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Magnetic susceptibility of nanoscale Kondo systems
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Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of
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�Presented 21 January 2010; received 31 October 2009; accepted 19 November 2009;
published online 22 April 2010�

The mesoscopic Kondo effect in metallic nanoparticles containing a magnetic impurity is
investigated by model calculations. A Maxwell–Garnett approach is used to approximately
determine the resistivity of doped nanoparticles in a matrix, and the magnetic susceptibility is
estimated from the confinement of the conduction electrons. Conductivity measurements of
nanoparticles embedded in a matrix are difficult to realize, because metallic matrices distort the
Kondo cloud, whereas insulating or semiconducting matrices yield a very weak signal. By
comparison, susceptibility measurements do not suffer from these shortcomings. The Kondo effect
survives in nanoparticles even if the cluster size is much smaller than the Kondo screening cloud,
but the effective Curie constant becomes constant below a particle-size dependent transition
temperature and the temperature dependence of the susceptibility is no longer universal.
© 2010 American Institute of Physics. �doi:10.1063/1.3365134�

I. INTRODUCTION

The Kondo effect has recently attracted renewed atten-
tion, stimulated by progress in various areas of
nanotechnology.1–6 In bulk materials, the effect is usually
associated with the resistance minimum, which was discov-
ered in 1930 by Meissner and Voigt7 and explained by
Kondo in 1964.8 It is caused by magnetic impurities in the
metallic host, and its explanation involves an integration
over all k-vectors of the host’s conduction electrons. This
k-space integration is the reason for the occurrence of the
logarithmic term governing the resistivity, which increases as
ln�T� with decreasing temperature.8 However, the large num-
ber of k-vectors is only one aspect of the phenomenon. From
a many-body point of view, the Kondo effect is caused by
competing Coulomb and hopping integrals. It involves a
well-localized orbital having a low on-site energy Eo for the
first electron but where the presence of a second electron of
opposite spin is inhibited by a high Coulomb energy. A hop-
ping integral t connects the localized orbital to a single de-
localized orbital and yields the system’s “single-orbital”
Kondo temperature TK=2t2 /kBEo.9,10 Below this tempera-
ture, the impurity spin is antiferromagnetically �AFM�
coupled to the delocalized electron,9,10 similar to the AFM
interaction of magnetic impurities with the Kondo screening
cloud in bulk metals.

Nanostructuring makes it possible to control the wave-
length of the conduction electrons that contribute to the
Kondo effect. Consider, for example, a single magnetic im-
purity in an approximately spherical metal cluster of radius
R. The screening cloud, whose size is given by the Kondo
coherence length ��vF /TK,6 can be much larger than typical
mesoscopic �nanostructural� feature sizes, and the question
arises how nanoscale confinement affects the Kondo effect.
In the literature, there are two opposing views. On the one

hand, the Kondo effect involves a large number of conduc-
tion electrons, and this continuum is essential for the under-
standing of the resistance minimum.8,11 On the other hand, as
outlined above, the basic quantum-mechanical feature behind
the Kondo effect is the interaction of a well-localized impu-
rity spin with delocalized electrons, and this coupling is al-
ready realized for a single delocalized or conduction
electron.9,10 This means that basic features of the Kondo ef-
fect survive even for very few electrons. An extreme view is
that nanostructuring has little or no effect on the Kondo
effect.12

The traditional experimental approach toward the Kondo
effect is to measure the resistivity. However, if one considers
such measurements in doped metallic clusters in a metallic
matrix, then conduction electrons leave and enter the par-
ticles, the Kondo cloud extends beyond the nanoparticle, and
the distinction between bulk and nanoparticle Kondo effects
blurs. In the opposite limit of an insulating or semiconduct-
ing matrix, the relative signal by nanoparticles strongly de-
creases due to the enhanced resistive contrast between par-
ticle and matrix.

It is possible to directly measure Fano–Kondo reso-
nances of nanostructures such as atomic contacts, for ex-
ample, by scanning tunneling microscope,1,2,5 but these
methods are very complicated, partially due to the involve-
ment of unconfined electron states. Our emphasis is on a
different and conceptually very simple approach, namely, to
analyze the magnetic susceptibility of magnetic impurities in
metallic nanoparticles.

