, Keith H.
1996 Wisdom Sits in Places: Landscape and Language
among the Western Apache. University of New Mexico Press, Albuquerque.
Baxter, M. J.
Beal, John D.
1984 Anasazi Pioneers: Puebloan Occupational Dynamics in the San Juan Coal Lease. School of American Research, Santa Fe.
Beaglehole, Ernest
Bennett, Joanne L.
Benson, Larry, Linda Cordell, Kirk Vincent, Howard Taylor, John Stein, G. Lang Farmer, and Kiyoto Futa
Bergsneider, Lisa D.
Bernardini, Wesley
Berry, Michael S.
Betancourt, Julio L.
Betancourt, Julio L., and Thomas R. Van Devender
Beyer, Hermann
Bice, Richard A.
Birkhead, G., and R. L. Vogt
1989 Epidemiologic Surveillance for Endemic Giardia lamblia Infection in Vermont: The Roles of

391
References

Birnie, Lt. Rogers

Black, R. E., A. C. Dykes, S. Sinclair, and J. G. Wells

Blinman, Eric, and C. Dean Wilson

Bohrer, Vorsila L.

Bohrer, Vorsila L., and Karen R. Adams
1977 Ethnobotanical Techniques and Approaches at Salmon Ruin, New Mexico. Contributions in Anthropology 8(1). Eastern New Mexico University, Portales.

Bohrer, Vorsila L., and John F. Doebley

Bolack, Tommy

Bolton, Herbert S.

Bradley, Bruce A.

Bradley, Richard

Brandt, Elizabeth A.

Breternitz, Cory Dale

Breternitz, Corey Dale, David E. Doyel, and Michael P. Marshall (editors)

Breternitz, David A., Arthur H. Rohn Jr., and Elizabeth A. Morris
1974 Prehistoric Ceramics of the Mesa Verde Region.
References

Brisbin, J. M., and C. J. Brisbin

Brown, Gary M.

Brown, Gary M., Thomas C. Windes, and Peter J. McKenna

Brugge, David M.

Buck, C. E., W. G. Cavanaugh, and C. D. Linton

Buikstra, Jane E., and James H. Mielke

Buikstra, Jane E., and Mark Swegle

Buikstra, Jane E., and Douglas H. Ubelaker (editors)

Burgess-Terrel, Martha E.
1979 *A Study of Cucurbita Material from Salmon Ruin, New Mexico*. Master’s thesis, Department of Anthropology, Eastern New Mexico University, Portales.

Burton, James H., and Arley W. Simon

Bussy, Stanley D., A. H. Warren, James Schoenwetter, Alan P. Brew, and Steward Peckham
1973 *Archaeological Surveys and Salvage Excavations along the Main Canal of the Navajo Indian Irrigation Project and the Hammond Irrigation Project, Northwestern New Mexico*. Unpublished ms. on file, library, National Park Service, Santa Fe.

Bustard, Wendy J.

Cameron, Catherine M.

REFERENCES

Cameron, C. M., W. E. Davis, and S. H. Lekson
1996 *The Chaco Era in the Northern Southwest: The Bluff Great House Project in the Northern Southwest.* Ms. on file, University of Colorado, Boulder.

Carr, Christopher, and Jill E. Neitzel

Carden, G. A., and Catherine M., and H. Wolcott Toll

2002 N5000 Petrographic Analysis. In *Two Millennia at Tocito: Archaeological and Ethnographic Investigations Along the N5000 (2) Road, San Juan County, New Mexico*, edited by P. F. Reed and K. N. Hensler, Appendix C. Navajo Nation Papers in Anthropology 57. Navajo Nation Archaeology Department, Window Rock, Arizona.

Carden, G. A., and C. L. MacLeod

Carpenter, Andrea J.
2000 Petrographic Results for MAPL. Ms. on file, Animas Ceramic Consulting, Farmington, New Mexico.

2001 Petrographic Analysis of Tommy Site, Ceramics. Ms. on file, Animas Ceramic Consulting, Farmington, New Mexico.

2002 N5000 Petrographic Analysis. In *Two Millennia at Tocito: Archaeological and Ethnographic Investigations Along the N5000 (2) Road, San Juan County, New Mexico*, edited by P. F. Reed and K. N. Hensler, Appendix C. Navajo Nation Papers in Anthropology 57. Navajo Nation Archaeology Department, Window Rock, Arizona.

Carr, Christopher, and Jill E. Neitzel

Caso, Alfonso, Ignacio Bernal, and Jorge R. Acosta

Castetter, Edward F.

Castetter, Edward F., and Willis H. Bell
1942 *Pima and Papago Indian Agriculture.* University of New Mexico Press, Albuquerque.

