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Automated Refinement and Augmentation of
Web Service Description Files

Marc Fisher II, Sebastian Elbaum, and Gregg Rothermel

University of Nebraska-Lincoln
{mfisher,elbaum,grother}@cse.unl.edu

Abstract. Web Service Description Language (WSDL) is being increasingly
used to specify web service interfaces. Specifications of this type, however, are
often incomplete or imprecise. For example, cursory examination of the WSDL
file for Amazon’s E-Commerce Web Service reveals that it often uses a less spe-
cific type where a more specific type is applicable, or declares that elements could
be missing where other documentation indicates that they are required. Further,
specifications reflecting the temporal relationships between operations are com-
pletely missing, which is not surprising since they are not supported by the cur-
rent WSDL standard. These problems in WSDL specifications can cause tools
that use them to perform poorly or unreliably, and can mislead developers who
rely on them. To address these problems, in this paper we present an automated
methodology for collecting static and dynamic information about a web service,
and using this information to suggest improvements to the WSDL file as well as
providing complementary information about the behavior of the web service that
cannot be captured by the WSDL. Additionally, we present the results of two case
studies performed on commercial web services that show our methodology can
find problems in WSDL files and suggest improvements.

1 Introduction

Many businesses provide access to their services and products through a web service.
For example, a wide variety of businesses that provide services to other businesses, such
as shipping companies and credit card processing organizations, provide a web service
for accessing those services. Further, some businesses that target consumers, such as
Amazon or eBay, also provide access to their products or services via a web service. By
doing so, these businesses allow parties outside of the organization to utilize or resell
their services or products.

Typically, Web Service Description Language (WSDL) files are used to provide a
partial specification of the interface to a web service [1]. These specifications focus on
data-types of parameters and returned values of the application. However, WSDL files
are often imprecisely or incorrectly specified; for example, using general types such as
strings rather than more specific types like integer or decimal, or failing to correctly
specify the minimum and maximum occurrences for particular elements. Additionally,
WSDL files are limited in the class of specifications they can provide; specifically, they
do not include support for specifying the dependencies between operations.
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With better WSDL specifications, tools such as Sun’s JAX-WS or Apache’s Axis
that produce libraries for accessing web services can potentially build higher quality
code. In particular they can perform more validation of inputs on the client side and
even potentially enforce temporal constraints without having to submit requests to the
server, decreasing the load on the servers providing the service. Better WSDL speci-
fications will also help developers using web services create more robust and reliable
applications.

In prior work we developed the WebAppSleuth methodology for characterizing web
applications [2, 3]. This methodology probes the interfaces exposed in web applications
via html forms and form handlers by automatically constructing http requests, submit-
ting them to the web server, and processing the results to generate inferences about how
the underlying application behaves. In this work, to address the previously mentioned
issues with web services, we have extended our WebAppSleuth methodology to (1)
automatically generate sequences of requests to a web service based on it WSDL speci-
fication, and (2) use the responses to these requests to generate suggestions for refining
and augmenting that WSDL specification.

The remainder of this paper presents this work, as follows. Section 2 provides back-
ground on web services and WSDL. Section 3 presents our methodology. Section 4
describes an application of our methodology to two commercial web services, Ama-
zon’s E-Commerce Service and eBay’s Trading web Service. Section 5 provides details
about related work, and Section 6 concludes and discusses future work.

2 Background

Figure 1 is a partial WSDL file describing an example bookstore web service that con-
forms to the WSDL 1.1 standard [1]. This service allows client applications to search
for books, login with an existing username and password, add books to a shopping cart
and change the quantities of items already in the cart.

A WSDL file consists of six kinds of definitions: types, messages, port types, bind-
ings, ports, and services. Together the type (lines 2-75) and message definitions describe
the overall structure of request and response messages. The port type definitions (lines
76-95) describe a set of abstract operations and which messages are used for the input
and output of each operation, while the bindings define the concrete protocol for the
abstract operations of a port type. A port definition specifies the address for a particular
binding and a service is used to aggregate a set of related ports.

Although all of these definitions are important when describing a web service, in
this work we focus on type and port type definitions. The type definitions in a WSDL file
tend to make up the majority of the document. For example, the WSDL file describing
Amazon’s E-Commerce Service is 3,244 lines long, with a type definition that is 2,850
lines long,1 while the WSDL description for eBay’s Trading Web Service is 90,450
lines long with a type definition that is 87,725 lines long.2

1 http://webservices.amazon.com/AWSECommerceService/2007-07-16/
AWSECommerceService.wsdl

2 http://developer.ebay.com/webservices/515/eBaySvc.wsdl



1.<definitions ...>
2. <types><schema>
3. <simpleType name=“Category”>
4. <restriction base=“string”>
5. <enumeration value=“Databases” />
6. <enumeration value=“Web Design” />
7. <enumeration value=“Programming” />
8. </restriction>
9. </simpleType>

10. <element name=“StartSessionResponse”>
11. <complexType><all>
12. <element name=“sessionId” type=“string” />
13. </all></complexType>
14. </element>

15. <element name=“SearchRequest”>
16. <complexType><all>
17. <element name=“sessionId” type=“string” />
18. <element name=“category” type=“Category”
19. minOccurs=“0” />
20. <element name=“name” type=“string”
21. ’ minOccurs=“0” />
22. <element name=“priceMin” type=“decimal”’
23. minOccurs=“0” />
24. <element name=“priceMax” type=“decimal”’
25. minOccurs=“0” />
26. </all></complexType>
27. </element>

