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 LDL cholesterol is associated with the development of atherosclerosis and is 

therefore considered an important target for intervention to prevent cardiovascular 

diseases. The inhibition of cholesterol absorption in the small intestine is an attractive 

approach to lowering plasma cholesterol, one that is exploited by drug therapy as well as 

dietary supplementation with plant sterols. The mechanism of action of plant sterol esters 

(PSE) is still incompletely understood, therefore this study was conducted to test the 

hypothesis that hydrolysis of plant sterol esters is necessary for their cholesterol-lowering 

effects to be realized.  

Male Syrian hamsters were fed diets containing no PSE, PSE containing stearic 

acid, palmitic acid, oleic acid or plant sterol ethers containing stearic acid. Treatment 

compounds were added at 5% of the diet (g/g). Diets were high is cholesterol and 

saturated fat to induce hyperlipidemia. The treatments effectively created a spectrum of 

PSE hydrolysis across which cholesterol metabolism could be compared. Stearate ethers, 

Stearate Esters and Palmitate Esters were poorly hydrolyzed (1.69-4.12%), while oleate 

sters were hydrolyzed at 88.29%, and cholesterol absorption correlated negatively with 

percent hydrolysis with a correlation coefficient of -0.8504. These results suggest that 



 

 

PSE hydrolysis plays a necessary role in the cholesterol-lowering effects of PSE. In 

addition, these data also suggest that poorly hydrolyzed plant sterol esters may act 

through an alternative mechanism than that of competition with cholesterol for micelle 

incorporation. We suggest that these PSE that are not well hydrolyzed may lower 

cholesterol by forming an oil phase into which cholesterol is solubilized making it 

unavailable for absorption into enterocytes. 

In summary, our results demonstrated that PSE hydrolysis is necessary for 

cholesterol-lowering. Additionally, poorly hydrolyzed PSE may function through an 

alternative pathway than micelle competition with cholesterol. 
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INTRODUCTION  

 Cardiovascular disease takes on many forms, but the form of cardiovascular 

disease that is responsible for the most deaths in the United States is Coronary Heart 

Disease (CHD). Atherosclerosis, or plaque buildup in blood vessels, is a major 

contributor to CHD and has been strongly associated with elevated levels of low density 

lipoprotein (LDL) cholesterol. Large efforts over decades to control the development and 

progression of atherosclerosis and CHD have yielded numerous therapeutic options for 

controlling LDL cholesterol including pharmaceutics targeted at reducing cholesterol 

absorption, cholesterol biosynthesis and bile acid re-absorption. In an effort to target LDL 

cholesterol absorption with fewer side effects than drug therapy, nutrition 

supplementation with plant sterols has become a large topic of interest.  

 Plant sterols have been suggested to work through a number of different 

mechanisms; 1.) competition with cholesterol for an esterification enzyme required for 

absorption 2.) co-crystallization with cholesterol or 3.) competition with cholesterol for 

entrance into micelles necessary for absorption. The latter two mechanisms have been 

shown to be viable explanations of plant sterol actions, although the third mechanism is 

thought to be quantitatively most important.     

 A number of parameters are important to consider for optimum cholesterol 

lowering effects of plant sterol supplementation. Plant sterols in contrast to their 

hydrogenated counterparts, plant stanols, have different chemical properties that appear 

to make them less efficient, particularly over long periods of supplementation, than plant 

stanols at lowering cholesterol. Also, the food matrix in which the plant sterol is 
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delivered is important. Plant sterols supplemented in bread or breakfast cereal, for 

example, were less effective than those supplemented in milk or yoghurt (Clifton et al 

2004). Dose is another important consideration. Doses as low as 0.8g/day have been 

shown to lower cholesterol (Hendriks et al 1999), but it appears that the optimal 

maximum dose above which few additional benefits are realized is 2g/day ((Katan et al 

2003). Additionally, some evidence suggests that plant sterols taken in multiple doses per 

day are more effective than one large dose per day.  

 Another parameter that has often been assumed to be required for effective 

cholesterol-lowering by plant sterol esters (PSE) is hydrolysis of the molecule to yield 

free plant sterols. Although the necessity of PSE hydrolysis has been assumed, it has not 

been unequivocally demonstrated. Therefore, this study was proposed to test the 

hypothesis that PSE hydrolysis is necessary for optimum cholesterol lowering effects. 

Male Syrian hamsters were fed either no PSE, PSE containing stearic, palmitic or oleaic 

acid, a plant sterol ether with stearic acid, or free sterol substituted into the diet at 3% 

plant sterol equivalent. Diets were designed to create a spectrum of hydrolysis to 

determine the dependence of the cholesterol-lowering effects of plant sterols on 

hydrolysis of the PSE. The study was carried out for 23 days. Plasma, liver, bile and feces 

were collected analysis.  
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LITERATURE REVIEW 

 

I. Cardiovascular Disease and Atherosclerosis 

 

Cardiovascular Disease (CVD) is an umbrella term that encompasses a variety of 

disease states including high blood pressure, coronary heart disease (CHD), stroke and 

heart failure. The etiology of CHD is largely attributable to atherosclerosis, or the build-

up of plaques on blood vessel walls as a result of cholesterol and foam cell deposition. 

Damaged endothelial tissue triggers the formation of clots to prevent further damage. 

Increasing foam cell deposition, however, leads to an inflammatory state characterized by 

lipid oxidation and eventual rupture of the clots, likely blocking blood flow through the 

affected vessels and leading to the characteristic manifestations of CHD; myocardial 

infarction and angina pectoris.          

Because of the profound influence that CHD has upon human health, it has 

become the focus of a great deal of research. There are a number of factors with which 

elevated incidence of CHD is associated. These include nonlipid parameters such as 

physical inactivity, smoking, and obesity, as well as lipid factors such as reduced high 

density lipoprotein (HDL)-cholesterol, elevated triglycerides (TG) and elevated low 

density lipoprotein (LDL)-cholesterol. Of these factors, an elevated level of LDL-

cholesterol has, for years, been widely accepted as the most important for the 

development of CHD (NCEP 2002), and consequently therapeutic treatments targeted at 

lowering LDL-cholesterol are paramount. 
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LDL-cholesterol is responsible for the transport of the majority of plasma 

cholesterol in humans (Galeano et al 1998). LDL particles are removed by the liver 

facilitated by LDL apoB protein interaction with liver LDL receptors. However, 

significant quantities of the lipoprotein can still interact with tissues independently of 

LDL receptors, leading to the atherogenic nature of LDL in extra-hepatic tissues 

(Galeano et al 1998). Small, dense LDL, a sub-fraction of LDL-cholesterol, has been 

presented as even more atherogenic than its larger fraction counterparts due to its greater 

ability to be oxidized and its increased ability to enter blood vessel intima (Berneis and 

Krauss 2002, Galeano et al 1998, Tribble et al 1995). Furthermore, the oxidative 

modification of LDL-associated lipids is a direct initiator of atherogenesis (Rizzo et al 

2009).  

Restriction of dietary cholesterol has traditionally been recommended to reduce 

circulating cholesterol levels, and thereby reduce atherosclerotic risk. Recent research, 

however, has determined diet to be a less-than-significant contributor to atherosclerosis 

or cardiovascular risk (McNamara 2000). Hepatic cholesterol synthesis is, on average, 

nearly 1000 mg/day, making it a quantitatively more important target for lowering 

circulating cholesterol levels (McNamara 2000). Consequently pharmacological 

intervention has been focused on this endogenous cholesterol source. Statin therapy has 

been successful in lowering LDL cholesterol levels by 18-55% through the inhibition of 

3-hydroxy-3-methyl-glutaryl-CoA reductase, the rate limiting enzyme in cholesterol 

synthesis (NCEP 2002). As is common with drug therapies, however, there are side 

effects to the use of statins. Most commonly, myopathy, elevated creatine kinase and 

alanine aminotransferase levels are seen with statin therapy (Joy and Hegele 2009, 
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Tolman 2002). Even with the efficiency of cholesterol-lowering seen with statin 

administration, new recommendations for optimal LDL levels are still often unattainable 

and require the addition of other drugs which add additional risk of drug-drug interaction 

and side effects (Katragadda et al 2010). This reality of side effects has created the need 

for the development of other cholesterol-lowering treatments. Because of their relative 

potency of action and paucity of side effects, dietary components, of which plant sterols 

rank among the most powerful, have become an increasingly attractive alternative.                                  

 

II. Cholesterol Absorption and Transport 

 

Intestinal Cholesterol Absorption 

 Dietary cholesterol intake for the average adult American is 400-500 mg per day 

(Grundy 1983), most of which is in the free form (Best and Duncan 1958). The small 

amount that enters the intestine as esters is quickly hydrolyzed by pancreatic cholesterol 

esterase (Carr and Jesch 2006), as only free sterol may be absorbed. Early perspectives of 

intestinal contents described a uniform emulsion from which lipid absorption occurred, 

but subsequent clarification of lipolysis and brush border anatomy suggested the need for 

re-evaluation (Hofmann and Borgstroem 1964). The current understanding is that 

intestinal contents consists of an oily phase and an aqueous phase existing above the 

critical micelle concentration (CMC) (Johnston and Borgstroem 1964, Miettinen and 

Siurala 1971, Nissinen et al 2002). The CMC is the surfactant concentration above which 

any added surfactant is, with high probability, in a micellar aggregate (Ruckenstein and 

Nagarajan 1975). The formation of micelles in the intestine during digestion occurs 
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through bile acid surfactant activity above the CMC that allows for spontaneous 

formation of these structures and incorporation of lipids, including free cholesterol. 

Cholesterol must be incorporated into micelles in order to pass through the small intestine 

brush border membrane and cross the unstirred water layer border where it enters the 

cytoplasm of the enterocyte (Simmonds 1972, Westergaard and Dietschy 1976). While 

previously thought to be a process of simple diffusion (Iqbal and Hussain 2009), it is now 

known that uptake of cholesterol from the micelle into the enterocyte is a protein 

mediated process (Thurnhofer and Hauser 1990), and that NPC1L1 is the likely the 

primary transporter responsible for its uptake (Altmann et al 2004). This complex system 

of sterol ester hydrolysis, micelle incorporation, and protein mediated transport allows for 

approximately 50% absorption efficiency of cholesterol from the intestine although a 

number of percent ranges have been observed (Altmann et al 2004, Borgstrom 1960).       

 

Cellular Cholesterol Transport 

 Upon entrance into the enterocyte, and in order to target it towards nascent 

chylomicrons rather than toward excretion into the intestine, free cholesterol is esterified 

by the endoplasmic reticulum-localized enzyme, acyl-CoA:cholesterol acyltransferase 2 

(ACAT2) (Lee et al 2000). The rate of esterification by this enzyme is influenced 

positively by substrate availability and negatively by product accumulation (Iqbal and 

Hussain 2009), affording the cell a mechanism for sensing the degree of cholesterol ester 

accumulation. In addition, ACAT2 serves as a determinate of whether free cholesterol is 

esterified and secreted into chylomicrons and other lipoproteins, or whether it is released 

from the cell back into the intestine. If ACAT2 is inhibited by a large pool of esterified 
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cholesterol, free cholesterol entering the cell is then likely to be directed out of the cell 

through the action of two heterodimeric, brush border transporters, ABCG5 and ABCG8. 

Transgenic mice over-expressing the human ABCG5/G8 proteins show a 50% reduction 

in cholesterol absorption supporting the hypothesis that they function to limit sterol 

absorption (Yu et al 2002). Free cholesterol that enters the enterocyte may also be 

secreted with the protein apoA-1 as nascent HDL particles via the ABC transporter 

ABCA1. Early work with the ABCA1 transporter describes the docking of the apoA-1 

protein with ABCA1 leading to the subsequent formation of a phospholipid-apoA-1 

complex which then facilitates cholesterol efflux from cells (Wang et al 2001). Mutations 

in the gene coding for ABCA1 leads to the disease known as Tangiers characterized by 

low HDL production and reduced cholesterol efflux from tissues. Genetic mutations in 

human populations, both those that increase and decrease gene function, have been 

shown to alter plasma lipid profiles and the progression of Coronary Artery Disease 

(CAD) (Clee et al 2001). More specifically, increased activity of ABCA1 reduces CAD 

progression, and the opposite is true with a reduced ABCA1 activity. 

 

Lipoprotein Cholesterol Transport 

 Due to cholesterol’s hydrophobic nature, its transport through the aqueous 

environment of the plasma necessitates a transport system. This lipid transport system is 

composed of a variety of lipoprotein molecules that carry cholesterol between 

enterocytes, hepatocytes, and peripheral tissues. Cholesterol taken up by enterocytes is 

either expelled back into the intestinal lumen by the action of the ABCG5/8 heterodimer 

or is esterified for subsequent lipoprotein incorporation. Two lipoprotein classes are 
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produced in the enterocyte into which cholesterol may be incorporated; high density 

lipoproteins (HDL) and chylomicrons.  

The most quantitatively important of the two lipoproteins for cholesterol secretion 

from the enterocyte is the chylomicron. These largest vesicles of the lipoprotein family 

are synthesized within the enterocyte on the endoplasmic reticulum as apoB is 

synthesized and lipid, TG and cholesterol, is joined to it forming a stabilized structure 

(van Greevenbroek and de Bruin 1998). Upon formation the chylomicron is secreted via 

an exocytotic mechanism into the lymphatic system (Mansbach 2009). From the lymph, 

the chylomicron then travels to the thoracic duct where it enters the circulation through 

the subclavian vein (van Greevenbroek and de Bruin 1998). As chylomicrons travel to 

peripheral tissues through the circulation, they are rapidly degraded to chylomicron 

remnants as lipoprotein lipase (LPL) hydrolyzes TG, and tissues uptake the resultant free 

fatty acids, monoglycerides and glycerol. Chylomicron remnants then travel to the liver 

where they are taken up along with their cholesterol and remaining TG into hepatocytes 

by the action of chylomicron remnant receptors (Brown and Goldstein 1985).       