1951 *Yuman Indian Agriculture.* University of New Mexico Press, Albuquerque.

Cattanach, George S., Jr.
1956 The Trunk Line and Field Camp Excavations, Two Pueblo Sites on Trunk 3-C, Near Farmington, New Mexico. Chapter 3 in *Pipeline Archaeology: Reports of Salvage Operations in the Southwest on El Paso Natural Gas Company Projects, 1950–1953.* Edited by Fred Wendorf, Nancy Fox, and Orion Lewis. Laboratory of Anthropology and Museum of Northern Arizona, Santa Fe and Flagstaff.

Chartkoff, Joseph L.

Chaudhary, A. K., and S. N. Jayaswal

Chenault, Mark L., and Thomas N. Motinger

Childs, S. T.

Cintron Villaronga, J. R.

Clark, Jeffery J.

Cockburn, T. A.

Colton, Harold S.
1955 *Wares 8A, 8B, 9A, 9B, Tusayan Grey and White

Daniels, Helen Sloan 1940 Durango Public Library Museum Project of the Archaeological Department. On file, Durango Public Library, Colorado.

Dean, Jeffrey S., and Richard Warren 1983 Dendrochronology. In *The Architecture and
References

DeMorais, M. B., and H. U. Suzuki

Dent, Stephen D., and Barbara Coleman

DiPeso, Charles C.

Dittert, A. E., Jr.

Dittert, A. E., and H. C. Greminger

Dittert, Alfred E., Jr., Jim J. Hester, and Frank W. Eddy
1961 Archaeological Survey of the Navajo Reservoir District, Northwestern New Mexico. Monograph 23. School of American Research and Museum of New Mexico, Santa Fe.

Doebley, John F.

Doebley, John F., and Vorsila L. Bohrer

Douglass, William Boone

Doyel, David E.

Doyel, David E. (editor)

Doyel, David E., Cory D. Breternitz, and Michael P. Marshall

Driver, Jonathan C.

Durand, Kathy Roler

Durand, Kathy Roler, and Stephen R. Durand

Durand, Stephen R., and Kathy Roler Durand
References

Faris, Johnwill 1934 Archaeological Reconnaissance Report. Ms. submitted to Director of the National Park Service, Department of the Interior, Washington, D.C. Ms. on file, Aztec Ruins National Monument, Aztec, New Mexico.

Fenn, Forrest 2004 The Secrets of San Lazaro Pueblo. One Horse Land and Cattle Company, Santa Fe.

1917b Far View House: A Pure Type of Pueblo Ruin. Art and Archaeology 6(3):133–141.

Fish, Suzanne K.

Flora, I. F., and Helen Sloan Daniels

Floyd, M. Lisa, Marilyn Colyer, David D. Hannah, and William H. Romme

Foster, Michael S.

Fowler, Andrew P., and John R. Stein

Franklin, Hayward H.

Franklin, Hayward H., and Peter J. McKenna

Frazier, Kendrick

Frisbie, Theodore R.

Fry, Gary F.

Fry, Gary F., and H. J. Hall

Fuller, Steven L.
1988 Archaeological Investigations in the Bodo Canyon Area, La Plata County, Colorado. UMTRA
References

Galinat, Walton C.

Galinat, Walton C., and John H. Gunnerson

Garrett, Elizabeth M.

Geib, P. R.

Gillespie, William B.

Gilman, R. H.

Gladwin, H. S.

Glowacki, Donna
2005 Northern San Juan Intra-Regional Interaction During the “Turbulent 1200s,” Paper presented at the 70th annual meeting of the Society for American Archaeology, Salt Lake City, Utah.

Gnabasik, Virginia R.

Gonçalves, M. L. C., A. Araújo, and L. F. Ferreira

Grayson, Donald K.

Grove, R. Bruce

Gruell, G. E.

Gumerman, George J. (editor)

Hadlock, Harry
1958 Site Form for LA 5604 (duplicates LA 3028). On file, Archaeological Records Management System, Laboratory of Anthropology, Museum of New Mexico, Santa Fe.
REFERENCES

1959 Site Forms for LA 5611, LA 5629 and LA 5630 (duplicates LA 8611 and LA 8612). On file, Archaeological Records Management System, Laboratory of Anthropology, Museum of New Mexico, Santa Fe.

1973 Site Forms for LA 82106 through LA 82102. On file, Archaeological Records Management System, Laboratory of Anthropology, Museum of New Mexico, Santa Fe.

Hall, Edward Twitchell

Hallasi, J. A.

Hamblin, Nancy L.