II. RESISTIVITY

Experimentally, the Kondo effect is normally associated
with the resistance minimum4 near the Kondo temperature.
The resistivity may, in principle, be determined by embed-
ding the nanoparticles in a matrix and measuring the net
resistivity change �� caused by the Kondo effect �Fig. 1�.a�Electronic mail: rskomski@neb.rr.com.
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Figure 1 illustrates the involved geometry. Compared to the
�a� bulk, there are two limits, namely, �b� embedding in a
metallic matrix and �c� embedding in an insulating matrix. In
�b�, the Kondo cloud �bright� extends deep into the matrix,
and the mesoscopic Kondo cloud is no longer well-defined.
In �c�, the Kondo cloud is confined to the nanoparticle, but
the question arises how the insulating character of the matrix
affects the nanoparticles’ contribution to the resistivity.

A simple approach is to treat the cluster and its surround-
ing on a continuum level, by using the Bruggeman �or
Maxwell–Garnett� approach in analogy to the inverse electric
and magnetic susceptibilities of composites.13,14 For small
volume fractions f of the cluster regions, the effective resis-
tivity obeys

� = �M�1 + 3f
�P − �M

2�P + �M
� , �1�

where �P and �M are the resistivities of matrix and particles,
respectively. For small resistivity contrast, where �P��M,
the effective resistivity is equal to the volume-averaged re-
sistivity and the corresponding Kondo resistivity change
�� /�= f�� /�P is relatively easy to measure. However, a
small resistivity contrast means that there is a strong hybrid-
ization between the conduction electrons of matrix and par-
ticle. This causes the Kondo screening cloud to extend deep
into the matrix, so that the volume fraction f and the change
�� are no longer well-defined. The hybridization problem
can be circumvented by using a highly resistive matrix,
which confines the Kondo cloud to the particle. Unfortu-
nately, this yields a strong reduction in the relative resistivity
change to �� /�=3f�� /�M, reaching �� /�=0 for an insulat-
ing matrix ��M=��.

III. SUSCEPTIBILITY

It is well known that the bulk Kondo effect leads to a
strong reduction in the low-temperature magnetic suscepti-
bility � �Refs. 15 and 16� and that the drop starts in the
vicinity of the Kondo temperature

TK = W exp�1/�� . �2�

Here W is roughly equal to the width of the conduction band
and �= 	J	 D�EF� is a coupling parameter describing the ex-
change interaction between impurity spin and conduction
electrons. To simplify the comparison with the paramagnetic
susceptibility C /T, it is convenient to write

� =
C

T
�1 − F�T/TK�� �3�

where the function F�T /TK� describes how the coupling to
the Kondo cloud causes the impurity spin to become
“locked.” At zero temperature F=1, corresponding to com-
plete screening, whereas T=� reproduces the paramagnetic
limit �F=0�.

The transition between the high-temperature and low-
temperature regimes occurs in the vicinity of the Kondo tem-
perature. The high-temperature susceptibility is Curie-like,
�=C /T, but at T=4TK the susceptibility is reduced to about
0.5C /T �F=50%� and at T=0.1TK it reaches about 0.04C /T
�F=96%�.15 The asymptotic high-temperature behavior is15

� =
C

T

1 −

1

ln�T/TK�� �4�

or F=1 / ln�T /TK�. The same logarithmic expression occurs
in the Kondo resistivity8

��T�/�o = const. − ln�T/TK� . �5�

More generally, both the resistivity and the susceptibility are
described by F�T /TK�=�−1�ln�T /TK�� where � is universal,
that is, independent of the details of the metallic host.15 The
function � depends on TK but not separately on other quan-
tities, such as the s-d exchange J and the density of states
D�EF�.