HDL represents a much smaller intestinal cholesterol efflux pathway. This 

lipoprotein is formed through the action of ABCA1 in the presence of the protein, apoA-

1. In fact, there is evidence that the primary function of intestinal ABCA1 is the 

basolateral efflux of unesterified cholesterol and phospholipids from the intestine cells 

into HDL (Brunham et al 2006). The enterocytes are in close proximity to both capillaries 

and lymphatic ducts, however, ABCA1-mediated cholesterol efflux in HDL 

preferentially enters that plasma rather than the lymph, although both are sites of HDL 

secretion (Brunham et al 2006). Early HDL particles are often described as discoidal, as 



9 

 

they have not yet taken on the more spherical shape of mature HDL. At this point, they 

are composed of apolipoproteins, phospholipids and a small amount of free cholesterol 

(Eisenberg 1984). As HDL travels through the plasma and lymph, the maturation process 

whereby the lipoproteins take on more cholesterol and become increasingly spherical, is 

mediated by the enzyme lecithin:cholesterol acyl transferase (LCAT). LCAT functions to 

esterify HDL membrane free cholesterol to fatty acids from membrane phospholipids, 

allowing for movement of the newly synthesized polar lipid into the HDL core, making 

room for more cholesterol uptake into the lipoprotein membrane (Kontush et al 2008). 

This process is dependent on apoA-1, of which other lipoproteins such as chylomicrons 

and VLDL are often a source (Sahoo et al 2004). 

In addition to those of intestinal origin, other lipoproteins are produced by the 

liver. Chylomicrons, and to a lesser degree, HDL of intestinal origin are responsible for 

the movement of exogenous lipid from the intestinal cells to some peripheral tissues and 

to liver cells. In the liver, however, very low density lipoproteins (VLDL), low density 

lipoproteins (LDL) and HDL of hepatic origin are then tasked with the transport of 

endogenous lipids from the liver to peripheral tissues and back.  

VLDL, considered to be a TG-rich lipoprotein despite its relatively low TG 

content compared to chylomicrons and their remnants, are secreted from the liver cell to 

supply TG to peripheral tissues. The maturation process of VLDL takes place in the 

hepatocyte. After the apoB protein is synthesized, a neutral lipid particle including 

cholesterol esters esterified by ACAT2, is joined to the protein and a mature VLDL 

particle is then ready for secretion into the systemic circulation (Hebbachi and Gibbons 

2001, Lee et al 2000). A major function of VLDL is the transport of TG to peripheral 
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tissues. As the lipoprotein reaches its target tissue, LPL acts on the particle to release free 

fatty acid. The removal of TG from VLDL particles then yields LDL. In fact, almost all 

of LDL is produced in this manner. LDL has fewer cholesterol esters per lipoprotein 

molecule compared to VLDL, evidencing a loss of cholesterol during the interconversion 

from VLDL to LDL. It is hypothesized that one source of loss may the action of LPL 

action on VLDL (Grundy 1983).  

LDL particles are taken up by almost every tissue in the body (Spady et al 1985). 

Although other mechanisms may exist, there are primarily two by which this plasma LDL 

clearance takes place; receptor-dependent which comprises as much as 50-80% of the 

LDL clearance (Kesaniemi et al 1983, Shepherd et al 1979), and receptor-independent 

which comprises 20-35% of LDL clearance from the plasma (Kesaniemi et al 1983). 

Some discrepancies exist among literature accounts of the fractional catabolism of LDL, 

therefore the ranges above exclude these studies. For example, experiments using LDL 

particles modified with cyclohexanedione as tracers for receptor-independent LDL 

catabolism have been shown to underestimate receptor-dependent LDL catabolism and 

have thus been left out of the ranges noted above(Steinbrecher et al 1983). Receptor-

dependent LDL catabolism is quantitatively the most important pathway for LDL 

clearance from plasma. The pathway relies on an LDL receptor on the cell surface that 

binds to a series of lysine and arginine residues of apolipoprotein B molecules on surface 

of LDL particles (Slater et al 1984). Upon binding to these particles, the receptor and 

LDL molecule are endocytosed allowing for the lipoprotein-transported cholesterol to be 

utilized by the cell. At the time of the discovery of the LDL receptor, it was thought that 

receptor mediated LDL uptake was the only method of clearance. Although the receptor 
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pathway does lend the greatest clearance quantitatively, it is now known that a second 

pathway exists; receptor-independent LDL uptake.  

Receptor-independent LDL uptake is a secondary and quantitatively inferior 

pathway of LDL uptake. Rather than a specific, receptor-dependent mechanism, this 

pathway involves a non specific, receptor-independent mechanism that functions through 

bulk-phase pinocytosis, or non specific endocytosis (Goldstein and Brown 1974, 

Goldstein and Brown 1977). This mechanism is of less importance at low plasma LDL 

concentrations, but as the receptor mediated pathway can besaturated, the receptor-

independent pathways increases in importance and its contribution to plasma LDL 

clearance increases linearly with plasma LDL concentrations (Goldstein and Brown 

1977). 

Familial hypercholesterolemia is known to arise from a genetic mutation in the 

LDL receptor that diminishes the existence of functional receptors by 50% (Goldstein 

and Brown 1977). In this case, or cases of diet-induced receptor down regulation, the 

functionality of the receptor-dependent pathway to remove LDL from the plasma is 

diminished, and the receptor-independent pathway must then function as the primary 

pathway for LDL uptake from plasma (Spady et al 1987).  

Another LDL uptake pathway is suggested to exist that is mechanistically distinct 

from the two previously mentioned pathways. This LDL uptake is hypothesized to work 

through a structure known as the Lipoprotein Binding Site (LBS). The LBS has been 

shown to selectively uptake cholesterol esters from lipoproteins while not engulfing the 

entire lipoprotein such as occurs with the LDL receptor and bulk-phase pinocytosis 

(Brissette et al 1996). The LBS is suggested to be a protein and, as its name suggests, it is 
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not specific for only one lipoprotein. Rather, the LBS binds to all lipoprotein classes, and 

it does so by interaction with apoprotein component of the lipoprotein (Brissette et al 

1996). The rate of selective lipoprotein cholesterol ester uptake by LBS appears to vary 

by animal model e.g., human < rat, and is present in fewer tissues than other LDL uptake 

pathways (Green and Pittman 1991). LBS has similar specificity as SR-B1 regarding its 

ability to also bind HDL (Acton et al 1994). However, no further research has confirmed 

the presence of this socalled LBS distinct from the better-characterized transport proteins 

(Truong et al 2000).              

The great deal of study given to the topic of LDL cholesterol spurred interest and 

subsequent exploration into the topic of HDL metabolism. Early epidemiological data 

showed an inverse relationship between HDL and susceptibility to heart disease (Miller 

and Miller 1975). Further study also showed that levels of cholesterol present in 

peripheral tissues were inversely related to the levels of plasma HDL present (Miller et al 

1976). HDL has since been implicated as an important particle in cholesterol transport 

and, in absence, leads to pathology. HDL, as mentioned previously, is synthesized to a 

small degree in the intestine. Although the mechanism of HDL synthesis in other extra-

hepatic tissues is ABCA1 mediated and similar to the intestinal mechanism, a more 

detailed description of high density lipoprotein particles and of whole body HDL 

synthesis and transport is given here.  

Because atherosclerosis results from a net influx of cholesterol into the intima of 

blood vessels, and LDL carries cholesterol to these tissues, it follows that a method for 

removing cholesterol from these tissues and returning it to the liver would be paramount. 

Because non-steroidogenic and non-hepatic tissues do not have a pathway for converting 
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excess cholesterol hormones or bile acids, they rely on an alternative method for 

cholesterol removal; high density lipoproteins (HDL). HDL contains apo A-1 as its 

primary lipoprotein. It is this protein that is responsible for the lipoprotein-binding of cell 

receptors and it is also the primary activator of the LCAT enzyme responsible for 

maturing the HDL particle (Stoffel et al 1983). apo A-1 is synthesized in the liver and the 

intestine in its pro form, after which it is secreted into the plasma to undergo its final 

conversion to active, pre-β-1 HDL by the action of a serum, serine protease (Favari et al 

2009, Stoffel et al 1983). Pre-β-1 HDL describes a heterogeneous group of molecules that 

ranges from monomolecular, lipid free apo A-1 to a conglomerate molecule containing 

phospholipid, free cholesterol and two or three apo A-1 molecules (Favari et al 2009). 

Evidence exists that this heterogeneity plays a role in determining the destination of these 

molecules. It has been shown that the small, monomolecular apo A-1, pre-β-1 HDL 

interacts preferentially with ABCA1 whereas the larger conglomerate pre-β-1 HDL, 

rather, interacts only with ABCG1 and SR-B1 (Rye and Barter 2004). Other data suggest 

that there is a pre-β-1 HDL size and lipidation range, where increasing size and lipidation 

gradually reduce the particle’s affinity for ABCA1 (Favari et al 2009).  

In support of a lipid transport function of HDL from peripheral tissues back to the 

liver are data showing a large percentage of pre-β-1 HDL in LCAT deficient plasma, but 

only very little (about 4%), in normal plasma suggesting that pre-β-1 HDL quickly 

acquires cellular cholesterol from peripheral tissues (Francone and Fielding 1990). It has 

also been shown that HDL binding to peripheral tissues such as fibroblasts is increased 

when tissue cholesterol content in increased. Incubation of fibroblasts with non-
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lipoprotein cholesterol increased HDL-high affinity binding several fold (Oram et al 

1983).  

The maturation of pre-β-1 HDL by acquisition of extra-hepatic tissue cholesterol, 

and transport of that cholesterol back to the liver is known as reverse cholesterol 

transport. As pre-β-1 HDL is secreted and facilitates the efflux of cholesterol from tissues 

via ABCA1, esterification by LCAT takes place whereby free cholesterol in the HDL 

exterior is joined to a phospholipid fatty acid, creating a non-polar cholesterol ester 

capable of migrating to the core of the lipoprotein particle, thus allowing for further 

cholesterol uptake (Glomset 1968). Another mechanism present to increase the 

cholesterol transport capacity of the plasma HDL fraction is an enzyme-mediated 

cholesterol transfer by way of Cholesterol Ester Transfer Protein (CETP). The role of 

CETP is the transfer of cholesterol esters in HDL produced by LCAT to apoB containing 

lipoproteins, LDL and VLDL, thus providing a method of returning peripheral tissue 

cholesterol to the liver and making available more transport capacity in HDL. 

Investigation into the function of CETP (Lagrost et al 1993) has shown that 

normolipidemic subjects with less variable LDL and VLDL size distributions, suggesting 

more completely matured apo B lipoproteins, had greater CETP activity. When plasma 

from these same individuals was incubated at 37
0
C in the absence of LCAT activity, 

CETP activity was inversely correlated with HDL cholesterol. These data support the 

hypothesis that cholesterol esters from HDL are provided a transport route to apoB 

lipoproteins and back to the liver by action of CETP. Importantly, this study showed no 

increase in the cholesterol content of the VLDL+LDL plasma fraction. This may suggest 
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that, although cholesterol, via CETP, is transported to more atherogenic lipoproteins, this 

does not pose the risk of accelerated atherosclerosis.  

In addition to the HDL-associated cholesterol ester recycling mediated by CETP, 

other mechanisms exist to return HDL cholesterol to the liver directly. One such 

mechanism, rather than a transfer to other lipoprotein molecules, involves HDL particle 

docking with receptors, after which cholesterol esters are selectively removed without 

degradation of the lipoprotein molecule. SR-B1 was identified as an HDL receptor 

working through this mechanism and has since been well characterized as a high affinity 

HDL-particle binding receptor that is highly expressed in the liver and nonplacental 

steroidogenic tissues (Acton et al 1996). In addition to being an important mechanism for 

cholesterol clearance from peripheral tissues, SR-B1 may be important for providing 

cholesterol as a hormone precursor to steroidogenic tissues especially during pregnancy 

(Landschulz et al 1996). 

An additional direct route for HDL-cholesterol ester delivery to the liver involves 

protein-mediated, lipoprotein uptake whereby the entire molecule is taken into the cell 

non-selectively through endocytosis. The concept of an endocytotic mechanism of whole 

HDL particle uptake has been widely explored by a number of researchers returning 

nearly as many results as studies conducted. HDL binding proteins have been described 

ranging from 58 kDa (Ferreri and Menon 1990) to 210 kDa (Bond et al 1991) and 

numerous in between. Speculation suggests that many of the proteins of similar size 

actually represent the same molecule, but it’s likely that there are a number of HDL 

binding proteins of varying sizes indicating that affinity may vary depending on HDL 

particles size and extent of lipidation.       
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Due to its great importance in the transport of cholesterol and its relation to HDL 

particle metabolism, macrophage cholesterol efflux deserves a measure of attention in the 

discussion of overall cholesterol metabolism. Macrophages derived from monoocytes 

function, in part, to collect cellular debris, of which cholesterol is a large component. 

Macrophages then efflux this cholesterol towards the continuation of reverse cholesterol 

transport. Aberrantly, however, macrophages in vascular endothelial cells may become 

engorged with cholesterol, forming foam cells leading the arterial plaques. Cholesterol 

efflux from these phagocytic cells has therefore become an important topic. 

Study into the cholesterol metabolism of the macrophage began as a means of 

explaining the apparent ability of macrophages to take up cholesterol from lipoproteins 

and deposit it into tissues without a functioning LDL receptor, as seen in homozygotes 

for familial hypercholesterolemia. Early data showed a negligible ability of the 

macrophage to take up native LDL in its unmodified form. Subsequent studies then 

showed an efficient receptor-mediated uptake of acylated LDL or LDL complexed with 

dextran sulfate (Basu et al 1979, Goldstein et al 1979). In addition to modified LDL, 

macrophages have also been shown to uptake intact cholesterol esters from aortic plaques 

in a manner that is distinct from other modified-LDL receptors, and specific for aortic 

tissue (Goldstein et al 1981).  

Once cholesterol esters are taken up into the macrophage, they require acceptor 

particles such as HDL in order to be effluxed from peripheral tissues and transported to 

the liver or to other apoB containing lipoproteins (Werb and Cohn 1972). The 

macrophage is another important stage for the action of the sterol efflux transporter, 

ABCA1. As macrophages take up cholesterol, ABCA1 expression is increased as a 
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protective mechanism to facilitate cholesterol efflux. As cell cholesterol increases the 

level of efflux, the ABCA1 efflux mechanism begins to fail (Feng and Tabas 2002). With 

the uptake of cholesterol in absence of sufficient acceptor molecules for its efflux, the 

formation of foam cells arises, leading the development of atherosclerotic plaques.  

 

Cholesterol Excretion and Conversion 

 The liver is a central reservoir for cholesterol storage and it receives cholesterol, 

in addition to its own synthesis, through the many pathways mentioned above; 

chylomicron remnants, LDL, and HDL. In addition to receptor down regulation of these 

pathways as a method off regulating cellular cholesterol, the liver possesses other 

conversion and excretion pathways that are important for maintaining cholesterol 

homeostasis. Most straight forward is the direct excretion of cholesterol into bile. 