Hancock, Patricia M., Timothy M. Kearns, Roger A. Moore, Margaret A. Powers, Alan C. Reed, Linda Wheelbarger, and Penelope A. Whitten

Hannaford, Charles A.

Hargrave, Lyndon L.

Harter, L., F. Frost, and W. Jakubowski

Haug, Gerald H., Detlef Gunther, Larry C. Peterson, Daniel M. Sigman, Konrad A. Hughen, Beat Aeschlimann

Haur, Emil W.

Hawley, Florence M.

Hayes, Alden C.

Hayes, Alden C., and Thomas C. Windes

Hays, Kelley A.

Hefner, Ronald G.

Hegmon, Michelle

400
References

Hegmon, Michelle (editor)

Heitman, Carrie C., and Phil Geib
2005 Road Rooms and Ritual Features of the Bluff Great House in Regional Context. Poster presented at the 70th annual meeting of the Society for American Archaeology, Salt Lake City, Utah.

Hendricks, Rick, and John P. Wilson

Hensler, Kathy Niles

Hensler, Kathy Niles, and Eric Blinman

Hensler, Kathy Niles, and Joell Goff

Hensler, Kathy Niles, Lori Stephens Reed, and Jeff Speakman

Hevly, R. H., R. E. Kelly, G. A. Anderson, and S. J. Olsen

Hewett, Edgar L.

Hibben, Frank C., and Herbert W. Dick

Hill, W. W.

Hjelt, K., A. Paerregaard, and E. Krasilnikoff

Hogan, Patrick

Hogan, Patrick, and Lynne Sebastian (editors)

Holmes, William H.

Honeycutt, Linda, and Jerry Fetterman
REFERENCES

Horn, Jonathan C., Jerry Fetterman, and Linda Honeycutt (compilers)

Horne, P. D.

Hough, Walter

Hovezak, Mark J.

Hugot, J. P., K. J. Reinhardt, S. L. Gardner, and S. Morand

Hunter-Anderson, R. D.

Hurst, W. B.
1998 Test Excavations, Bluff Great House. Field summary on file, Department of Anthropology, University of Colorado, Boulder.

Hurst, W. B., M. N. Levine, S. B. Barber, and C. M. Cameron

Hurst, W. B., M. N. Levine, and S. Wilson

Irwin-Williams, Cynthia

Irwin-Williams, Cynthia, and Phillip H. Shelley (editors)

Iversen, G. R.
References

Jackson, H. Edwin, and Susan L. Scott

Jackson, William Henry

Jacobson, LouAnn

Jalbert, J. P., and C. M. Cameron

James, John

Janetski, Joel C.

Jeancon, J. A.
1922 Archaeological Research in the Northeastern San Juan Basin of Colorado During the Summer of 1921. State History Society of Colorado, Denver, and University of Denver.

Jeancon, J. A., and F. H. H. Roberts
1923 Further Archaeological Research in the Northeastern San Juan Basin of Colorado, During the Summer of 1922. State History Society of Colorado, Denver, and University of Denver.

Johns, Timothy

Johnson, Gregory

Jones, George T., Donald K. Grayson, and Charlotte Beck

Jones, Volney H.
1931 The Ethnobotany of the Isleta Indians. Master’s thesis, Department of Biology, University of New Mexico, Albuquerque.

Judd, Neil M.

1959 Pueblo del Arroyo, Chaco Canyon, New Mexico. Smithsonian Miscellaneous Collections 138(1). Smithsonian Institution, Washington, D.C.

Judge, W. James

Kamp, Kathryn A.

Kane, A. E.

Kankainen, Kathy (editor)
REFERENCES

Kantner, John

Kantner, John, and Keith W. Kintigh

Kantner, John, and Nancy M. Mahoney (editors)

Kaufman, Daniel

Kearney, Thomas H., and Robert H. Peebles

Kelley, J. Charles

Kintigh, Keith W.

Kohler, Timothy A., and E. Blinnman

2007 Settlement Ecodynamics in the Prehispanic Cen...

Kohler, Timothy A., and Kathryn Kramer

Kohler, Timothy A., William D. Lipe, Mary E. Floyd, and Robert A. Bye Jr.

Kohler, Timothy A., and Meredith H. Matthews

Kopytoff, Igor

Kuckelman, Kathryn

Kuckelman, K. A.

Kuckelman, K. A. (editor)

Kuckelman, Kristin A., Ricky R. Lightfoot, and Debra L. Martin

Lang, Charles H.
1959 *Cochiti, A New Mexico Pueblo, Past and Present*. University of Texas Press, Austin.