The logarithmic ln�T /TK� term reflects the sharpness of
the Fermi surface.8 Treating the interaction J by perturbation
theory implies that conduction electrons temporarily occupy
states above the Fermi level. The effect is huge at very low
temperatures and notoriously difficult to treat by perturbation
theory, but the thermal smearing of the Fermi surface means
that a typical conduction electron must change its energy by
a value of order kBT. Second-order perturbation theory in-
volves a wave-vector integration over inverse energy differ-
ences, 1 / �Ek−Ek��, and can therefore be used at high tem-
peratures, where it yields the ln�T /TK� term.8,11

Nanoparticles do not have a sharp Fermi surface enclos-
ing a continuum of k-states but discrete k-points in reciprocal
space and a gap between the highest occupied and lowest
unoccupied states. When kBTK becomes smaller than the
typical energy spacing � between the k-points, then the
Kondo effect cannot fully develop, because the conduction
electrons need states to be scattered into. This happens for
particle radii R smaller than about W /kFkBTK. Basically, this
length is equal to the Kondo coherence length ��vF /TK,
which describes the size of the Kondo cloud. Past efforts to
experimentally verify the relation between feature size R and
Kondo coherence length � have been inconclusive.4,6 A fun-
damental reason for these difficulties seems to be the inter-
ference by unconfined conduction electrons in the investi-
gated wire and thin-film structures, similar to Fig. 1�b�. For
example, in thin wires, the wave vectors of the itinerant elec-
trons are discrete in the plane perpendicular to the wire axis
but continuous in the direction parallel to the wire. This
wave-vector continuum ensures Kondo excitations down to
very low temperatures.

FIG. 1. Kondo screening clouds around magnetic impurities: �a� bulk solids,
�b� nanoparticle in a metallic matrix, and �c� nanoparticle in a nonmetallic
matrix. The bright regions are the Kondo screening clouds.
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Figure 2 compares the Kondo susceptibilities of local-
ized magnetic spins in bulk solids and nanoparticles. For
clarity, the figure shows the normalized effective Curie con-
stant �T /C= �1−F�. The transition temperature To is roughly
equal to W /kFkBR�TK� /R. Experimentally, the situation
may be complicated by the interference from RKKY-like
impurity-interaction effects due to the accidental presence of
two or more impurities in one nanoparticle. However, since
the ln�T /TK� term yields a very sluggish approach to satura-
tion, the horizontal line in Fig. 2 remains significantly below
�T /C=1. In other words, the nanostructuring severely re-
duces the size of the screening cloud, but there remain suf-
ficient conduction electrons in the nanoparticle to realize a
substantial residual Kondo effect.

IV. DISCUSSION AND CONCLUSIONS

It is instructive to compare the logarithmic approach of
Eq. �4� and Fig. 2 with that caused by ordinary AFM inter-
actions. Consider a pair of Heisenberg spins with AFM in-
teractions J=kBTK /2, characterized by the eigenfunctions
	↑↑�, 	↑↓ 	 ↓↑�, 	↓↓�, and by the singlet-triplet splitting 	J.
The pair’s susceptibility is obtained readily as

� =
C

T

 4

3 + exp�TK/T�� �6�

and yields the high-temperature limit F=TK /4T. This ap-
proach is similar to the asymptotics of the AFM Curie–Weiss
law �F=
 /T� but very different from the logarithmic Kondo
expression F=1 / ln�T /TK�. It means that nanoparticles vio-

late the universality of the bulk Kondo effect and that this
violation is most pronounced for the Kondo interaction with
a single delocalized orbital. With increasing number of in-
volved k-vectors, the signature of the Kondo effect changes
and the logarithmic term becomes predominant.

In conclusion, our model analysis shows how the Kondo
effect is modified by embedding the impurity spin in a nano-
particle. The resistivity of such clusters is difficult to mea-
sure, because the embedding in a metallic matrix yields bulk-
like Kondo clouds, whereas insulating matrices strongly
reduce the signal from the magnetic impurity. However,
measurements of the magnetic susceptibility do not suffer
from these shortcomings. The Kondo effect persists down to
very small particle sizes, but the signature of the effect
changes. Below a transition temperature that increases with
decreasing particle size, the effective Curie constant reaches
a plateau and the temperature dependence of the susceptibil-
ity becomes nonuniversal.
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