Working through the same mechanism as cholesterol efflux in the intestine, free 

cholesterol in the hepatocyte is effluxed through apical transporters ABCG5/G8 of the 

hepatocyte into the canalicular space for subsequent secretion into the bile duct (Graf et 

al 2003).The primary regulatory pool of cholesterol that determines the rate of cholesterol 

efflux into bile is plasma cholesterol, and primarily found in the HDL fraction (Botham 

and Bravo 1995). Normal human cholesterol excretion into the bile is 800-1400 mg/day 

(Carr and Jesch 2006). Another cholesterol outlet is that of enzymatic conversion of 

cholesterol bile acids, and eventual secretion through the feces. This enzymatic 

conversion is carried out by cholesterol 7α-hydroxylase, also known as Cytochrome P450 

7A1 or CYP7A1. Mice with over expression of CYP7A1 were protected from diet-

induced hypercholesterolemia, and exhibited increased fecal and bile acid excretion (Li et 
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al 2011). These data support the role of CYP7A1 in mediating cholesterol conversion to 

bile acids as a method of maintaining cholesterol homeostasis. While bile acid synthesis 

from cholesterol is quantitatively the most important conversion, producing around 400 

mg/day, other less significant conversions include skins sterols at about 85 mg/day, and 

steroid hormones at about 50 mg/day (Arias 1988). 

 

III. Mechanisms of Action of Plant Sterols 

 

 Plant sterols have been known for decades to lower circulating cholesterol levels 

upon incorporation into the diet. A number of theoretical mechanisms for how this 

cholesterol-lowering affect is imparted have been presented. Three primary mechanisms 

proposed include 1.) competition of plant sterols with cholesterol for an esterification 

enzyme required for absorption, 2.) co-crystallization of cholesterol and plant sterols 

forming insoluble sterol complexes, and 3.) competition with cholesterol for 

incorporation into micelles essential for transporting lipids to the mucosal membrane for 

absorption.  

 The first mechanism, esterification-enzyme competition, was based on early 

studies showing that sitosterol and other plant sterol mixes could serve as substrates for 

pancreatic cholesterol esterase in the production of long chain esters of fatty acids 

produced in the intestinal lumen (Swell et al 1956). Because this enzyme was also shown 

to act on cholesterol in the same manner (Swell et al 1950), it was further proposed that 

plant sterol metabolism occurs in the same manner as cholesterol metabolism, and that 

this common metabolism may suggest a competitive mechanism. Furthermore, the 
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finding that esterification of sterols did indeed occur in the intestine strengthened the 

hypothesis that esterification was necessary for absorption (Siperstein et al 1952).  

 Work exploring the differential absorption of sterols from esters compared to free 

sterols, however, showed no difference between the two, giving no support to the above 

hypothesis (Best and Duncan 1958). In addition, the demonstration of the existence of a 

cholesterol esterase in the intestinal mucosa, and evidence suggesting that esters are first 

hydrolyzed and then absorbed, further countered the enzyme competition hypothesis 

(Best and Duncan 1958, Swell et al 1950). Finally, it was reported that esterified sterols 

in the mucosa were sporadic and only present in trace amounts, although esterified sterols 

in the lymph exists at about 70%, further arguing for a post-luminal esterification of 

sterols (Glover et al 1959), and calling for an alternative hypothesis to explain the 

cholesterol-lowering effects of plant sterols.   

 A second hypothesis is that of a co-crystallization phenomenon whereby 

cholesterol and plant sterols form complexes that are unable to be solubilized in the oily 

or aqueous phases in the intestinal lumen. Free plant sterols and cholesterol are soluble in 

TG oils at a level of about 3% (Glover et al 1959, Jandacek et al 1977, Vaikousi et al 

2007), and are negligibly soluble in water (Trautwein et al 2003). As lipid digestion 

progresses and the polar nature of the intestinal contents in increases due to lipolysis, 

there is less oily phase present for sterol solubilization, and thus co-crystallization of 

cholesterol and plant sterols is encouraged (Trautwein et al 2003). As plant sterols are 

increasingly incorporated into the diet, cholesterol is further outcompeted leading to 

increased crystallization and lower cholesterol absorption. The possibility for the 

existence of this mechanism has been demonstrated in a number of in-vitro environments; 
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co-crystallization of cholesterol and beta sitosterol in methanol has been demonstrated 

(Davis 1955), and similar findings were shown in ethanol over a broad range of sterol 

ratios. The question regarding this mechanism is not if it is possible, but rather does it 

happen to a significant degree so as to contribute to the overall cholesterol lowing effects 

of plant sterols. Recent work to answer this question explored the relative interactions of 

sitosterol and sitostanol with cholesterol in a model digestive system (Mel'nikov et al 

2004). Because sitostanol and sitosterol have been shown to reduce cholesterol 

absorption equivalently, either the two sterols co-crystallize with cholesterol to the same 

degree or it must be assumed that the co-crystallization mechanism does not contribute in 

any great degree to cholesterol-lowering seen by plant sterols. This recent work 

demonstrated significant differences between cholesterol-sitosterol interactions versus 

cholesterol-sitostanol interactions, suggesting that co-crystallization is not a significant 

contributor to the mechanism of action of plant sterols. 

 A third cholesterol-lowering mechanism of greater quantitative importance than 

the one described above is that of competition for solubilization into dietary mixed 

micelles (DMM). Bile salts are known to solubilize large quantities of lipid in solution 

(Hofmann and Borgstroem 1964); a phenomenon attributed to their detergent properties 

that allow them to aggregate and micelle structures. These micelle structures then 

function to encase hydrophobic compounds in their lipophilic core. Early studies into 

cholesterol absorption showed equivalent amounts of cholesterol existing in the oily 

phase and aqueous phases of intestinal contents. Visible differences in the phases 

suggested that the aqueous phase was micellar due to its clear nature, further suggesting 

that lipid incorporation into micelles was limited, as not all cholesterol could be found in 
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the aqueous layer (Borgstrom 1960, Ponz de Leon et al 1981). It has been further 

supported that lipid absorption into enterocytes takes place from these micelle structures, 

and that lipid incorporation into micelles is limited by the amount of bile salt present, 

above which level lipid is emulsified in the oil phase (Hofmann and Borgstroem 1964). 

Given these conclusions and the current knowledge of the greater micelle affinity of plant 

sterols relative to cholesterol (Matsuoka et al 2008), a competitive mechanism for plant 

sterol mediated cholesterol-lowering seems most  likely.  

 

IV. Cholesterol Lowering Properties of Plant Sterols 

 

Efficacy of Plant Sterol versus Plant Stanol 

 Plant sterols and plant stanols are steroid molecules with very similar structures to 

cholesterol. They are also very similar in relation to each other with the exception of the 

lack of a double bond between the fifth and sixth carbons in the steroid ring of the plant 

stanol. The difference in the structures between the two classes of molecules requires 

investigation into the possibilities that they may impart differential cholesterol-lowering 

effects.  

 The seemingly small difference between plant sterols and their hydrogenated 

counterpart has been shown to yield notable differences in their functions as bioactive 

substances. Plant stanols are negligibly absorbed, while plant sterols are absorbed as 

much as 4-10%. It has been suggested, although not shown conclusively, that the extent 

of hydrogenation of a mix of plant sterols is a factor in the cholesterol lowering efficacy 

of the plant sterols (Pritchard et al 2003).  
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 Heinemann, et al compared the ability of sitosterol versus sitostanol to alter 

cholesterol absorption efficiency and found a greater ability of the stanol (Heinemann et 

al 1991). This difference, a reduction by 50% in sterol compared with an 85% reduction 

with the stanols, was attributed to the higher hydrophobicity exhibited by the stanol 

variety. Alternatively, comparison of the micellar solubilities of sitosterol compared to 

sitostanol showed now differences (Ikeda et al 1989). In addition, no differences were 

detected between the liver cholesterol of rats fed sterol or stanol, although there was a 

significantly elevated fecal cholesterol excretion seen with the stanol fed rats (Sugano et 

al 1977). An eight week feeding of plant sterols and plant stanols to apo E-deficient mice 

resulted in a greater reduction in plasma cholesterol with sterols. At week 14, however, 

this difference was attenuated and there were no differences between either group in 

plasma cholesterol levels or aortic lesion area (Pritchard et al 2003). In a study of the 

differential cholesterol lowering effects of plant sterols and stanols in a free living, 

hypercholesterolemic group of 14 people, both varieties were shown to be equally 

capable of lowering plasma LDL cholesterol, although the sterol variety more efficiently 

blocked cholesterol absorption, reducing cholesterol absorption efficiency by 56% 

compared to only 34% by stanols (Vanstone et al 2002). Additionally, a study of 34 

hypercholesterolemic individuals in which plant sterol esters and stanol esters were 

consumed in a margarine vehicle at 2.01-2.04 g/day for 14 days as part of a low fat diet 

showed no differences between sterol and stanol cholesterol-lowering efficacy 

(Hallikainen et al 2000). Plant sterol and stanol treatments lowered LDL cholesterol by 

12.7% and10% respectively. Interestingly, in the sterol ester group, plasma sitosterol and 
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campesterol increased by 0.83 and 2.77 mg/L respectively, while the stanol ester group 

only increased sitostanol and campestanol by 0.11 and 0.19 mg/L respectively. 

A two month study (O'Neill et al 2005) explored the relative effectiveness of plant 

sterol esters versus plant stanol esters in familial hypercholesterolemic patients on lipid 

lowering medication and normal individuals with even ratios of normal to 

hypercholesterolemic in each treatment group. Subjects were randomized to three groups; 

sterol ester (1.6 g/day), stanol ester (1.6 g/day) and stanol ester (2.6 g/day). All groups 

were equal in their ability to lower LDL cholesterol up to two months; however, after two 

months, the sterol group’s cholesterol-lowering effect was attenuated and no longer 

differed from baseline levels. In addition, a 27% decrease in bile acid synthesis from 

cholesterol, as measured by serum 7α-hydroxy-4-cholesten-3-one, a marker of bile acid 

synthesis, was seen after two months, suggesting a short term effectiveness of plant sterol 

ester compared to plant stanol ester. 

In contrast, a study conducted with 15 hypercholesterolemic subjects using plant 

sterol or plant stanol esters showed a greater LDL-cholesterol lowering efficiency with 

sterols above stanols; -12.9 and -7.9 respectively (Jones et al 2000). Plant sterols lowered 

total cholesterol absorption by 13.4% compared with only 10.2% with plant stanols, and 

sterols lowered cholesterol absorption to a greater degree than stanols; -36.2% and -

25.9% respectively. This could be evidence that plant sterols are more effective than 

plant stanols in lowering cholesterol at least in the short term. However, given the 

previous study, an extension of this study beyond 2 months may fail to maintain a 

significant difference due to the alleged inability of plant sterols to continue to elevate the 

conversion of cholesterol to bile acids. 
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Another long-term study of sterol versus stanol showed a difference in 

cholesterol-lowering ability, albeit the opposite of the previously mentioned study (de 

Jong et al 2008). A group of 37 hypercholesterolemic subjects on stable statin use were 

given a placebo or and 2.5 g/day of plant sterol or stanol ester in a margarine vehicle for 

85 weeks. The plant sterol group showed an 8.7 % reduction in LDL-cholesterol, while 

the plant stanol group showed a superior reduction of 13.1%. In a 16 week study, three 

groups of 15 participants consumed 2.6 g/day of either a control margarine, a plant sterol 

ester-enriched margarine or a plant stanol ester-enriched margarine (Jong 2008). Plasma 

LDL cholesterol in both the stanol and sterol group were significantly lower than control, 

but did not differ from each other. A recent study (Weingartner et al 2011) administering 

plant sterol and stanol esters at 2% of diet by weight to apo E-deficient mice on a high 

cholesterol (1.25%) diet has shown lower plasma cholesterol levels in sterol ester mice 

compared with stanol ester fed mice. Liver cholesterol, however, was no different 

between the groups, and sterol ester mice showed elevated inflammatory nature of 

macrophages. In addition, stanol ester mice responded with reduced superoxide release 

and lipid hydroperoxides compared to other diets. Also compared with sterol ester group 

and control, stanol ester group reduced IL-6 expression in aortic tissue and TNF-alpha 

expression in plasma compared to other diets. In opposition to other studies, however, 

stanol ester treatment increased plasma plant stanol concentrations by 48 fold while plant 

sterol treatment only increased plasma plant sterol concentrations by 28 fold. 

A meta-analysis examined randomized, controlled trials that compared plant 

sterols and plant stanols for their lipid altering effects (Talati et al). Of 146 abstracts, 14 

were considered in the analysis for differences in total cholesterol, LDL cholesterol, HDL 
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cholesterol and triglycerides compared between groups treated with plant sterols and 

groups treated with plant stanols. Statistical analysis showed no significant differences in 

any of these parameters between plant sterol or stanol treatment. To further complicate 

the issue, another meta-analysis of 113 placebo-controlled, randomized studies 

considering the LDL cholesterol lowering abilities of free plant sterol, plant sterol esters, 

free plant stanols and plant stanol esters was recently published (Musa-Veloso et al 

2011).  The maximal cholesterol lowering effects of free plant stanols and plant stanol 

esters, 16.4% and 17.1% respectively, were shown to be significantly greater than that of 

free plant sterol and plant sterol ester, 8.3% and 8.4% respectively.    

In summary, a great deal of research has explored the differences between plant 

sterol and stanol treatments and has shown, at times, conflicting results. Some studies 

point to a greater ability of plant sterols over stanols to lower cholesterol absorption, 

while others have shown a lower inflammatory response to stanols compared to sterols. 

Meta-analysis has also returned less than consistent results as well. One meta-analysis 

shows no differences between cholesterol-lowering efficacy, while the other reports 

showed differences favoring stanol. Those who support the equivalency of the two 

varieties note the importance of choosing between the two based on safety and economy.   

 

Plant Sterols in Different Food Matrices 

 With the esterification of free sterols to form sterol esters of fatty acids, it became 

possible to solubilize plant sterols to a greater degree in a wider variety of food vehicles. 

It then became important to determine if the cholesterol-lowering effects of plant sterols 

could be influenced by the type of food in which they are delivered, e.g. high-fat versus 
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low-fat. While a large number of studies have determined that plant sterols and plant 

sterol esters are capable of lowering plasma cholesterol in a number of food vehicles, 

only more recently has there been any study to compare the efficacy of plant sterols 

between those food vehicles. In a study conducted with 58 free-living men and women, 

sterol esters were incorporated into bread, yoghurt, milk and breakfast cereal, and fed at a 

dose of 1.6 g/day of sterol ester for three weeks (Clifton et al 2004). Plant sterol ester in 

milk proved to be most effective at lowering cholesterol above all other matrices; total 

cholesterol was lowered by 9.7% and LDL cholesterol by 15.9%. Yoghurt, while not as 

efficient as milk, was more efficient than both bread and cereal, lowering total cholesterol 

by 5.6% and LDL cholesterol by 8.6% in comparison to bread (LDL cholesterol -6.5%) 

and cereal (LDL cholesterol -5.4%). There were no significant differences between the 

abilities of bread and cereal to lower total or LDL cholesterol. This was perhaps the first 

evidence that the food matrix in which the plant sterol ester is delivered may have an 

effect on its cholesterol-lowering properties. 