Lang, Richard W., and Arthur H. Harris

Larralde, Signa

Larsen, Clark Spencer

Larson, Daniel O., Hector Neff, Donald A. Graybill, Joel Michaelsen, Elizabeth Ambos

LeBlanc, Steven A.

Lechtman, H.
1977 Style in Technology: Some Early Thoughts. In *Material Culture: Style, Organization, and
REFERENCES

Lee, S. W.

Lekson, Stephen H. (editor)

Lekson, Stephen H.

1999 The Chaco Meridian: Centers of Political Power in the Ancient Southwest. Alta Mira Press, Walnut Creek, California.

Lekson, Stephen H., and C. M. Cameron

Lekson, Stephen H., William B. Gillespie, and Thomas C. Windes

Lekson, Stephen H., and Peter N. Peregrine

Lekson, Stephen H., Thomas C. Windes, and Peter J. McKenna

Lekson, Stephen, Thomas Windes, John Stein, and W. James Judge

Lemonier, Pierre (editor)

Lengyel, Stacey N., and Jeff L. Eighmy

Lentz, David L.

Leonard, Robert D., and George T. Jones

LeRoy-Toren, S., and K. J. Reinhard
References

Lewis, E. A., and A. U. Antia
1969 Amoebic Colitis: Review of 295 Cases. Transac-
tions of the Royal Society of Tropical Medicine and
Hygiene 63(5):633-638.

Lightfoot, Ricky R., and Kristin A. Kuckelman
2001 A Case of Warfare in the Mesa Verde Region.
In Deadly Landscapes: Case Studies in Prehis-
toric Southwestern Warfare, edited by G. E. Rice
and S. A. LeBlanc, pp. 51-64. University of Utah
Press, Salt Lake City.

Lipe, William D.
1970 Anasazi Communities in the Red Rock Plateau,
Southeastern Utah. In Reconstructing Prehistoric
Pueblo Societies, edited by W. A. Longacre, pp.
84-139. University of New Mexico Press, Albu-
querque.

2006 Notes from the North. In The Archaeology of
261-313. School of American Research, Santa Fe.

Lipe, William D., and M. D. Varien
1999 Pueblo II (AD 900-1150). In Colorado Prehistory:
A Context for the Southern Colorado River Basin,
edited by W. D. Lipe, M. D. Varien, and R. H.
Wilshusen, pp. 242-289. Colorado Council of
Professional Archaeologists, Denver.

Lister, Robert H.
1978 Mesoamerican Influence at Chaco Canyon, New
Mexico. In Across the Chichimtec Sea: Papers in
Honor of J. Charles Kelley, edited by C. Riley and
B. Hedrick, pp. 233-241. Southern Illinois Uni-
versity Press, Carbondale.

Lister, Robert H., and Florence C. Lister
1981 Chaco Canyon: Archaeology and Archaeologists.
University of New Mexico Press, Albuquerque.

1987 Aztec Ruins on the Anasim: Excavated, Preserved,
and Interpreted. University of New Mexico Press,
Albuquerque.

Lyman, R. Lee
1994 Vertebrate Taphonomy. Cambridge University
Press, New York.

Onnys, Patrick D.
2003 Ancestral Hopi Migrations. Anthropological Pa-
ers of the University of Arizona 68. University
of Arizona Press, Tucson.

MacLeod, C. L.
1988 Intestinal Nematodes. In Parasitic Diseases in
Pregnancy and the Newborn, edited by C. L. Mac-
Leod, pp. 192-215. Oxford University Press, Ox-
ford.

1988 Amoebiasis. In Parasitic Diseases in
Pregnancy and the Newborn, edited by C. L. Mac-

MacLeod, C. L., and G. A. Carden
1997 The Chacoan Roads: A Cosmological Interpre-
tation. In Anasazi Architecture and American

Macomb, Capt. J. N.
1876 Report of the Exploring Expedition from Santa
Fe, New Mexico, to the junction of the Grand and Green
Rivers of the Great Colorado of the West, in 1859. U.S.

Magers, Pamela C.
1986a Weaving at Antelope House. In Archeological In-
vestigations at Antelope House, by D. P. Morris,
pp. 224-276. Publications in Archeology 19. Na-
tional Park Service, Washington, D.C.

1986b Miscellaneous Wooden and Vegetal Artifacts.
In Archeological Investigations at Antelope House,
National Park Service, Washington, D.C.

Mahias, M. C.
1993 Pottery Techniques in India: Technical Vari-
ants and Social Choice. In Technological Choices:
Transformation in Material Culture Studies Since
the Neolithic, edited by P. Lemonier, pp. 157-180.

