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Micromagnetic localization
Ralph Skomskia)

Max-Planck-Institut fu¨r Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany

The localization of nucleation modes in inhomogeneous ferromagnets and its influence on the
coercivity are investigated. From the formal analogy between quantum mechanics and
micromagnetics follows that anisotropy inhomogeneities may cause localization. The nucleation
modes of one-dimensional arrays, such as multilayers composed of hard and soft magnetic
materials, are localized even if the superlattice exhibits a nearly ideal periodicity. Gaussian
distributions of the layer thicknesses lead to Urbach tails and very low coercivities, but a maximum
thicknessl m of the soft layers suppresses the Urbach tails. The related problem of magnetic viscosity
leads to a supersymmetric Fokker–Planck description where the time dependence of the
magnetization is given by the ground-state mode of a fermionic potential. ©1998 American
Institute of Physics.@S0021-8979~98!50911-5#

I. INTRODUCTION

Localization means that the eigenfunctions of a partial
differential equation are concentrated in a small volume. A
well-known problem is electron localization: metallic wave
functions, such as free-electron plane waves, are delocalized,
whereas electrostatic correlations and disorder may give rise
to Mott and Anderson localization, respectively.1–3 Mott lo-
calization is a many-body effect and occurs, for example, if
the interatomic distance of a metal exceeds a threshold above
which metallic conductivity vanishes. Here we are concerned
with the Anderson localization in a random potential.

As discussed for example in Ref. 4, there is a formal
analogy between micromagnetics and quantum mechanics.
Nuclei in homogeneous ellipsoids of revolution are delocal-
ized, but localization may be caused by magnetic inhomoge-
neities. This micromagnetic localization is of practical im-
portance because it determines the nucleation of reverse
domains and therefore affects the coercivity. An example is
oriented nanostructured two-phase permanent magnets such
as Nd2Fe14B/Fe, where very high energy products are
expected.4–7 In these structures, the rare-earth-containing
hard regions act as a skeleton which stabilize the high mag-
netization of the soft phase, but nucleation modes localized
in extended soft regions tend to destroy coercivity.

A related problem is the time dependence of quantities
such as the remanent magnetization~magnetic viscosity!. On
an atomic level, magnetic viscosity arises from the interac-
tion of the magnetic moments with other degrees of freedom
such as lattice vibrations. As emphasized in Ref. 8, the heat
bath associated with the nonmagnetic degrees of freedom
leads to a Fokker–Planck diffusion of the magnetic moments
in the zero-temperature potentialEm . However, even for
one-dimensional problems such as the motion of a domain
wall in a disordered potential there exists no exact solution.

Here we present an interpretation of micromagnetics in
terms of the localization problem. Particular emphasis is put
on nucleation modes and long-time magnetic relaxations.

II. LOCALIZATION OF NUCLEATION MODES

For simplicity, we will restrict ourselves to the energy
functional

Em5E S A
¹M2

Ms
2 1K1~r !

Mz
2

Ms
22m0MzH D dr , ~1!

where A is the exchange stiffness andK1(r ) denotes the
lowest-order uniaxial anisotropy constant. The magnetostatic
self-interaction is approximated by a demagnetizing field,
because anisotropy fields 2K1 /m0Ms tend to be much larger
than stray fields in hard magnets such as ultrathin films and
rare-earth permanent magnets.4,9,10 Typical microstructures
of interest are shown in Fig. 1.

To obtain nucleation modes we rewriteM as

M ~r !5MsA12m~r !2ez1Msm~r ! ~2!

a!Present address: Department of Physics and Astronomy, University of Ne-
braska, Lincoln, Nebraska 68588-0111.

FIG. 1. Inhomogeneous structures consisting of magnetically hard~dark!
and soft~white! regions. The orientation of the common easy axis is irrel-
evant as long as it is parallel to the applied magnetic field.
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and expandEm into powers of the small transverse magneti-
zation componentm5mxex1myey . Minimizing Em then
yields

2A¹2m12K1~r !m52m0MsHm. ~3!