 Another study, however, has shown opposite results, in which 39 men and women 

with moderate hypercholesterolemia consumed 2 g/day plant sterol ester in milk, a spread 

or a combination of the two (Noakes et al 2005). After three weeks, all groups showed 

lower total and LDL cholesterol levels compared to control, although there were no 

differences between the different treatments’ abilities to lower cholesterol.  

 A meta-analysis of 59 studies with over 4500 participants, analyzed as a 

component of the study, the differential effects of the food carriers in which plant sterol 

esters were delivered (AbuMweis et al 2006). The food products used for sterol ester 

incorporation were placed into categories based on their fat content, creating four 
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categories; fat spreads, mayonnaise and salad dressings, milk and yoghurt, and other 

foods. LDL cholesterol-lowering achieved through consumption of fat spreads, 

mayonnaise and salad dressings, milk and yoghurt were 0.33, .32 and 0.34 mmol/L 

respectively. These groups were all similarly and significantly more effective at lowering 

LDL compared with the other foods group which only lowered LDL by 0.2mmol/L. 

These results confirm that there may indeed be a significant difference in effectiveness of 

plant sterol in different food vehicles, and supports the findings s of Clifton et al (2004) 

who also showed also that milk and yoghurt were more effective carrier foods than other 

groups such as bread or breakfast cereal.  

 

Plant Sterols and Background Diet 

 Another important factor to consider in understanding the effectiveness of plant 

sterols to lower cholesterol is the background diet. A number of studies have undertaken 

the task of determining the affects of high and low fat and cholesterol intake on the 

function of plant sterols. A study conducted in a population of 33 moderately 

hypercholesterolemic men consuming a low cholesterol, low fat diet tested the dietary 

cholesterol dependence of plant sterols to affect cholesterol-lowering (Denke 1995). 

Participants adhered to the American Heart Association, Step 1 diet (Ginsberg et al 1990) 

consisting of 30% fat of which 10% saturated, and less than 200 mg/day cholesterol for 

30-days followed by a 30-day wash out period and then a 30-day period of the same diet 

with the addition of 3 g/day sitostanol followed again by an additional diet only 30-day 

period. At the end of the study, there were no differences between total cholesterol or 

LDL cholesterol between any of the treatment periods. Researchers proposed that a low-
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fat, low-cholesterol diet may attenuate the cholesterol-lowering properties of sitostanol, 

and suggested that background diet may have a significant effect on plant sterol action.  

 In opposition to this study, another plant sterol trial was conducted again in 

subjects adhering to the Step 1 diet and receiving plant sterol esters in a low-fat spread 

margarine (Maki et al 2001). A total of 219 mild to moderate hypercholesterolemic 

subjects were divided among three treatment groups; a 50% fat margarine group with no 

plant sterol, a 50% fat margarine group delivering 1.1 g/day plant sterol ester and a 50% 

fat margarine group delivering 2.2 g/day plant sterol ester. Subjects consumed a control 

spread and adhered to the Step 1 diet for a four week lead in period followed by a five 

week intervention period where treatment groups received their sterol ester enriched 

spreads. At the end of five weeks, groups receiving 1.1 g/d and 2.2 g/d plant sterol ester 

showed total cholesterol reductions of 5.2% and 6.6% lower and LDL-cholesterol 

reductions of 7.6% and 8.1%, respectively. While previous reports suggest that a low fat, 

low cholesterol diet may attenuate plant sterol effects, Maki et al showed that plant sterol 

esters may still be able to reduce cholesterol levels in the presence of a low-fat, low-

cholesterol diet.  

 A more recent study supports the findings of Maki et al, where 84 mildly 

hypercholesterolemic subjects were placed into one of three groups; a healthy diet group 

with plant sterol ester-free milk, a healthy diet group with plant sterol ester-enriched milk 

or a free diet group with plant sterol ester-enriched milk (Hernandez-Mijares et al 2010). 

Sterol ester-enriched milk delivered 2 g/day of plant sterol ester. After the intervention 

period of three months, the healthy diet group and free diet group treated with plant 

sterols showed similar total cholesterol lowering of 6.7% and 5.5% and LDL-cholesterol 
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lowering of 9.6% and 7%, respectively. These changes in the plant sterol ester groups 

were different from healthy diet alone and baseline, but didn’t differ from each other, 

suggesting that plant sterol ester treatment works effectively to lower total and LDL 

cholesterol despite the background diet.  

 

Plant Sterol Dose 

 Plant sterols and their esters have been studied at varying dosages, and have 

produced varying results as well concerning cholesterol absorption and lowering. Large 

plant sterol doses are highly effective, but are unpleasant due to a chalky taste and texture 

and may be uneconomical. In the interest of usability, economy and safety, it is important 

to determine the lowest effective does.    

 The ability of a range of plant sterol doses in their free form were explored to 

lower total and LDL cholesterol (Hendriks et al 1999). Using 0.83, 1.61, 3.24 g/d of free 

sterols in spreads, total cholesterol reduction for the doses was 4.9%, 5.9%, 6.8%. LDL 

cholesterol dropped by 4.9%, 5.9%, 6.8% for their respective doses. Each dose was 

equally effective as no statistical differences were found. 0.8 g/day of free sterol in a 

margarine vehicle was shown to reduce total cholesterol by 3.8% and LDL-cholesterol by 

6% (Sierksma et al 1999). 13.4% reduction of total cholesterol and 12.9% reduction of 

LDL-cholesterol resulted from consumption of 1.84 g/day of plant sterol ester (about 1.1 

g/day free sterol equivalent) (Jones et al 2000). In a study exploring the abilities of 

varying free plant sterol doses to lower cholesterol, 1.5 g/day and 3 g/day lowered total 

by 8.9% and 11.3% respectively, and LDL-cholesterol by 8.3% and 10.6% respectively. 

There were no significant differences between the two dosages (Christiansen et al 2001). 
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A study exploring the relative abilities of free plant sterols, free plant stanols or a mix of 

the two to lower total and LDL cholesterol showed a similar ability across all groups. 

Total cholesterol lowering for sterol, stanol and the 50/50 mix was 7.8%, 11.9% and 

13.1% respectively, and LDL-cholesterol lowering was 11.3%, 13.4% and 16% 

respectively (Vanstone et al 2002). These previously mentioned data seem to show an 

optimal range of plant sterol intake between 1-2 g/day which is in accordance with the 

results and conclusions of a meta-analysis showing that about 2 g/day results in a 10% 

reduction in LDL cholesterol, but that doses higher than 2 g/day contribute very little 

additional benefit (Katan et al 2003). In addition, it has been suggested that 1 g/day may 

serve as a minimum requirement to achieve significant cholesterol reduction (Nguyen 

1999).  

 

Plant Sterol Serving Frequency 

 The topic of serving frequency in plant sterol administration was explored 

through a study that directly compared the cholesterol metabolism-altering effects of a 

single plant sterol dose with multiple smaller plant sterol doses (AbuMweis et al 2009). 

In a study conducted in adult men and women with moderate hypercholesterolemia, 19 

subjects participated in three trial periods with different plant sterol treatments in a 

crossover study with 2 week washout periods. The periods consisted of a control 

margarine with no plant sterol, a plant sterol margarine dose in the morning containing 

1.8 g and then one control margarine dose at lunch and one at dinner, or 1.8 g of plant 

sterol in three even doses at breakfast, lunch and dinner. The morning dose proved to be 

ineffective at lowering LDL-cholesterol levels while the three times daily treatment 
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lowered cholesterol significantly by 6%. These results were in line with a previous study 

conducted by this same group showing that a single morning dose of plant sterol was 

insufficient to achieve cholesterol-lowering (AbuMweis et al 2006). A meta analysis 

exploring the differential effects of multiple doses of plant sterol compared with only one 

dose of plant sterol showed a “more pronounced” LDL-cholesterol lowering effect with 

the multiple doses, although this differences did not reach statistical significance 

(p=0.054) (Demonty et al 2009). Although some research suggests multiple doses are 

superior for inducing cholesterol-lowering, more research is needed to confirm. 

 

Plant Sterol Atherogenicity 

 Sitosterolemia is characterized by elevated plasma plant sterol concentrations, and 

is accompanied by premature CHD. This phenomenon has brought about controversy as 

to whether or not plant sterols may promote atherosclerosis and heart disease. To explore 

this topic, chow diets and western type diets were fed to female mice with inactivated 

ABCG5 and ABCG8 as a model of elevated plasma plant sterols. Mice had 20-fold 

increases in plasma plant sterols above normal, yet after 7 months of feeding showed no 

differences in aortic lesion area compared to wild type mice (Wilund et al 2004). In this 

same study, coronary calcium, a predictive measure of CHD in various major ethnicities, 

was assayed in over 2500 subjects (Detrano et al 2008). While cholesterol levels were 

elevated in subjects with elevated coronary calcium plant sterols showed no relation. 

Alternatively, large epidemiological studies have shown a relationship between the 

plasma plant sterol concentrations and negative cardiac events. The PROCAM-study 
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showed increased plasma plant sterol concentrations in subjects who experienced 

myocardial infarction or sudden cardiac death (Assmann et al 2006).      

 

MATERIALS AND METHODS 

Animals and Diets 

 Sixty male Syrian hamsters (BioBreeders, Watertown, MA) weighing 73-87g 

were divided into six experimental groups of 10. All hamsters were housed in 

polycarbonate cages with sawdust bedding, and were given free access to food for 29 

days. They were maintained in a humidity, temperature controlled room at 25
o
C with a 

12-hour light dark cycle. During the first four days, all animals were given a control diet 

for acclimation, after which treatment diets were administered for the duration of the 

study. The control diet was an AIN-93M, semi-purified diet consisting of 0.12% 

cholesterol (g/g), and 8% coconut oil (g/g) (Reeves et al 1993). Each treatment diet 

consisted of the control diet with replacement of cornstarch with an equal mass of plant 

sterol ester (5% g/g), ether (5% g/g) or free sterol (3% g/g) plus triglyceride (2%g/g) as 

follows: Palmitate Ester (PEs), Oleate Ester (OEs), Stearate Ester (SEs), Stearate Ether 

(SEt), and free sterol + high oleic sunflower oil (FS). Diet mixtures were produced 

manually in our laboratory by mixing ingredients in a least-to-greatest fashion to ensure a 

homogeneous mixture. After sufficient mixing, the powered diet was mixed with 15% of 

its weight in water and formed into approximately ¾ inch sheets using clean, plastic trays 

as a mold. The diets were manually compressed, scored with a razor blade into 

approximately 2x2 inch squares and placed into a drying oven until they returned to their 
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original dry weight. Each of the six treatment diets was broken into squares and stored in 

gallon-sized zip-lock bags at -80 degrees. The AIN-93 mineral and vitamin mixes, casein, 

dextrinized cornstarch, guar gum and solka flock and coconut oil were all purchased from 

Dyets, Inc. (Bethlehem, PA). Choline bitartrate, L-cystine, and cholesterol were 

purchases from Sigma Chemicals (St. Louis, MO). Cornstarch, sucrose, and soybean oil 

were purchased from a local grocery store. All procedures were approved by the 

Institutional Animal Care and Use Committee of the University of Nebraska.  

 Feed consumption was tracked biweekly and body weight was recorded on a 

weekly basis. Hamsters were transferred to cages with new bedding each week, and the 

used bedding was discarded with the exception of the cage change on day 21 during 

which the bedding was collected into individual bags for each animal for subsequent 

collection of fecal pellets. On this same day and the next, the first and second doses of 

radiolabeled sterol were delivered to the hamsters orally, and the bedding was 

individually bagged on day 26 for recovery of radioactive pellets. 

 On day 29, hamsters were anesthetized by CO2 gas and the thoracic cavity was 

opened to allow for removal of blood by cardiac puncture using 10mL syringes. Blood 

was then placed into 10mg EDTA tubes and centrifuged to separate the plasma and red 

blood cells. Plasma was then placed into cryo-tubes and frozen at -80 until analysis. Bile 

was removed from gallbladders by aspiration with pre-weighed, 1mL insulin syringes, 

diluted with saline and transferred to micro centrifuge tubes for immediate freezing in dry 

ice. Livers were excised, weighed and quickly frozen in dry ice until being stored at -80 

to await analysis.  
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Table 1. Diet Composition 

 

Athero Palmitate Stearate Oleate Stearate Free 

Control Ester Ester Ester Ether Sterol 

g/kg g/kg g/kg g/kg g/kg g/kg 
Cornstarch 404.5 354.5 354.5 354.5 354.5 354.5 

Dextrinized cornstarch 155.0 155.0 155.0 155.0 155.0 155.0 

Casein 140.0 140.0 140.0 140.0 140.0 140.0 

Sucrose 100.0 100.0 100.0 100.0 100.0 100.0 

Coconut oil 80.0 80.0 80.0 80.0 80.0 80.0 

Soybean oil 20.0 20.0 20.0 20.0 20.0 20.0 

Sterol Palmitate Ester  50.0     

Sterol Stearate Ester   50.0    

Sterol Oleate Ester    50.0   

Sterol Stearate Ether     50.0  

Free Plant Sterol      30.0 

High Oleic Sunflower Oil      20.0 

Insoluble fiber (Solka-Floc cellulose) 40.0 40.0 40.0 40.0 40.0 40.0 

Soluble fiber (Guar gum) 10.0 10.0 10.0 10.0 10.0 10.0 

Cholesterol 1.2 1.2 1.2 1.2 1.2 1.2 

AIN-93 mineral mix (70% sucrose) 35.0 35.0 35.0 35.0 35.0 35.0 

AIN-93 vitamin mix (98% sucrose) 10.0 10.0 10.0 10.0 10.0 10.0 

L-Cystine 1.8 1.8 1.8 1.8 1.8 1.8 

Choline bitartrate 2.5 2.5 2.5 2.5 2.5 2.5 

       

g/kg g/kg g/kg g/kg g/kg g/kg 
Carbohydrate 693.8 643.8 643.8 643.8 643.8 643.8 
Protein 140.0 140.0 140.0 140.0 140.0 140.0 
Fat 100.0 100.0 100.0 100.0 100.0 100.0 

kcal/kg kcal/kg kcal/kg kcal/kg kcal/kg kcal/kg 
Carbohydrate 2775.2 2575.2 2575.2 2575.2 2575.2 2575.2 
Protein 560.0 560.0 560.0 560.0 560.0 560.0 
Fat 900.0 900.0 900.0 900.0 900.0 900.0 
Total 4235.2 4035.2 4035.2 4035.2 4035.2 4035.2 

%energy %energy %energy %energy %energy %energy 

Carbohydrate 65.53 63.82 63.82 63.82 63.82 63.82 
Protein 13.22 13.88 13.88 13.88 13.88 13.88 
Fat 21.25 22.30 22.30 22.30 22.30 22.30 
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Figure 1A-F. Plant Sterol and Fatty Acid structures.  
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Figure 1G-I. Plant Sterol and Fatty Acid structures.  
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Sterol Ester and Ether Synthesis      

 The treatment group compounds consisted of the Palmitic, Oleic and Stearic acid 

esters of mixed soybean sterols, along with the octadecyl ether derivative of the mixed 

soy sterols. The esters and ether were synthesized by Mr. Jiliang Hang in the laboratory 

of Dr. Patrick Dussault (UNL Chemistry).   