Mahoney, Nancy M.
2000 Redefining the Scale of Chacoan Communities.
In Great House Communities Across the Chacoan
Landscape, edited by J. Kantner and N. M. Ma-
honey, pp. 19-27. Anthropological Papers of the
University of Arizona 64. University of Arizona
Press, Tucson.

Mahoney, Nancy M., and John Kantner
2000 Chacoan Archaeology and Great House Com-
munities. In Great House Communities Across
the Chacoan Landscape, edited by J. Kantner and
N. M. Mahoney, pp. 1-15. Anthropological Pa-
ers of the University of Arizona 64. University
of Arizona Press, Tucson.

Malville, J. McKim
1990 The Astronomy of Chimney Rock. Chimney Rock
Interpretive Program, San Juan Mountains Asso-
ciation, Pagosa Springs.

2005 Chimney Rock, The Ultimate Outlier. Lexington

Malville, J. McKim, and Gary Matlock (editors)
General Technical Report RM-227. USDA For-
est Service, Rocky Mountain Forest and Range
Experiment Station, Fort Collins, Colorado.

Malville, J. M., and N. J. Malville
2001 Pilgrimage and Periodical Festivals as Processes
of Social Integration in Chaco Canyon. Kiva 66:
327-344.

Marshall, Michael P.
1997 The Chacoan Roads: A Cosmological Interpre-
tation. In Anasazi Architecture and American
References

Marshall, Michael P., John R. Stein, Richard W. Loose, and Judith E. Novotny 1979 Anasazi Communities of the San Juan Basin. Public Service Company of New Mexico, Albuquerque, and New Mexico Historic Preservation Bureau, Santa Fe.

McKenna, Peter J. 1976 Ceramics from Tested Sites in the San Juan Drainage. Unpublished ms. on file, Salmon Ruins Museum Library, Bloomfield, New Mexico.

1988 Late Bonito Phase Developments at the Aztec Ruins, New Mexico. Paper presented at the 53rd annual meeting of the Society for American Archaeology, Phoenix.

McKenna, Peter J., and Hayward Franklin 2004 Sterling Ruin Revisited. Paper presented at the
Salmon Working Conference, Farmington, New Mexico, April.

REFERENCES

References

Morris, Don P.

Morris, Earl H.

Moser, Christopher L.

Muir, Robert James

Munro, Natalie D.

Munsell Color

Myers, Tori L., and Lori Stephens Reed

Navitsky, R. C., M. L. Dreyfuss, J. Shrestha, S. K. Khatry, R. J. Stoltzffuss, and M. Albonico

Nawalinski, T., G. A. Schad, and A. B. Chowdhury

Neff, Hector, Michael D. Glascock, Ronald L. Bishop, and M. J. Blackman

Neff, Hector, and Donna M. Glowacki

Neilson, Ronald P.

Neitzel, Jill E.

2003a Three Questions About Pueblo Bonito. In Pueblo Bonito: Center of the Chacoan World, edited by
References

Neitzel, Jill E. (editor)
Neitzel, Jill E. and Ronald L. Bishop
Neitzel, Jill, Hector Neff, Michael D. Glascock, and Ronald L. Bishop
Nelson, Ben A.
Neupert, Mark A.
Newberry, John S.
Nials, Fred, and Paul F. Reed
Nicholson, Rebecca A.
1993 A Morphological Investigation of Burnt Ani-

Nolan, J.
1975 Eastern New Mexico University Site Survey Forms for LA 13430 (ENM 106420), LA 13431 (ENM 106431), and LA 13432 (ENM 10644). On file, Archaeological Records Management System, Laboratory of Anthropology, Museum of New Mexico, Santa Fe.
Nordenskiöld, Gustav
Nusbaum, Deric
1934 Diary of Deric Nusbaum, La Plata Ruins Survey. Ms. on file, Laboratory of Anthropology, Museum of New Mexico, Santa Fe.
Nwosu, A. B.
O'Bryan, Aileen
Odegaard, Nancy, and Kelley Hays-Gilpin
Olivarès J. L., R. Fernández, J. Fleta, M. Y. Ruiz, and A. Clavel
Olsen, John W.
Orcutt, Janet D., Eric Blinman, and Timothy A. Kohler
Ortiz, Alfonso
References

Ortman, S. G.

Ortman, S. G., and B. A. Bradley

Ortman, Scott G., and Mark D. Vrion, T. Lee Gripp

Osborne, Carolyn M.

O’Sullivan, Timothy

Palkovich, Ann M.

Parsons, Elsie C.

Patterson, Alex

Pauketat, Timothy R., Lucretia S. Kelly, Gayle J. Fritz, Neal H. Lopinot, Scott Elias, and Eve Hargrave

Pavlovsky, E. N.