This equation is degenerate with respect tomx and my , so
that we restrict ourselves to any direction in thexy plane. In
practice, small deviations from the commonc-axis anisot-
ropy ~grain misalignment! and magnetostatic interactions
break the symmetry and fix the direction ofm.

Equation ~3! is reminiscent of Schro¨dinger’s equation
for an electron in an electrostatic potentialV. In this
quantum-mechanical analogy, A, K1 , and 2m0MsH/2 are
analogous to\2/me , V, and E, respectively. The ground-
state energyE0 corresponds to thenucleation field H5
2HN , which determines the coercivity of nucleation–
controlled magnets.4 In the ordered limit, Eq.~3! has been
solved for a number of cases.4,11–13

Lowest-order perturbation theory yields4,5,9

HN5
2^K1~r !&v

m0Ms
~4!

so that the nucleation field is given by the volume-averaged
anisotropy constant ^K1(r )&v5K. In the quantum-
mechanical analogy, this approach is known as thevirtual
crystal approximation.14

There are various methods to solve the random-potential
band structure problem.3,14 Here we restrict ourselves to
second-order perturbation theory. Applying the quantum-
mechanical expression

E5E01^c0uVuc0&2(
k

u^ckuVuc0&u2

Ek2E0
~5!

to Eq. ~3! yields

m0HN5
2K

Ms
2

4

~2p!dAMs
E 1

k2 G~k!ddk. ~6!

Here G(k)5* exp(ik.r )•^@K1(r )2K#@K1(0)2K#&vdr is
the Fourier-transformed autocorrelation function of the dis-
order. For example, the isotropic distribution^@K1(r )2K#
3@K1(0)2K#&v5K0

2 exp(2r2/2R2) yields G(k)
5(2pR2)d/2K0

2 exp(2k2R2/2). In these equations,R is the
average radius of the hard and soft regions andK0

5KhAf s(12 f s), whereKh is the anisotropy constant of the
hard phase andf s is the volume fraction of the soft phase.

Localization depends on thedimensionalityof the prob-
lem and is most pronounced in one and two dimensions.1,14

Figure 1 shows some one-, two-, and three-dimensional
structures of interest. In Eq.~6!, the 1/k2 term causes the
corrections to diverge in less than two dimensions. This re-
sult is related to the absence of metallic conduction in less
than two dimensions.3,14 For d.2, Eq. ~6! yields

m0HN5
2K

Ms
2

4R2

~d22!AMs
K0

2. ~7!

The 1/(d22) dependence in this equation shows that three-
dimensional configurations of soft and hard regions are not
very much affected by minor inhomogeneities. As a rule,

coercivity breaks down if the size of the soft regions is larger
than the domain-wall widthpAA/Kh'4 nm of the hard
phase~compare also Refs. 4 and 9!.

In one dimension, for example in multilayers, arbitrary
small disorder leads to localization. Figure 2 compares delo-
calized and localized nucleation modesm(z) in ~a! periodic
and ~b! nearly periodic multilayers. In Fig. 2~b!, one soft
layer is thicker by about 15% than the others, and the nucle-
ation mode is localized. As in quantum mechanics, there is a
small resonance interaction~tunneling! between the potential
minima,4 but in fair approximation this contribution can be
neglected here and following Ref. 4 we estimate that the
nucleation field of Fig. 2~b! is smaller by about 30% than
that of the periodic lattice Fig. 2~a!.

In most cases, disorder leads to extended soft regions
which destroy coercivity. In the context of electron localiza-
tion, the low-lying states responsible for this behavior are
known asUrbach tails, and asymptotically the density of
states of the Urbach tail is given by the probability distribu-
tion of the structural disorder.3 In multilayers, a Gaussian
distribution of thicknessesl s of the soft layers yields a loga-
rithmic dependence of the nucleation field on the total film
thicknesst and yieldsHN50 for t→`.18 However, if the
thicknesses obeyl s< l m then the Urbach tails are cut off and
the nucleation field scales as 1/l m

2 , as sketched for example in
Refs. 4 and 13.