  Esters were synthesized by first converting the free fatty acids into the 

corresonding acid chlorides by reaction with oxalyl chloride in benzene in the presence of 

N,N-dimethyl formamide (DMF) as a catalyst.  Following removal of solvent under 

vacuum, the fatty acid chloride was slowly added to a solution of the free plant sterols 

and pyridine in ethanol-free chloroform. The reaction was stirred overnight after which 

the solution was washed with dilute aqueous HCl to remove pyridine.  The organic layer 

was concentrated and the resulting solid was recrystallized from hot ethanol. The sterol 

esters were collected by vacuum filtration and analyzed for purity by thin-layer 

chromatography, as well as by proton and carbon nuclear magnetic resonance (
1
H and 

13
C 

NMR).    

 The octadecyl ether was prepared by a different procedure. An excess of sodium 

hydride (60% suspension in oil) was washed with a small volume of hexane under an 

atmosphere of nitrogen. The resulting pyrophoric powder was maintained at all times 

under an atmosphere of nitrogen. To a suspension of the sodium hydride in THF was 

cautiously added a solution of sterol in THF, followed by iodooctadecane. The reaction 

afforded a mixture of the desired octadecyl ether(s), octadecene as a byproduct of 
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elimination, and recovered sterol. The octadecyl ether was purified by multiple 

recrystallizations from ethyl acetate, and analyzed for purity as described for the esters.  

 

Cholesterol Absorption by Fecal Dual-Isotope Method 

 Cholesterol absorption efficiency was measured by a dual isotope method 

described by Turley (Turley et al 1994) (Figure 2) whereby [
3
H]-sitostanol and [

14
C]-

cholesterol were orally administered simultaneously. Because sitostanol is essentially 

unabsorbed in the intestine, it serves as an absorption reference. Radiolabeled cholesterol 

and sitostanol were purchased from American Radiolabeled Chemicals, St. Louis, MO. 

Radiolabeled sterols were dissolved in vegetable oil and given in a 50µl dose on two 

consecutive days. Each dose delivered approximately 1µCi [
14

C]-cholesterol 2µCi [
3
H]-

sitostanol. Upon dosing, hamsters were placed into cages with new bedding, and this 

bedding was collected three days later for separation of radioactive pellets. In addition, 

five days after dosing, bedding was collected again to ensure complete containment of 

radioactivity. 

 The total collected mass of radiolabeled feces (2-4.5g) was placed into 20 x 150 

glass tubes. 9mL of 100% ethanol was added to each tube, after which, 1mL of 50% 

KOH in water was added and the samples were capped and vortexed. The lipids were 

extracted and saponified over the course of two days in a 50
0
C water bath with frequent 

vortexing. Samples were removed from the water bath and allowed to return to room 

temperature, after which 3mL of deionized water was added and the samples were 

vortexed. Nonsaponifiables were extracted by the addition of 7mL of hexane. Samples 
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were shaken vigorously, and the phases were separated by brief centrifugation at 1000 x 

g. The upper hexane layer was removed and placed into clean, 20 mL scintillation vials 

where it was allowed to dry completely under ultra violet light for one and a half weeks 

to remove pigmentation that could interfere with scintillation counting. Once the 

pigmentation was sufficiently diminished, 8 mL of scintillation cocktail, Bio-Safe II 

(Research Products International), was added and the samples were capped. In addition, 

three aliquots of the oil dose were placed into 20 mL scintillation vials and filled with 

8mL of cocktail for quantification. Sample disintegrations per minutes were measured on 

a Packard 1900 TR liquid scintillation counter using a dual channel for counting [
14

C] 

and [
3
H]. The following equation was used to calculated cholesterol absorption efficiency 

using the ratio of two isotopes in the dose and the fecal samples to arrive at a percentage.  

                                

 

 

Figure 2. Dual Isotope Formula 

Plasma Lipids                    

 Total plasma cholesterol was quantified using a 96-well plate, reagent based, 

colorimetric assay as previously described (Carr et al 1993). Total plasma cholesterol was 

measured using a total cholesterol reagent (Roche Diagnostics, Indianapolis, IN). 

Apolipoprotein-B containing lipoproteins were precipitated from plasma by a 1:1 (v/v) 

addition of an Apo-B precipitating agent (Thermo Electron Corp., Melbourne, Australia). 

[
14

C]/[
3
H] dosing mixture - [

14
C]/[

3
H] 

[
14

C]/[
3
H] dosing mixture 

x 100 
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After addition of the precipitating reagent, samples were centrifuged at 1000 x g for 10 

minutes, and the supernatant was collected for analysis of the HDL Cholesterol fraction 

using the total cholesterol reagent. Non-HDL cholesterol was then determined by 

subtraction of HDL cholesterol from total cholesterol.  

 

Liver Lipids 

 About 0.2g of frozen liver was placed into tarred tubes and minced. According to 

the Folch extraction method (Folch et al 1957), 5 mL Chloroform/Methanol (2:1, v/v) 

was added, and each sample was capped and allowed to sit overnight for extraction of 

lipids. After extraction, samples were poured through Whatman #41 filter paper into 15 

mL graduated, glass conical tubes. Each extraction tube and filter paper was washed into 

the graduated tubes about three times with chloroform to ensure quantitative recovery, 

and to bring the final volume to 10 mL. Next 2 mL of 0.88% KCL was added, and tubes 

were capped and gently inverted several times, and phases were separated by 

centrifugation. The upper phase was aspirated and discarded, and the lower phase placed 

into a new tube. To solubilize lipids in water for reagent based, colorimetric assay, 10% 

Triton X-100 in cholorform (v/v) was added to 0.25 mL aliquots of liver extract upper 

phase. Chloroform was dried down under nitrogen and lipids were brought back up in 

0.96mL of deionized water for a total sample volume of 1ml. Total cholesterol and 

triglyceride reagents were obtained from Roche Diagnostics (Indianapolis, IN), and free 

cholesterol and phospholipids reagents were purchased from Wako Chemicals 
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(Richmond, VA). Lower phase aliquots of 100 µL were analyzed in duplicate. Esterified 

cholesterol was calculated from the difference between total and free cholesterol values. 

 

Fecal Bile Acids 

 Approximately 200mg of feces was weighed and the exact mass recorded. Total 

bile acids were extracted from the feces into 10mL of 2:1 (v/v) chloroform/methanol 

using the methods (Folch et al 1957). Samples were flushed with nitrogen and allowed to 

sit overnight at room temperature for extraction. 2 mL of 0.88% KCL was then added, 

and the samples were gently inverted three or four times, and centrifuged at 1000 x g for 

10 minutes to separate phases. The upper phase was removed and placed into a graduated 

conical tube, and the lower phase was washed with chloroform/methanol/water (3:48:47, 

v/v), inverted several times to mix, and centrifuged at 1000 x g for 10 minutes. The upper 

phase was then added to the previously removed upper phase. The total upper phase 

volume was then quantified and recorded. Quantification of bile acids was achieved by 

addition of the enzyme 3-α Hydroxysteroid Dehydrogenase (Sheltawy and Losowsky 

1975). 5mL aliquots of extraction upper phase were evaporated under nitrogen at 60
0
C in 

standardized glass cuvets. Bile acids were resolubilized in 100 µL of methanol. 3.5mL of 

β-NAD in CAPS buffer (0.2 mg/mL; pH 10.8) was added to each tube, and a background 

absorbance reading was taken at 340nm. 0.4mL of 3-α Hydroxysteroid Dehydrogenase 

(0.75 units/mL of 0.01 M phosphate buffer, pH 7.2) was added to each sample and 

incubated at 37
0
C for 30 minutes, after which the absorbance was measured again at 340 

nm. Total bile acid concentration was calculated using the difference between the pre-
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enzyme absorbance readings and the post-enzyme absorbance readings after correcting 

for the enzyme volume. Molar concentrations were derived from the absorbance 

differences using a cholic acid standard curve diluted to 0.1-0.5 mmol/assay. β-NAD, 

CAPS buffer, cholic acid, and 3-α hydroxysteroid dehydrogenase enzyme were purchases 

from Sigma-Aldrich (St. Louis, MO).       

 

Free Neutral Sterols 

Feces (50-60 mg) was weighed and the exact mass recorded, and 0.2 mL of 0.5 M 

HCL was added to acidify and optimize the extraction. Total fecal lipids were extracted 

from the feces into 5 mL of 2:1 (v/v) chloroform/methanol with 20 µg/mL of 5-α 

cholestane (Folch et al 1957). Samples were vortexed, flushed with nitrogen and allowed 

to sit overnight at room temperature for extraction. 1 mL of 0.88% KCL was then added, 

and the samples were gently inverted three or four times, and centrifuged at 1000 x g for 

10 minutes to separate phases. The upper phase was aspirated and discarded, and the 

lower phase was decanted into clean tubes. Samples were then dried down at 50
0
C under 

nitrogen. After solvent evaporation, 2 mL 1.0 M KOH in methanol was added to each 

tube, flushed with nitrogen and left in a water bath at 50
0
C for 3 days to allow for 

complete saponification of lipids. Samples were removed from the water bath and 

allowed to cool to room temperature before the addition of 2 mL of dionized water and 

vortexing. Non-saponifiables were extracted into 3 mL of hexane by vigorous shaking for 

1min and centrifugation at 1000 x g for 1 minute to separate phases. The upper hexane 

layer was transferred to a new tube, and the lower phase was washed with an additional 3 
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mL of hexane, centrifuged and the upper layer removed and combined with the first 

upper hexane layer. The samples were then dried down under nitrogen and brought back 

up in equivalent hexane volumes and placed into gas chromatography vials for analysis. 

Gas chromatography was conducted using an AT-5 capillary column (Alltech, Deerfield, 

IL), held initially at 270
0
C for 1 minute with a 15.0

o
C/minute temperature ramp up to 

300
0
C and held for 14 minutes. The inlet temperature was 270

o
C, and the Flame Ionizing 

Detector was 300
0
C.    

  

Esterified Neutral Sterols 

Feces (50-60 mg) was weighed, the exact mass recorded, and 0.2 mL of 0.5 M 

HCL was added to acidify and optimize the extraction. Total fecal lipids were extracted 

from the feces into 5 mL of 2:1 (v/v) chloroform/methanol with 20 µg/mL of 5-α 

cholestane (Folch et al 1957). Samples were vortexed, flushed with nitrogen and allowed 

to sit overnight at room temperature for extraction. 1 mL of 0.88% KCL was then added, 

and the samples were gently inverted four times, and centrifuged at 1000 x g for 10 

minutes to separate phases. The upper phase was aspirated and discarded, and the lower 

phase was decanted into clean tubes. Aliquots of this lower phase were placed into GC 

vials for gas chromatographic analysis. Gas chromatography was conducted using an AT-

5 capillary column (Alltech, Deerfield, IL), held initially at 270
0
C for 1 minute with a 

15.0
o
C/minute temperature ramp up to 300

0
C and held for 14 minutes. The inlet 

temperature was 270
o
C, and the Flame Ionizing Detector was 300

0
C. 
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Biliary Bile Acids 

 Bile samples were aspirated from hamster gallbladders in a 1mL syringe and 

immediately diluted with saline solution. Biliary bile acids were extracted by solid phase 

extraction and quantified by HPLC (Scalia 1988). The entire volume of bile recovered 

(10-40 µL bile diluted with 100-200 µL saline) from each gallbladder was transferred 

into 16 x 150mL tubes and diluted with 8mL of 0.1 M NaOH. The diluted bile was then 

heated for 15 minutes at 65
0
C and allowed to cool to room temperature. Extraction of bile 

acids was then conducted by passing diluted bile through a sodium hydroxide/methanol-

preconditioned, C-18, solid-phase extraction cartridge (Grace Davison Discovery 

Sciences, Deerfield, IL) in a drop-wise fashion. The cartridge was then washed with 20 

mL of deionized water to elute highly polar compounds, and the remaining bile acids 

were then eluted and collected with 4mL of methanol. Methanol was then dried down and 

brought back up in 0.5mL of the initial HPLC mobile phase (15% mobile phase B, and 

85% mobile phase A as described below) and filtered through a 0.4µm Teflon syringe 

filter (National Scientific, Rockwood, TN). 250 µL of filtered sample was drawn up in an 

HPLC injection syringe and injected onto a Hichrom Ultrasphere 5 ODS column (150 x 

4.6 mm I.D. particle 5 micrometer) from via a 200 µL loop. The sample was eluted with a 

dual-mobile phase gradient initiated at 15% B for 25 minutes after which %B was 

increased to 50% over 15 minutes with a constant flow rate of 1 mL/min. Mobile phase A 

consisted of 65% methanol and 35% 0.04 M sodium acetate in water adjusted to pH 4.3. 

Mobile phase B consisted of 90% methanol and 10% 0.098 M sodium acetate in water 

adjusted to pH 4.3. Initial mobile phase used to solubilize standards and samples was a 

mixture of 15% B and 85%A. Bile acids were detected using a UV/Vis detector set at 210 
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nm, and bile acids were quantified with Chrom Perfect software. Bile acid data was 

compiled into a final hydrophobicity index for each sample using the formulas below 

(Armstrong and Carey 1982, Heuman 1989). 