Peckham, Stewart L., and John P. Wilson
1963 Site Forms for LA 8588, LA 8609, LA 8610, LA 8611, LA 8612, and LA 8619. On file, Archaeological Records Management System, Laboratory of Anthropology, Museum of New Mexico, Santa Fe.

Pepper, George H.

Peterson, Alfred

Peterson, Ken
1974 Room Summary, 64 W. Ms. on file, Salmon Ruins Museum, Bloomfield, New Mexico.

Phillips, David A.

Pippin, Lonnie C.

Plog, Stephen

Potter, Gayle
1981 Social Differentiation of Mesa Verdean Culture as Shown by the Examination of Manipulated Fiber Artifacts in Burials from Salmon Ruin, New Mexico. Unpublished M.A. thesis, Department
of Anthropology, New York University, New York.

Potter, James M.

Potter, James M., and Elizabeth M. Perry

Powers, Robert P., Peter J. McKenna, and John Roney
1987 Updated Site Form for LA 8619. On file, Archaeological Records Management System, Laboratory of Anthropology, Museum of New Mexico, Santa Fe.

Prudden, T. Mitchell

Rapoport, Amos

Reed, Alan D., and Jonathan C. Horn

Reed, Lori Stephens

Reed, Lori Stephens, and Joell Goff

2000b What Have We Learned? The Current Status of Ceramic Analysis for the Tommy Site. Ms. on file, Animas Ceramic Consulting, Farmington, New Mexico.

Reed, Lori Stephens, Joell Goff, and Kathy Niles Hensler

Reed, Lori Stephens, and Kathy Niles Hensler
2006 Notes and Data for the Middle San Juan Project

Reed, Lori Stephens, Kathy Niles Hensler, and Andrea J. Carpenter

2001b Tommy Site Ceramic Sourcing Study. In Special Ceramic Studies: Totah Archaeological Project Field School, by San Juan College Cultural Resources Management Program and Animas Ceramic Consulting. Submitted to State of New Mexico Historic Preservation Division in fulfillment of New Mexico Historic Preservation Grant 35-00-15334.02.1000-SJC-133. San Juan College Cultural Resource Management Program, Farmington, New Mexico.

Reed, Lori Stephens, and Tori Myers

Reed, Lori Stephens, Jim Railey, Chris Turnbow, Hector Neff, and Andrea Carpenter

Reed, Paul F.

Salmon Pueblo and the Middle San Juan: Not Mesa Verde South! Paper presented at the Mesa Verde Centennial Symposium, May.

Reed, Paul F. (editor)

2006a Thirty-Five Years of Archaeological Research at Salmon Ruins, New Mexico. 3 vols. Center for Desert Archaeology, Tucson, and Salmon Ruins Museum, Bloomfield, New Mexico.

Reed, Paul F., Laurie Webster, Jeff J. Clark, Gary M. Brown, and Lori Stephens Reed

2005 Chacoan Expansion or Emulation of the Chacoan System? The Emergence of Aztec, Salmon, and Other Great House Communities in the Middle San Juan. Proposal accepted by the National Science Foundation, June 2005. Ms. on file.
References

Richert, Roland
1952 Aztec Ruins National Monument Stabilization, West Ruin 1951. Ms. on file, Aztec Ruins National Monument, Aztec.

Riley, Carroll L., and Basil C. Hedrick (editors)

Ringrose, T. J.

Rivera, R. A.

Robbins, Wilfred W., John P. Harrington, and Barbara Freire-Marreco

Roberts, Frank H. H., Jr.

Robertson, I. G.

Rodwell, Warwick J.

Roe, Peter G.

Rohn, Arthur H.

Royer, Kathy Lynne

Roney, John

Aerial photographs reviewed by John Roney and marked with possible Chaco road segments in the Farmington area. On file, San Juan College Cultural Resources Management Program, Farmington, New Mexico.

Room 64 Pecos Summary
1975 Room 64W Summary for Pecos Conference 1975. Ms. on file, Salmon Ruins Museum, Bloomfield, New Mexico.

Rossi, Susan

Roys, Lawrence
1936 Lowry Ruin as an Introduction to the Study of Southwestern Masonry. In Lowry Ruin in South-
References

Schniebs, LeeAnna
2002 Totah Archaeological Project Faunal Analysis: The Tommy Site (LA 126581) Field School Sess-

Schoenwetter, James, and Frank W. Eddy
1964 Alluvial and Palynological Reconstruction of En-

Schroeder, Albert H.
1968 Birds and Feathers in Documents Relating to Indians of the Southwest. In Collected Papers in Honor of Lyndon Lane Hargrave, edited by A. H. Schroeder, pp. 95–114. Papers of the Archaeolog-
ical Society of New Mexico 1. Museum of New Mexico Press, Santa Fe.