III. SUPERSYMMETRY

An atomic approach towards magnetic viscosity is to
consider random thermal forcesj(t) acting on the magneti-
zation vector. For simplicity, we will restrict ourselves to a
single magnetization degree of freedoms. Examples ares
5sinu and s5x in fine-particle and pinning-type magnets,
respectively. This leads to themagnetic Langevin equation

]s

]t
52

G0

kBT

]Em

]s
1A2G0 j~ t !, ~8!

FIG. 2. Nucleation modes in~a! ideally periodic and~b! nearly periodic
multilayers. The solid lines show theK1 profiles in thez direction, while the
nucleation modesum(z)u are given by the dashed lines.
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where G051/t0 is an atomic attempt frequency.8,15,16 The
random forces obeŷj(t)&50 and ^j(t)j(t8)&5d(t2t8),
where d(x) is the delta or ‘‘needle’’ function defined by
d(x)50 for xÞ0 and*d(x)dx51. At low temperatures, the
]s/]t and j terms are negligible and Eq.~8! reduces to the
trivial minimization problem]Em /]s50.

The probability distributionP(s,t) obeys the magnetic
Fokker–Planck equation8,15

G0
21]P/]t5~kBT!21]~P]Em /]s!/]s1]P2/ds2. ~9!

As Eq. ~1!, the Fokker–Planck equation implies that macro-
scopic magnetization jumps consist of a chain of micro-
scopic events. A simple one-dimensional example are small
patches of~111! transition-metal films with easy-plane an-
isotropy but without in-plane anisotropy, that isEm(f)
5const. For the initial conditionM5M sex we obtain
P(f,t)5(4pG0t)21/2 exp(2f2/4G0t) and ^cosf&
5exp(2G0t). There is, however, no general solution of the
one-dimensional Fokker–Planck equation.8,15

In equilibrium, where]P/]t50, Eq.~9! yields the relax-
ation rateG50 andP(s)5Z21 exp(2Em/kBT). However, to
understand the long-time magnetic-viscosity limit we have to
consider the smallest nonzero relaxation rateG151/t1 . A
conceptionally very simple solution of this problem is pro-
vided in terms of supersymmetric quantum mechanics,
which unifies bosonic and fermionic properties of matter.
The observed particle masses indicate a strong breaking of
the supersymmetry in elementary particle physics, but the
concept is a useful idea not only in elementary particle phys-
ics but also in solid-state physics.15,17 The formal ansatz
P(s,t)5exp(2Gt)exp(2Em/2kBT)C(s) transforms Eq.~9!
into

G

G0
C52

]2C

]s2 1V1C, ~10!

where the so-called bosonic potentialV1 and its fermionic
counterpartV2 are given by

V65~]Em /]s!2/4kB
2T27~]Em

2 /]s2!/2kBT. ~11!

In supersymmetric quantum mechanics, replacingV1 by V2

transforms the ‘‘bosonic’’ differential Eq.~10! into a fermi-
onic equation. Since the first excited eigenvalue of the
bosonic problem is equal to the lowest eigenvalue for the
fermionic potential,17 the long-time limit of magnetic viscos-

ity is a ground-state property of the fermionic problem.
However, the localization behavior of the fermionic ground-
state mode is more complicated than that shown in Fig. 2 and
requires further analysis.

IV. DISCUSSION AND CONCLUSIONS

In conclusion, we have analyzed the localization behav-
ior of nucleation and magnetic-viscosity modes in terms of
the new concepts of micromagnetic Urbach tails and super-
symmetric magnetic viscosity. Nucleation modes inone-
dimensional structures, such as multilayers, are localized,
even if the structure is nearly periodic. Gaussian disorder
destroys coercivity, but a maximum thicknessl max of the
soft-magnetic layers achieved by careful processing assures a
finite nucleation field. On the other hand, we have shown
that the long-time limit of magnetic viscosity is equivalent to
the ground-state localization in a fermionic supersymmetric
potential.
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