 

K’x = (Tr - To) / To 

HI = ln(k’x)/ln(k’tlc) 

Figure 3. Hydrophobicity Index Formulas  

Where K’x is the retention factor unique to each bile acid, ‘r’ is the migration of 

the individual bile acid in minutes and ‘o’ is the solvent peak front in minutes. K’tlc is the 

retention factor of taurolithocholic acid calculated using the formula for K’x. HI is the 

hydrophobicity index for the individual bile acid. The HI of each sample of bile is the 

sum of each bile acid’s molar percent multiplied by its own HI. 

 

Statistical Analysis 

 One way ANOVA analysis was used to compare study endpoints of the treatment 

groups. Mean values were analyzed for treatment differences using the Tukey multiple-

comparison procedure, and mean values were considered significantly different at a p 

value of < 0.05. Association between experimental endpoints was analyzed by Pearson 

product-moment correlation analysis. Statistical procedures were conducted using JMP 8 

(SAS Institute, Inc., Cary, NC). 
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RESULTS 

 

Body Weight and Food Intake 

 Body weight and cumulative weight gain for the hamsters showed significant 

differences between some treatments at certain time points (Table 2, Figure 4). Regarding 

body weight, at Week 0 both the Palmitate Ester (PEs) (79.3 ± 0.8 g) and Stearate Ether 

(SEt) (79.6 ± 0.6 g) groups were significantly lighter than Control (83.6 ± 0.8 g). After 

Week 1, however, PEs weights were no longer different from Control, however SEt 

would be lighter than Control for the remainder of the study period, and would also differ 

from the Oleate Ester (OEt) group and the Stearate Ester (SEs) group during Week 3. 

Also, the free sterol (FS) group was lighter than Control for Weeks 1, 3 and 4.  When 

considering cumulative weight gain, however, the only significant differences were 

during the first weigh point in which FS (2.5 ± 1.6 g) was lower than Control (6.1 ± 0.9 

g) but neither was different compared to SEt (4.6 ± 0.6 g), SEs (5.4 ± 0.5 g), PEs (6.2 ± 

0.6 g) and OEs (5.5 ± 0.5 g).  The low average body weight in the FS groups was due to 

one animal that lost approximately 10 g in the first week. Removing this data point 

removed any significant difference. Concerning food intake, there were no differences 

between any groups during any week (p > 0.05) (Table 3). 
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Table 2. Hamster Body Weight 

 

Control 
Stearate 

Ether 

Stearate 

Ester 

Palmitate 

Ester 

Oleate 

Ester 

Free 

Sterol 

Week  

 
g 

  

0 83.6 ± 0.8
a 

79.6 ± 0.6
b 

82.3 ± 1.2
ab 

79.3 ± 0.8
b 

81.2 ± 1.0
ab 

81.3 ± 0.8
ab

 

1 

 

89.6 ± .9
a 

84.2 ± 0.7
b 

87.7 ± 1.1
ab 

85.5 ± 1.0
ab 

87.7 ± 0.9
ab 

83. ± 1.8
b 

2 

 

95.1 ± 1.2
a 

89.1 ± 1.0
b 

94.7 ± 1.2
a 

91.2 ± 1.3
ab 

94.9 ± 1.0
a 

90.2 ± 1.5
ab 

3 99.9 ± 1.3
a 

 

93.7 ± 0.9
b 

99.1 ± 1.0
a 

95.2 ± 1.3
ab 

97.7 ± 1.3
ab 

93.4 ± 1.4
b 

4 104 ± 2
a 

97.1 ± 0.9
bc 

102 ± 1
ab 

98.8 ± 1.4
abc 

102 ± 2
abc 

96.7 ± 1.1
c 

Values are means ± SEM, n = 10 

Means within a row having different superscripts are statistically different (P < 0.05) 

  

 

 

Figure 4. Cumulative body weight gain in hamsters during 23 day dietary plant sterol feeding.  

* Statistically Lower compared to control during Week 1.    
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Table 3. Food Intake 

 

Control 
Stearate 

Ether 

Stearate 

Ester 

Palmitate 

Ester 

Oleate 

Ester 

Free 

Sterol 

   
g/day 

 

  

Week 1 

 

2.20 ± 0.11 2.33 ± 0.08 2.45 ± 0.11 2.36 ± 0.14  2.33 ± 0.08 2.30 ± 0.09 

Week 2 

 

5.57 ± 0.08 5.58 ± 0.11 5.62 ± 0.12 5.39 ± 0.26 5.46 ± 0.26 5.03 ± 0.17 

Week 3 

 

6.17 ± 0.11 6.53 ± 0.07 6.33 ± 0.11 6.41 ± 0.12 6.22 ± 0.14 6.24 ± 0.13 

Week 4 

 

6.86 ± 0.22 7.01 ± 0.19 6.86 ± 0.21 7.04 ± 0.19 7.37 ± 0.20 6.59 ± 0.15 

Values are means ± SEM, n = 10 

One-way Anova analysis showed no significant treatment differences.   

 

 

Plasma Lipids and Cholesterol Absorption 

 After 23 days on treatment diets, hamsters showed statistically significant 

differences in non-HDL and HDL cholesterol levels (Table 4). OEs and FS non-HDL 

cholesterol levels were 2.81 ± 0.18, and 2.84 ± 0.15 mmol/L, respectively. Both were 

equivalently and significantly lower than Control (6.73 ± 0.35 mmol/L). SEt (6.15 ± 0.32 

mmol/L), SEs (6.22 ± 0.33 mmol/L) and PEs (5.89 ± 0.26 mmol/L) non-HDL cholesterol 

levels were not significantly different compared to Control, but were greater than OEs 

and FS (P < 0.0001). SEs and PEs HDL cholesterol concentrations were 2.24 ± 0.08 

mmol/L and 2.18 ± 0.06 mmol/L, respectively. Compared to Control, these groups were 

statistically identical. HDL cholesterol concentrations in SEt, OEs and FS groups were 

1.68 ± 0.09, 1.67 ± 0.13, and 1.57 ± 0.07 mmol/L, respectively and were significantly 
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lower than Control, SEs and PEs (P < 0.01). Cholesterol absorption (Table 4), was 

decreased in all treatments compared to Control except for SEs. Percent absorption was 

64.9 ± 2.1, 36.9 ± 0.8, 56.3 ± 1.8, 53.48 ± 3.7, 14.92 ± 3.8, 12.82 ± 1.7 for Control, SEt, 

SEs, PEs, OEs and FS respectively.  

 

 

Liver Weight and Lipids 

 Liver weights (Table 5) for the Control group, SEs and SEt were 5.61 ± 0.1, 5.38 

± 0.2 and 5.61 ± 0.1 g, respectively and were no different from each other (P > 0.05). PEs 

liver weight was 4.94 ± 0.1 g and was lighter than Control and SEt but no different from 

SEs. OEs (3.90 ± 0.1 g) and FS (3.62 ± 0.1 g) were equivalently and significantly lower 

than all other groups (P < 0.0001).  

 Total cholesterol (Table 5) in the Control group (37.53 ± 2.2 µmol/g) was 

elevated above all other treatments. Significant reductions compared to the Control group 

were seen in PEs and SEs with concentrations of 24.8 ± 2.1 and 28.43 ± 2.0 µmol/g, 

respectively. SEt, OEs and FS were statistically no difference and lower than all other 

groups, with total cholesterol concentrations of 11.06 ± 0.6, 6.46 ± 0.3, and 6.09 ± 0.3 

µmol/g, respectively. An identical trend of the same statistical relationships between 

groups was seen in esterified cholesterol levels (Table 5), whereby Control (30.92 ± 2.2 

µmol/g) was greater than all groups, SEs (18.89 ± 2.0 µmol/g) and PEs (21.94 ± 2.0 

µmol/g) were lower than Control, and SEt (5.38 ± 0.6 µmol/g), OEs (2.14 ± 0.3 µmol/g), 

and FS (1.79 ± 0.3 µmol/g) were the lowest and equivalent to each other. With the 

exception of PEs compared to Control (P = 0.011), all other pair-wise treatment 
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comparisons for esterified cholesterol showed P values less than 0.0001. Free cholesterol 

(Table 5) concentrations were highest in the Control group (6.61 ± 0.1 µmol/g) and PEs 

(5.60 ± 0.1 µmol/g). The SEt (5.69 ± 0.1 µmol/g) and SEs (5.91 ± 0.1 µmol/g) were 

equally less than Control and PEs. OEs and FS had the statistically lowest free 

cholesterol concentrations of 4.32 ± 0.04 µmol/g and 4.30 ± 0.1 µmol/g respectively. 

Free cholesterol treatment differences were significant at P < 0.01. The greatest 

concentrations of liver triglycerides (Table 5) were seen in equivalently across the 

Control group (1.91 ± 0.1 µmol/g), OEs (2.33 ± 0.2 µmol/g) and FS (1.98 ± 0.1 µmol/g). 

While no different than OEs or FS, the triglyceride concentrations of SEt (1.51 ± 0.1 

µmol/g) SEs (1.61 ± 0.1 µmol/g) and PEs (1.67 ± 0.1 µmol/g) were statistically lower 

compared to Control at P < 0.01. Phospholipid concentrations (Table 5) did not differ 

among Control, SEt, SEs, PEs, and OEs, 17.03 ± 0.3, 16.86 ± 0.2, 17.06 ± 0.2, 17.18 ± 

0.3, 17.92 ±0.2 µmol/g respectively. FS, however, was statistically lower than Control, 

SEt and SEs, but no different than PEs or OEs. Phospholipid differences were significant 

at P < 0.05.  

 

Fecal Sterols               

 Fecal bile acids (Table 6) (µmol/day/100g BW) in the Control group (0.58 ± 

0.04), SEt (0.57 ± 0.04), SEs (0.75 ± 0.05) and PE (0.71 ± 0.04) were equivalent (P > 

0.05), while OEs was the lower compared to all groups except FS (0.37 ± 0.04), and FS 

was equivalent to the Control, SEt and OEs. Differences were observed with P values less 

than 0.05 for all treatments.  Fecal neutral sterol content (Table 6) (µmol/day/100g BW) 

was greatest in the OEs and FS groups which were identical to one another; 0.37 ± 0.04 
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and 0.43 ± 0.05, respectively. SEt was the second highest (11.97 ± 0.3). SEs (6.72 ± 0.5) 

and PEs (6.72 ± 0.5) were lower than SEt, and no differences were observed between the 

two. The Control group was statistically the lowest at 2.84 ± 0.0. All differences were 

significant at P < 0.0001 with the exception of pair wise comparisons between PEs and 

Control, and SEs and Control, both of which returned P values of 0.0031. Total fecal 

plant sterol output (Table 6) (µmol/day/100g BW) was different only in the Control 

group (1.31 ± 0.1) as compared to all other treatments (P < 0.0001); SEt (362.4 ± 15.3), 

SEs (359.0 ± 16.0), PE (357.6 ± 16.0), OE (345.0 ± 10.6) and FS (386.7 ± 16.1). Percent 

of plant sterol ester hydrolysis was 1.69 ± 0.03 in SEt, 3.13 ± 0.2 in SEs, 4.12 ± 0.2 in 

PEs, 88.29 ± 0.8 in OEs and 100 ± 0.0 in FS. Differences were significant at P < 

0.0001with the exception of the comparison of PEs to SEt which was significant at P = 

0.0002.  

 

Biliary Bile Acids 

 Treatment differences were only observed for four bile acids (Tables 7a-b). The 

molar percent of ursodeoxycholate in the Control group (1.1 ± 0.7%) was significantly 

lower than FS (29.4 ± 6.9%), but there is no evidence to suggest that a difference exists 

between these two groups and SEt (18.2 ± 5.3%), SEs (19.0 ± 6.5%), PEs (10.6 ± 4.7%) 

or OEs (13.7 ± 7.6%) with P > 0.05. Tauroursodeoxycholate was greater in OEs (7.60 ± 

2.23%) compared to SEt (2.50 ± 0.78) and SEs (1.80 ± 0.24), but no differences were 

detected between OEs, Control (3.10 ± 1.05%), PEs (3.90 ± 0.65%) or FS (3.20 ± 0.46) 

with P > 0.05. Taurochenodeoxycholate was greatest in PEs (9.6 0± 1.44%) compared 
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with SEs (4.38 ± 0.78%), OEs (2.66 ± 0.77%) and FS (3.79 ± 0.82%), but no evidence of 

a difference was found between PEs, Control (5.3 ± 1.4%), SEt (4.8 ± 1.7), SEs, OEs or 

FS. Glycochenodeoxycholate was greater in PEs (10.4 ± 1.6%) than in FS (4.8 ± 0.9%), 

but no evidence of a difference was found when comparing PEs and FS to Control (8.3 ± 

1.6%), SEt (7.6 ± 1.3%), SEs (6.9 ± 0.7%) or OEs (5.8 ± 1.1%) as all P values were 

greater than 0.05. All other bile acids were unchanged between treatments. The molar 

percent of hyodeoxycholic acid in the Control, SEt, SEs, PEs, OEs and FS groups was 

10.9 ± 7.4%, 2.2 ± 0.4%, 2.4 ± 0.4%, 2.0 ± 0.3%, 5.2 ± .09% and 3.1 ± 0.5%, 

respectively. Across the same treatment groups, cholate molar percent was 19.2% ± 

6.1%, 15.3% ± 3.3%, 19.3 ± 3.9%, 16.6 ± 3.2%, 10.3 ± 3.0% and 11.5 ± 3.2%, 

respectively. Chenodeoxycholicate molar percent was 12.4 ± 5.8%, 22.3 ± 6.9%, 18.6 ± 

3.3%, 11.9 ± 3.4%, 13.7 ± 3.9%, 23.0 ± 3.7%, respectively and across the same groups, 

deoxycholate molar percent was 12.9 ± 5.1, 6.2 ± 5.1, 12.0 ± 4.0, 14.3 ± 3.7, 21.2 ± 7.6, 

5.5 ± 1.9%, respectively. Lithocholate molar percent of Control, SEt, SEs, PEs, OEs and 

FS groups was 1.60 ± 0.70%, 1.30 ± 1.33%, 1.80 ± 0.72%, 0.40 ± 0.27%, 0.10 ± 0.10% 

and 1.05 ± 0.93%, respectively. Taurodeoxycholate molar percent of Control, SEt, SEs, 

PEs, OEs and FS was 9.37 ± 6.18%, 4.75 ± 1.39%, 2.31 ± 0.41%, 3.98 ± 0.69%, 7.30 ± 