Samuels, Michael L., and Julio L. Betancourt
1982 Modeling the Long-term Effects of Fuelwood Harvests on Pinyon-Juniper Woodlands. Envi-
rornmental Management 6(6):505–515.

Sebastian, Lynne
1991 The Box B Site: Description and Excavation Strateg-
y. In Archeology of the San Juan Beaks: The Anas-

Sebastian, Lynne, and Patrick Hogan
1991 The Box B Site: Excavation Results. In Archeology of the San Juan Beaks: The Anasazi Occupa-

Sekaquaptewa, Emory, and Dorothy K. Washburn

Selzer, Eduard
stitution, Washington, D.C.

Sesler, Leslie M., and Timothy D. Hovezak
2003 Synthesis: Cultural and Adaptational Diversity in the Fruitland Study Area. In Archaeological
References

Shalizi, Cosma Rohilla

Sharp, Kayeleigh

Sharp, Rosemary

Shelley, Phillip H.

Shepard, Anna O.

Shetty, N., M. Narasimha, E. Elliott, I. S. Raj, and R. Macaden

Shipman, Jeff H.

Simpson, Lt. James H.

Smith, Adam T.

Smith, Howard N.

Smith, Maria Usterdurf

Smith, Michael E., and Frances F. Berdan

Snead, James E., and Robert W. Preucel

Snugg, John, and Thomas C. Windes

Sofaer, Anna

Sofaer, Anna, Michael P. Marshall, and Rolf M. Sinclair

Sofaer, Anna, Rolf M. Sinclair, and Joey B. Donahue
Southwest Paleoclimate Project
1996 Palmer Drought Severity Index Values from the Southwest Paleoclimate Project, Laboratory of Tree-Ring Research, University of Arizona, Tucson. Provided by Jeff Dean. Data on file, Salmon Ruins Museum Library, Bloomfield, New Mexico.

Speakman, Jeff

Speth, John D., and Susan L. Scott

Spielmann, Katherine A., and Eric A. Angstadt-Leto

Spuhler, James N.

Stanislawski, Michael B.

Stark, Miriam T., Mark D. Elson, and Jeffrey L. Clark

Stevenson, Matilda Cox

Stewart, Joe D., and Karen R. Adams

Stiger, Mark A.

Stiner, Mary C., Steven L. Kuhn, Stephen Weiner, and Ofer Bar-Yosef

Stroeder, Ann L. W.

Stroeder, A. L. W., and D. L. Martin

Stoltzfus, R. J., M. Albonico, H. M. Chwaya, J. M. Tielsch, K. J. Schulze, and Peter M. Blackhorse, and Richard Friedman

Stoessel, Steven O.

Stotz-Gast, Barbara, and Mary躅. Boehringer

Stout, Elizabeth, and Kenneth L. Jendrick

Stueber, John R., and Andrew P. Fowler

Stueber, John R., and Richard Friedman, Taft Blackhorse, and Richard Louse

Stein, John R., and Stephen H. Lekson

Stein, John R., and Peter J. McKenna
1988 An Archaeological Reconnaissance of a Late Bonito Phase Occupation near Aztec Ruins National Monument, New Mexico. National Park Service, Santa Fe, New Mexico.

Stevenson, Matilda Cox

Stein, John R., and Stephen H. Lekson

Stevenson, Matilda Cox

Stoddard, Ann L. W.

Stroeder, A. L. W., and D. L. Martin

REFERENCES

Stoltzfus, R. J., M. L. Dreyfuss, H. M. Chwaya, and M. Albonico

Street, David J.

Sutton, Mark Q.

Sutton, M. Q., and K. J. Reinhard

Swank, George R.

Syngg, John, and Tom Windes

Szuter, Christine R.

Szuter, Christine R., and Frank E. Bayham

Tanner, Clara Lee

Taus, M. R., A. Gasparovic, O. Piaggio, C. Goldaracena, M. Giacopuzzi, R. Piaggio, B. Pezzani, and M. Minvielle

Teague, Lynn S.

Tennessee, David, Robert A. Blanchette, and Thomas C. Windes

Thomas, Julian

Till, Jonathan

Tilley, Christopher

Toll, H. Wolcott

420
References

Toll, H. Wolcott, III, and Marcia Toll, H. Wolcott, III, and Sarah H. Schlanger

Toll, H. Wolcott, and Peter J. McKenna

Toll, H. Wolcott, III, Marcia T. Newren, and Peter J. McKenna

2005 Always There, Often Overlooked: The Role and Significance of Small Sites in Chaco Canyon. Paper presented at the 70th annual meeting of the Society for American Archaeology, Salt Lake City.