1.28% and 5.16 ± 1.15%, respectively. Taurocholate molar percent across these same 

treatments was 2.81 ± 1.94%, 0.85 ± 0.18%, 0.83 ± 0.17%, 1.14 ± 0.21%, 1.63 ± 0.35% 

and 0.87 ± 0.15%, respectively. Taurolithocholate molar percent across the same groups 

was 1.05 ± 0.35%, 3.15 ± 1.47%, 1.07 ± 0.18%, 1.96 ± 0.75%, 0.78 ± 0.19% and 0.87 ± 

0.21%, respectively. Glycocholate molar percent in Control, SEt, SEs, PEs, OEs and FS 

was 1.51 ± 0.4%, 3.61 ± 2.53%, 1.42 ± 0.51%, 1.84 ± 0.62%, 2.64 ± 0.65% and 0.93 ± 
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0.28%, respectively. In the same groups, glycodeoxycholate molar percent was 10.5 ± 

2.2%, 7.24 ± 2.08%, 8.21 ± 0.96%, 11.2 ± 1.9%, 7.36 ± 1.45% and 6.86 ± 1.25%, 

respectively. With the exception of ursodeoxycholate, tauroursodeoxycholate, 

taurochenodeoxycholate and glycochenodeoxycholate, no differences were detected in 

molar percents individual bile acids among treatments (P>0.05). Total molar percent of 

unconjugated bile acids showed no evidence of differences between the Control (58.1 ± 

8.8%), SEt (65.5 ± 6.1%), SEs (73.1 ± 2.4%), PEs (55.9 ± 5.5%), OEs (64.2 ± 6.6%) or 

FS (73.6 ± 4.4% (P>0.05). Also, no differences were observed across the same treatments 

regarding total conjugated bile acids with Control, SEt, SEs, PEs, OEs and FS molar 

percents being 41.9 ± 8.8%, 34.5 ± 6.1%, 26.9 ± 2.4%, 44.1 ± 5.5%, 35.8 ± 6.6% and 

26.4 ± 4.4%, respectively. The sum of tauroconjugated bile acids across all treatments 

showed no significant differences with Control, SEt, SEs, PEs, OEs and FS molar 

percents being 21.6 ± 7.9%, 16.3 ± 3.3%, 10.4 ± 1.0%, 20.6 ± 2.4%, 20.0 ± 4.1% and 

13.9 ± 2.3%, respectively (P>0.05). Also, no evidence of differences for the sum of 

glycoconjugated bile acids was founds across the same treatments in with molar percents 

of 20.3 ± 4.0%,18.2 ± 3.9%,16.5 ± 2.0%,23.5 ± 3.3%,15.8 ± 2.9% and 12.6 ± 2.2% for 

Control, SEt, SEs, PEs, OEs and FS, respectively. The sum of primary bile acids molar 

percents was 49.4 ± 7.6%, 55.8 ± 6.1%, 51.4 ± 6.4%, 51.6 ± 3.3%, 36.7 ± 5.8% and 44.9 

± 5.1% for Control, SEt, SEs, PEs, OEs and FS, respectively with no differences 

observed between any groups (P>0.05). The sum of secondary bile acid molar percents 

was 50.6 ± 7.6%, 44.2 ± 6.1%, 48.6 ± 6.4%, 48.4 ± 3.3%, 63.3 ± 5.8% and 55.1 ± 5.1% 

for Control, SEt, SEs, PEs, OEs and FS, respectively with no differences observed 

between any groups (P>0.05). The ratio of primary to secondary bile acids was 1.47 ± 
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0.37, 1.82 ± 0.61, 1.47 ± 0.37, 1.14 ± 0.13, 0.70 ± 0.16 and 0.97 ± 0.20 for Control, SEt, 

SEs, PEs, OEs and FS respectively. No differences were observed between any treatment 

groups with all p values greater than 0.05. The ratio of glycoconjugated to 

tauroconjugated bile acids was no different between any groups with Control, SEt, SEs, 

PEs, OEs and FS ratios of 1.63 ± 0.24, 1.61 ± 0.57, 1.68 ± 0.21, 1.16 ± 0.08, 0.81 ± 0.10 

and 0.93 ± 0.08, respectively. The ratio of free to conjugated bile acids was also no 

different across the same groups with Control, SEt, SEs, PEs, OEs and FS ratios being 

3.36 ± 1.53, 2.81 ± 0.69, 3.02 ± 0.38, 2.19 ± 0.99, 3.45 ± 1.23 and 4.16 ± 1.16, 

respectively. The hydrophobicity index was no different across all treatment groups with 

relative units of 0.86 ± 0.1, 0.84 ± 0.1, 0.89 ± 0.03, 0.82 ± 0.04, 0.83 ± 0.1 and 0.83 ± 

0.02 p values from all pair-wise comparisons above 0.05.   

 

Correlations 

 Percent hydrolysis was correlated significantly with fecal cholesterol output 

(r=0.9218, p<0.0001), Liver esterified cholesterol (r=-0.6843, p<0.0001), and percent 

cholesterol absorption (r=-0.8504, p<0.0001). Fecal cholesterol output was significantly 

correlated with the natural log of non-HDL cholesterol (r=-0.8383, p<0.0001), and 

cholesterol absorption was correlated significantly with non-HDL cholesterol (r=0.7653, 

p<0.0001).   
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Table 4. Cholesterol Absorption and Plasma Lipids 

 

Control 
Stearate 

Ether 

Stearate 

Ester 

Palmitate 

Ester 

Oleate 

Ester 

Free 

Sterol 

   
% 

 

Cholesterol 

Absorption 
64.9 ± 2.1

a 
36.9 ± 0.8

c 
56.3 ± 1.8

ab 
53.5 ± 3.7

b 
14.9 ± 3.8

d 
12.8 ± 1.7

d 

   mmol/L  

Non-HDL 

Cholesterol 
6.73 ± 0.35

a 
6.15 ± 0.32

a
 6.22 ± 0.33

a
 5.89 ± 0.26

a
 2.81 ± 0.18

b 
2.84 ± 0.15

b 

HDL 

Cholesterol 

 

2.42 ± 0.09
a 

1.68 ± 0.09
b
 2.24 ± 0.08

a 
2.18 ± 0.06

a 
1.67 ± 0.13

b 
1.57 ± 0.07

b 

Values are means ± SEM, n = 10 

Means within a row having different superscripts are statistically different (P < 0.05). 

 

 

 

 

Table 5. Liver Weight and Liver Lipid Concentrations 

 Control 
Stearate 

Ether 

Stearate 

Ester 

Palmitate 

Ester 

Oleate 

Ester 

Free 

Sterol 

   µmol/g  

Total 

Cholesterol 
37.5 ± 2.2

a 
11.1 ± 0.6

c 
24.8 ± 2.1

b 
28.4 ± 2.0

b 
6.46 ± 0.3

c 
6.09 ± 0.3

c 

Esterified 

Cholesterol 
30.9 ± 2.2

a 
5.38 ± 0.6

c 
18.9 ± 2.0

b 
21.9 ± 2.0

b 
2.14 ± 0.3

c 
1.79 ± 0.3

c 

Free 

Cholesterol 
6.61 ± 0.14

a
 5.69 ± 0.13

b 
5.91 ± 0.10

b 
5.60 ± 0.11

a 
4.32 ± 0.05

c 
4.30 ± 0.10

c 

Triglyceride 1.91 ± 0.10
ab 

1.51 ± 0.11
b 

1.61 ± 0.11
b 

1.67 ± 0.15
b 

2.33 ± 0.19
a 

1.98 ± 0.07
ab 

Phospholipid 17.0 ± 0.3
b 

16.9 ± 0.2
b 

17.1 ± 0.2
b 

17.2 ± 0.3
ab 

17.9 ±0.2
ab 

18.3 ± 0.4
a 

   g  

Liver Weight 5.61 ± 0.10
a 

5.61 ± 0.13
a 

5.38 ± 0.15
ab 

4.94 ± 0.14
b 

3.90 ± 0.12
c 

3.62 ± 0.08
c 

Values are means ± SEM, n = 10 

Means within a row having different superscripts are statistically different (P < 0.05).



 

 

 

 

Table 6. Fecal Sterols 

 Control 
Stearate 

Ether 

Stearate 

Ester 

Palmitate 

Ester 

Oleate 

Ester 

Free 

Sterol 

   µmol/day/100g BW 

 
  

Bile Acids 0.58 ± 0.04
ab 

0.57 ± 0.04
ab 

0.75 ± 0.05
a 

0.71 ± 0.04
a 

0.37 ± 0.04
c 

0.43 ± 0.05
bc 

Neutral Sterol 2.84 ± 0.00
d 

12.0 ± 0.30
b 

6.72 ± 0.47
c 

6.72 ± 0.46
c 

21.1 ± 0.78
a 

21.7 ± 0.70
a 

Total Plant Sterol 1.31 ± 0.10
a
 362 ± 16

b 
359 ± 16

b 
358 ± 16

b 
345 ± 11

b 
387 ± 16

b 

Esterified Plant Sterol 0.00 ± 0.0
c 

348 ± 15
a 

42.5 ± 4.2
a 

346 ± 16
a 

339 ± 11
b 

0.00 ± 0.00
c 

Free Plant Sterol 1.31 ± 0.10
c 

5.81 ± 0.12
c 

11.2 ± 0.8
c 

14.9 ± 0.8
c 

317 ± 13
b 

387 ± 16
a 

   %   

Plant Sterol Ester 

Hydrolysis 

 

 1.69 ± 0.03
d 

3.13 ± 0.2
cd 

4.12 ± 0.2
c 

88.3 ± 0.8
b 

100 ± 0.0
a 

Values are means ± SEM, n = 10 

Means within a row having different superscripts are statistically different (P < 0.05). 
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Table 7a. Biliary Bile Acids 

 

Control 
Stearate 

Ether 

Stearate 

Ester 

Palmitate 

Ester 

Oleate 

Ester 

Free 

Sterol 

 
  Mole %   

UNCONJUGATED 58.1 ± 8.8 65.5 ± 6.1 73.1 ± 2.4 55.9 ± 5.5 64.2 ± 6.6 73.6 ± 4.4 

Ursodeoxycholate 1.1 ± 0.7
b 

18.2 ± 5.3
ab 

19.0 ± 6.5
ab 

10.6 ± 4.7
ab 

13.7 ± 7.6
ab 

29.4 ± 6.9
a 

Hyodeoxycholate 10.9 ± 7.4 2.20 ± 0.4 2.40 ± 0.4 2.00 ± 0.3 5.20 ± .09 3.10 ± 0.5 

Cholate 19.2 ± 6.1 15.3 ± 3.3 19.3 ± 3.9 16.6 ± 3.2 10.3 ± 3.0 11.5 ± 3.2 

Chenodeoxycholate 12.4 ± 5.8 22.3 ± 6.9 18.6 ± 3.3 11.9 ± 3.4 13.7 ± 3.9 23.0 ± 3.7 

Deoxycholate 12.9 ± 5.1 6.20 ± 5.1 12.0 ± 4.0 14.3 ± 3.7 21.2 ± 7.6 5.5 ± 1.9 

Lithocholate 1.60 ± 0.70 1.30 ± 1.33 1.80 ± 0.72 0.40 ± 0.27 0.10 ± 0.10 1.1 ± 0.93 

TAURO-CONJUGATED 21.6 ± 7.9 16.3 ± 3.3 10.4 ± 1.0 20.6 ± 2.4 20.0 ± 4.1 13.9 ± 2.3 

Urosdeoxycholate 3.10 ± 1.05
ab 

2.50 ± 0.78
b 

1.80 ± 0.24
b 

3.90 ± 0.65
ab 

7.60 ± 2.23
a 

3.20 ± 0.46
ab 

Deoxycholate 9.37 ± 6.18 4.75 ± 1.39 2.31 ± 0.41 3.98 ± 0.69 7.30 ± 1.28 5.16 ± 1.15 

Cholate 2.81 ± 1.94 0.85 ± 0.18 0.83 ± 0.17 1.14 ± 0.21 1.63 ± 0.35 0.87 ± 0.15 

Chenodeoxycholate 5.25 ± 1.40
ab 

4.78 ± 1.68
ab 

4.38 ± .78
b 

9.60 ± 1.44
a 

2.66 ± 0.77
b 

3.79 ± 0.82
b 

Lithocholate 1.05 ± 0.35 3.15 ± 1.47 1.07 ± 0.18 1.96 ± 0.75 0.78 ± 0.19 0.87 ± 0.21 

Values are means ± SEM, n = 9-10 

Means within a row having different superscripts are statistically different (P < 0.05).  
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Table 7b. Biliary Bile Acids - Continued 

 Control 
Stearate 

Ether 

Stearate 

Ester 

Palmitate 

Ester 

Oleate 

Ester 

Free 

Sterol 

   Mole %   

GLYCO-CONJUGATED 20.3 ± 4.0 18.2 ± 3.9 16.5 ± 2.0 23.5 ± 3.3 15.8 ± 2.9 12.6 ± 2.2 

Cholate 1.51 ± 0.43 3.61 ± 2.53 1.42 ± 0.51 1.84 ± 0.62 2.64 ± 0.65 0.93 ± 0.28 

Chenodeoxycholate 8.27 ± 1.61
ab 

7.64 ± 1.33
ab 

6.89 ± 0.75
ab 

10.45 ± 1.62
a 

5.80 ± 1.07
ab 

4.80 ± 0.87
b 

Deoxycholate 10.5 ± 2.2 7.24 ± 2.08 8.21 ± 0.96 11.2 ± 1.9 7.36 ± 1.45 6.86 ± 1.25 

ALL CONJUGATES 41.9 ± 8.8 34.5 ± 6.1 26.9 ± 2.4 44.1 ± 5.5 35.8 ± 6.6 26.4 ± 4.4 

PRIMARY 49.4 ± 7.6 55.8 ± 6.1 51.4 ± 6.4 51.6 ± 3.3 36.7 ± 5.8 44.9 ± 5.1 

SECONDARY 50.6 ± 7.6 44.2 ± 6.1 48.6 ± 6.4 48.4 ± 3.3 63.3 ± 5.8 55.1 ± 5.1 

   Molar Ratio    

PRIMARY:SECONDARY 1.47 ± 0.37 1.82 ± 0.61 1.47 ± 0.37 1.14 ± 0.13 0.70 ± 0.16 0.97 ± 0.20 

GLYCO:TAURO 1.63 ± 0.24 1.61 ± 0.57 1.68 ± 0.21 1.16 ± 0.08 0.81 ± 0.10 0.93 ± 0.08 

FREE:CONJUGATED 3.36 ± 1.53 2.81 ± 0.69 3.02 ± 0.38 2.19 ± 0.99 3.45 ± 1.23 4.16 ± 1.16 

   
Relative 

Units 
  

 

HYDROPHOBICITY 

INDEX 
0.86 ± 0.1 0.84 ± 0.1 0.89 ± 0.03 0.82 ± 0.04 0.83 ± 0.1 0.83 ± 0.02 

Values are means ± SEM, n = 9-10 

Means within a row having different superscripts are statistically different (P < 0.05). 
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Figure 5. Correlation analysis of percent hydrolysis and cholesterol absorption. 6
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Figure 6. Correlation analysis of percent hydrolysis and fecal cholesterol output.  
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Figure 7. Correlation analysis of percent hydrolysis and Non-HDL cholesterol. 6
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Figure 8. Correlation analysis of percent hydrolysis and liver esterified cholesterol. 
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Figure 9. Correlation analysis of fecal cholesterol output and the Non-HDL cholesterol. 6
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Figure 10. Correlation analysis of fecal cholesterol output and the natural log of Non-HDL cholesterol. 
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Figure 11. Correlation analysis of percent cholesterol absorption and Non-HDL cholesterol. 
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Discussion 

 The purpose of this study was to determine the relationship between the ability of 

plant sterol esters (PSE) to be hydrolyzed in the intestinal lumen and their cholesterol-

lowering capabilities. Studies conducted as early as the 1950s (Best and Duncan 1958, 

Peterson et al 1953) and later (Mattson et al 1977, Normen et al 2006) demonstrated that 

it is the free plant sterol molecule that is active, and therefore in order for cholesterol-

lowering to take place, the esterified molecule must be hydrolyzed in the lumen. 