Toll, H. Wolcott, III, and Sarah H. Schlanger

Toll, H. Wolcott, III, and C. Dean Wilson

Toll, H. Wolcott, III, Thomas C. Windes, and Peter J. McKenna

Touchan, Ramzi, Craig D. Allen, and Thomas H. Sweetnam

Towner, Ronald H.

2003 Defending the Diné (Navajo). University of Utah Press, Salt Lake City.

Triadan, Daniela

Triadan, Daniela, Barbara J. Mills, and Andrew L. Duff

Truell, Marcia L.

1992 Excavations at 29SJ 627, Chaco Canyon, New Mexico.
References

Mexico. Reports of the Chaco Center II. National Park Service, Santa Fe.

Tschopik, Harry, Jr.

Van West, Carla R., and Jeffrey S. Dean

Tyler, Hamilton A.

Van Dyke, Ruth M.

Van West, Carla R., and Jeffrey S. Dean

Varien, Mark D.

1999b Communities and the Chacoan Regional System. In Great House Communities Across the Chacoan Landscape, edited by J. Kantner and N. M. Mahoney, pp. 149-156. Anthropological Papers of the University of Arizona 64. University of Arizona Press, Tucson.

Varien, M. D. (editor)

Varien, Mark D., William D. Lipe, Michael A. Adler, Ian M. Thompson, and Bruce A. Bradley

Varien, M. D., and S. G. Ortman

REFERENCES

Varien, M. D., C. R. Van West, and G. S. Patterson

Varien, M. D., and R. H. Wilshusen

Varyiam, E. P., and J. G. Banwell

Vestal, Paul A.

Vierra, Bradley, and Kurt Anschuetz
1993 The Excavation of a Multicomponent Anasazi Site (LA 9337) in the La Plata River Valley, Northwestern New Mexico. Archaeology Notes 49. Office of Archaeological Studies, Museum of New Mexico, Santa Fe.

Vivian, R. Gordon
1931 Basketry of Chetro Kettl. Ms. VA2107C on file at the Chaco Center, University of New Mexico, Albuquerque.

Vivian, Gordon R., and Tom W. Mathews

Vivian, R. Gwinn

Vivian, R. Gwinn, Dulce N. Dodgen, and Gayle H. Hartmann

Wallace, Laurel

Ware, John A., and Eric Blinman

Washburn, Dorothy K.

2006a A Symmetry Analysis of the Decorated Ceramics

423
References

Wendorf, Fred, and John Bradbury 1996 Site Form for LA 2610. On file, Archaeological Records Management System, Museum of New Mexico, Santa Fe.

Whalley, Lucy Anne 1980 Chacoan Ceramic Exchange in the Middle San Juan Area, AD 900–1300. Master's thesis, Department of Anthropology, Eastern New Mexico University, Portales.

Whitten, Penny 1973 Room Summary, 64W (Tower Kiva), Summer 1973. Ms. on file, Salmon Ruins Museum, Bloomfield, New Mexico.

Wilcox, David R. 1993 The Evolution of the Chacoan Polity. In The Chimney Rock Archaeological Symposium, ed-
References

Wilson, C. Dean

1999 Ceramic Trends in the Jackson Lake Locality. Ms. on file, Museum of New Mexico, Office of Archaeological Studies, Santa Fe.

Wilson, C. Dean, and Eric Blinman
1993 Upper San Juan Region Pottery Typology. Archaeology Notes 80. Office of Archaeological Studies, Museum of New Mexico, Santa Fe.

Wilson, S. D., M. M. Jordan, and M. A. Jordan

Windes, Thomas C.

Windes, Thomas C., Rachel Anderson, Brian K. Johnson, and Cheryl A. Ford
2000 Sunrise, Sunset: Sedentism and Mobility in the Chaco East Community. In Great House Communities Across the Chacoan Landscape, edited by...
References

Windes, Thomas C., and Eileen Bacha

Windes, Thomas C., and Dabney Ford

Windes, Thomas C., Cheryl Ford, and Dabney Ford

Windes, Thomas C., and Peter J. McKenna

Wiseman, Regge N.

Wobst, H. M.

Wright, Barton
Yu, S. H., Z. X. Jiang, and L. Q. Xu

Zaslow, Bert

Zedeño, Maria Nieves, James Busman, James Burton, and Barbara J. Mills