However, few studies stating this hypothesis endeavored to quantify the degree to which 

the PSE were hydrolyzed. Furthermore, recent work from our laboratory has suggested 

that hydrolysis is indeed necessary, showing that phytosterol stearates fed to hamsters 

resulted in only 0.88-4.68% hydrolysis and no hypocholesterolemic effects (Carr and 

Ash). Therefore, the current study tested the hypothesis that hydrolysis of PSE is required 

to observe a cholesterol-lowering effect. 

 In this study, one sterol ether treatment and four sterol ester treatments were used 

to produce a spectrum of hydrolysis across which cholesterol metabolism may be 

compared. The relative degrees of hydrolysis of the treatment compounds were found to 

be SEs = SEt < PEs < OEs < FS with no significant difference between SEs and PEs 

(Table 6). These relative levels of hydrolysis aligned perfectly with the predicted 

spectrum conceptualized from in-vitro work previously conducted in this laboratory 

(Brown et al 2010). In the current study, however, the range of hydrolysis was much less 

evenly distributed across the entire spectrum, leaving SEs, SEt and PEs clustered at the 

lower end of the spectrum (1.69-4.12% hydrolyzed), and OEs and FS clustered at the 

upper end (88.29-100% hydrolyzed). Without coverage of the middle of the spectrum, we 
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were left to speculate about the cholesterol lowering efficiency of PSE that are only 

partially hydrolyzed. A correlation of fecal cholesterol output and non-HDL cholesterol 

(Figure 9) provided a more complete spectrum coverage and produced a hyperbolic shape 

with a sharp drop in non-HDL cholesterol as fecal cholesterol output increased, which 

seemed to level off towards the high end of the cholesterol output spectrum suggesting a 

saturation of the system. Considering that fecal cholesterol output was highly correlated 

with percent hydrolysis (Figure 6), it may follow that the mid-spectrum trend of 

correlations of percent hydrolysis with other parameters would be similar to that of 

cholesterol output. If this is true, plant sterol competition with cholesterol for micelle 

incorporation may reach its peak efficiency before reaching 88-100% hydrolysis, as was 

seen with OEs and FS respectively, suggesting that there may be a threshold of PSE 

supplementation above which few additional benefits are realized.  

Despite the clustering of data points at each end of the hydrolytic spectrum, 

changes in cholesterol metabolism across treatment groups support our hypothesis that 

hydrolysis is vital to the cholesterol-lowering action of PSE. With the exception of SEt, 

percent cholesterol absorption closely matched the inverse of the pattern of hydrolysis 

noted above; relative cholesterol absorption: FS < OEs < PEs = SEs. Furthermore, 

percent hydrolysis was highly and inversely correlated with cholesterol absorption 

showing a correlation coefficient of -0.8504 (Figure 5). Percent hydrolysis was also 

correlated negatively (r=-0.6843) with liver esterified cholesterol (Figure 8), and 

positively (r=0.9218) with fecal cholesterol output (Figure 6). These data are also in line 

with early studies exploring the effects of plant sterols esterified to fatty acids of similar 

and dissimilar structure to our treatments. (Best and Duncan 1958) conducted 
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experiments in a rat model showing that free sitosterol and sitosteryl oleate were nearly 

identical in their abilities to lower liver cholesterol compared to Control. Palmitate Ester, 

on the other hand, was significantly less capable of lowering liver cholesterol, agreeing 

with our conclusions that palmitate and oleate esters undergo differential hydrolysis 

which accounts for unique cholesterol-lowering capabilities between the two. (Peterson et 

al 1953), using two-week old chicks, showed that a diet containing 1% cholesteryl 

caprate, an ester of a 10 carbon saturated fatty, resulted in lower plasma and liver 

cholesterol compared to a diet containing 1% free cholesterol only, suggesting that 

cholesterol from the caprate ester was unable to be absorbed due to a lack of hydrolysis, 

which is consistent with the lack of hydrolysis in our saturated fatty acid esters. 

Furthermore, a diet containing 1% free cholesterol and 1.38% soy sterol caprate resulted 

in elevated plasma and liver cholesterol compared to a diet containing 1% free 

cholesterol and 1.38% free soy sterols (Peterson et al 1953), further suggesting that sterol 

caprates are poorly hydrolyzed. These two experiments suggested that both cholesterol 

and plant sterols must be hydrolyzed in order to be absorbed or to compete for 

absorption, respectively. Conversely in a rat study, decanoate (caprate) and oleate esters 

of the same plant sterols possessed equivalent cholesterol lowering abilities, contrasting 

Peterson et al. who showed decanoate esters to be poor hypocholesterolemic agent 

(Mattson et al 1977). In further support of our findings was a study conducted in rats fed 

free sterols, oleate esters and stearate esters of plant sterols resulting in equivalently 

lowered liver cholesterol and equivalently increased fecal cholesterol excretion in oleate 

ester and free sterol groups compared to control, but no changes in liver cholesterol or 

fecal cholesterol excretion in the stearate ester group (Kobayashi et al 2008). Oleate 



69 

 

esters were then found to be 99.5% hydrolyzed while stearate esters were only 19.2 % 

hydrolyzed.  

According to unpublished data from previous work in our laboratory (Carr and 

Ash), plant sterol stearates containing different plant sterol moieties fail to lower 

cholesterol when consumed at 2.5% of the diet in a hamster model of 

hypercholesterolemia. This was hypothesized to be a result of poor stearate ester 

hydrolysis. It was further hypothesized, then, that non-hydrolyzed PSE may, at high 

doses, lower cholesterol by forming an “oil phase” in the intestinal lumen that solubilizes 

cholesterol and prevents its micellar incorporation, thus lowering cholesterol absorption. 

Considering in this study that stearate esters were poorly hydrolyzed, yet still managed to 

lower liver esterified cholesterol and increase fecal neutral sterol excretion, the possibility 

exists that stearate esters at 5% of the diet succeeded in creating an oil phase capable of 

partitioning cholesterol away from micelles while 2.5% was previously shown to be 

insufficient. In opposition to this theory was the cholesterol absorption data from this 

current study in which stearate esters, regardless of changes in liver cholesterol and fecal 

neutral sterol output, were unable to lower cholesterol absorption in relation to the 

Control group. Furthermore, other unpublished data in our laboratory (Brown et al.) gave 

no evidence to suggest that phase-partitioning of cholesterol differs between treatments 

of this current study. 

A unique strength of our study design, in addition to the ability of treatment 

groups to be compared across degrees of hydrolysis, was the ability to compare 

cholesterol metabolism between PSE containing different fatty acids. In the case of SEs 

and PEs, no differences were observed other than a slight lowering of liver free 
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cholesterol in PEs compared to SEs, a slightly lower liver weight in PEs compared to 

Control which was not observed in SEs, and a slight difference in the biliary 

concentrations of taurochenodeoxycholate between SEs and PEs. Given that, in this 

study, SEs and PEs were hydrolyzed to the same extent, with only the few differential 

metabolic effects noted above, it is likely that the fatty acid moiety of the PSE does not 

contribute greatly to cholesterol metabolism upon its liberation. This lends further 

credence to the hypothesis that the primary mechanism of PSE cholesterol-lowering 

effects takes place through micellar cholesterol displacement and is dependent on 

hydrolysis above any other physical property of the PSE.   

The comparison of SEs and SEt groups was also informative in that there was no 

evidence of a difference in percent hydrolysis between the two, but their metabolic 

effects regarding cholesterol metabolism vary greatly. Notably, while SEs did not alter 

cholesterol absorption compared to Control, SEt lowered it by 43% as compared to 

Control. Also compared to Control, SEt lowered liver esterified cholesterol by 83% 

compared to SEs which only lowered it by 39%. The SEt treatment group was included to 

represent a PSE that was perfectly intact with no hydrolysis. Given our hypothesis that 

hydrolysis of the PSE molecule is required for cholesterol-lowering, the SEt group 

represents an unexpected anomaly. Given the similarity in hydrolysis of SEs and SEt with 

differential metabolic effects, it may be assumed that any differences in metabolism are 

due to a structural difference between the two molecules. In this case, the only structural 

difference was that of a carbonyl group present on the first carbon of the stearic acid 

molecule in SEs that is not present on the SEt molecule (Figures 1 H and I). As 

mentioned above, poorly hydrolyzed PSE such as SEs and PEs may work through an “oil 
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phase” mechanism. It may be possible that the SEt works through this mechanism as 

well, and may act as a more potent oil phase generator as a results of its unique 

chemistry. A mechanism that could account for the more efficient development of an oil 

phase is an enzymatic cross-interaction where the SEt molecule may interact with the 

active site of pancreatic triglyceride lipase (PTL), and competitively reduce its function. 

Evidence of in-vitro and in-vivo work has suggested that remodeling of luminal non-

polar lipids, whereby triglycerides are hydrolyzed to free fatty acids, monoglycerides and 

diglycerides, is necessary for efficient cholesterol absorption. Utilizing IEC-6 cells, 

cholesterol from lipid emulsions was not transported to intestinal cells without lipase 

activity sufficient to increase the phospholipid to triglyceride ratio of the emulsion 

particle to greater than 0.3, further suggesting that PTL is vital for cholesterol absorption 

(Young and Hui 1999). (Huggins et al 2003), using PTL-/- knockout mice showed that, 

while triglyceride absorption was only delayed and minimally decreased in these animals 

compared to a wild type control, cholesterol absorption was significantly lower in the 

PTL-/- mice after a lipid bolus feeding, suggesting that cholesterol absorption is reliant 

on PTL activity for optimum efficiency. Because many lipases are considered to be 

promiscuous and will act on a variety of lipid substrates, it is possible that a SEt molecule 

may enter the lipase active site, and due to the inability of the enzyme to catalyze 

hydrolysis without a free carbonyl group to propagate the necessary catalytic triad in the 

PTL enzyme active site (Chen et al 1998, Lowe 1992), the molecule will not hydrolyze 

and thus may not efficiently leave the active site, blocking the entrance of other lipids. 

Lipids that enter the lipase active sites are immobilized during hydrolysis by a tetrahedral 

intermediate complex formed with the free carbonyl group. Because SEt lacks this 
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oxygen, it may be able to penetrate the active site further and, due to the hydrophobic 

nature of the lipase active sites, may not be easily released back into an aqueous 

environment. Taking together the data suggesting a compulsory role for PTL in 

cholesterol absorption and the hypothetical PTL-competition of SEt, as well as data from 

this current study that showed lower liver triglycerides in SEs, SEt and PEs compared to 

Control, an oil phase mechanism may be valid.  

Biliary bile acid composition has been shown to be diet-labile. As a method of 

quantifying the biological significance of this compositional change, the relative 

hydrophobicity of each bile acid in a sample of bile, as calculated based on its migration 

on an HPLC column in a reverse phase system, may be used to arrive at a hydrophobicity 

index (Armstrong and Carey 1982, Heuman 1989). This index describes the 

thermodynamic favor with which a mixture of bile salts will aggregate into a micelle, 

with the rationale that a high index will result in greater micelle formation and greater 

intestinal absorption of lipid. Work involving our laboratory has shown PSE (Carr et al 

2002) and free stearic acid (Cowles et al 2002) to be capable of inducing bile acid 

composition changes significant enough to alter the hydrophobicity index. Although the 

current study used the same 3% sterol equivalent of plant sterols as did Carr et al. 2002, 

the changes in bile acid metabolism were not great enough to alter the hydrophobicity 

index. This may be due to the use of a greater number of bile acids in the current analysis 

that may have balanced out any changes seen in the other bile acids used previously. 

Another difference existed between the methods used in the two studies. Currently, direct 

UV detection of bile acids with a different HPLC system in the current study was used as 

compared to the use of fluorometric detection of NAD as an enzymatic by-product, 
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previously. In addition, there seemed to be a high degree of variability within treatments 

of the current study that made detecting differences between treatments difficult.  

Although there were not large enough differences in bile acids to affect a hydrophobicity 

index change, there were differences in individual bile acids. In general, differences in 

individual bile acids could not be attributed to a single treatment, but it appears that 

ursodeoxycholate and chenodeoxycholate were most sensitive to PSE treatment as both 

free and tauro-conjugated ursodeoxycholate and glyco and tauro-conjugated 

chenodeoxycholate were altered by PSE. In general, however, this study provided no 

evidence that PSE supplementation works through changes in bile acid metabolism to 

bring about its cholesterol-lowering effects. 

In summary, our findings indicate that hydrolysis of PSE was a necessary factor 

in order to induce an optimum cholesterol-lowering effect, suggesting that it is the free 

sterol molecule that is active in lowering cholesterol, and that competition with 

cholesterol for micellar incorporation is the primary mechanism through which plant 

sterols act. Additionally, poorly hydrolyzed PSE may contribute a cholesterol-lowering 

effect by causing the production of an oil phase either by their own aggregation, or by 

reducing the efficiency of other lipases. Finally, altering bile acid metabolism 

significantly enough to effect the thermodynamic properties of micelle formation may not 

be a significant mechanism through which PSE affects cholesterol-lowering. 
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