28. <element name=“SearchResponse”>
29. <complexType><all>
30. <element name=“bookDetail” minOccurs=“0”’
31. maxOccurs=“unbounded”>
32. <complexType><all>
33. <element name=“itemId” type=“integer” />
34. <element name=“name” type=“string” />
35. <element name=“price” type=“decimal” />
36. <element name=“category”’
37. type=“Category” />
38. </all></complexType>
39. </element>
40. </all></complexType>
41. </element>

42. <element name=“LoginRequest”>
43. <complexType><all>
44. <element name=“sessionId” type=“string” />
45. <element name=“login” type=“string” />
46. <element name=“password” type=“string” />
47. </all></complexType>
48. </element>

49. <element name=“AddToCartRequest”>
50. <complexType><all>
51. <element name=“sessionId” type=“string” />
52. <element name=“itemId” type=“integer” />
53. <element name=“quantity” type=“integer” />
54. </all></complexType>
55. </element>

56. <element name=“UpdateQtyInCartRequest”>
57. <complexType><all>
58. <element name=“sessionId” type=“string” />
59. <element name=“orderId” type=“integer” />
60. <element name=“quantity” type=“integer” />
61. </all></complexType>
62. </element>

63. <element name=“CartResponse”>
64. <complexType><all>
65. <element name=“cartItem” minOccurs=“0”’
66. maxOccurs=“unbounded”>
67. <complexType><all>
68. <element name=“orderId” type=“integer” />
69. <element name=“itemId” type=“integer” />
70. <element name=“quantity” type=“integer” />
71. </all></complexType>
72. </element>
73. </all></complexType>
74. </element>
75. </schema></types>

76. <portType name=“BookstoreAPI”>
77. <operation name=“StartSession”>
78. <output message=“StartSessionResponse” />
79. </operation>
80. <operation name=“Search”>
81. <input message=“SearchRequest” />
82. <output message=“SearchResponse” />
83. </operation>
84. <operation name=“Login”>
85. <input message=“LoginRequest” />
86. <output message=“LoginResponse” />
87. </operation>
88. <operation name=“AddToCart”>
89. <input message=“AddToCartRequest” />
90. <output message=“CartResponse” />
91. </operation>
92. <operation name=“UpdateQtyInCart”>
93. <input message=“UpdateQtyInCartRequest” />
94. <output message=“CartResponse” />
95. </operation>
96. </portType>
97.</definitions>

Fig. 1. A partial WSDL description for a bookstore web service (message, binding, port and
service elements omitted)



In addition to constituting the largest portion of most WSDL documents, type def-
initions are often very complex, with highly nested structures and complex relation-
ships between different parts of the definition. Although the WSDL specification does
not specify a single standard notation for defining the types in the document, XML
schemas have become the de facto standard. An XML schema defines a set of XML
elements and describes the types of the XML elements using simple and complex type
definitions [4]. A simple type represents a single value, while a complex type describes
a composite type consisting of multiple nested xml elements and/or attributes. For ex-
ample, our sample WSDL file describes an element, SearchRequest (line 15), that
is of an complex type with nested elements sessionId, category, name, priceMin,
and priceMax (lines 15-27). The type of the nested element category (line 18) is de-
fined as the simple type Category which is a string with possible values “Databases”,
“Web Design”, and “Programming” (lines 3-9) and can occur as few as 0 times (the
minOccurs attribute) and as many as 1 time (the default value for the absent maxOccurs
attribute).

Due to their size and complexity, type definitions often contain errors or are im-
precise. In the example WSDL file, the quantity element of the AddToCartRequest
should be defined as the more precise type positiveInteger rather than the type inte-
ger (line 53). Another common problem in the type definitions is incorrect or impre-
cise minOccurs on elements (in many places in both the Amazon and eBay WSDL
files mentioned above elements defined as required by other documentation, implying
minOccurs should be 1, have minOccurs=0).

The port type definition of the WSDL file describes the set of abstract operations
for a service and specifies the types of the request and response for these operations.
However, there is nothing in the WSDL specification that describes temporal depen-
dencies between these operations. In our example bookstore service a StartSession op-
eration must be performed before any other operation, and a Login operation must be
performed before any of the cart operations. Often these temporal relationships can be
inferred by considering the static type definitions (e.g. StartSession is the only opera-
tion that does not require a sessionId and it returns a sessionId). At other times, there
is nothing in the WSDL specification to indicate the temporal relationships between
operations (as is the case with the Login operation in the example).

3 Methodology

Our approach builds on the WebAppSleuth methodology for characterizing web ap-
plication interfaces [2, 3]. In prior work the WebAppSleuth methodology took an html
form and generated inferences about how the underlying application used the variables
and values in that form, identifying (for example) mandatory and optional variables and
instances where certain combinations of variables were required. Several modifications
were necessary, however, to adapt the methodology to the purposes of this work.

The WebAppSleuth process consists of four stages: (1) analysis of the WSDL file
and solicitation of user input to determine input values for simple elements (the Ana-
lyzer); (2) generation of request sequences, including generation of the structure of the
input messages for each request and assignment of input values to the simple elements



in the request (the Generator); (3) submission of requests to the server and classifica-
tion of the responses (the Submitter); and (4) generation of suggested refinements to
the WSDL and additional inferences (the Inferer). The following subsections provide
details on each of these stages.

3.1 Determining Input Values for Simple Elements

In the WSDL file, operations are defined in the portType defintion and include input
and output messages whose structure is defined in the type definition. For example, in
Figure 1 lines 80-83 define the Search operation which has an input message whose
structure is defined by the element SearchRequest (lines 15-27) and an output mes-
sage whose structure is defined by the element SearchResponse (lines 28-41). The
messages include complex elements (elements with complex types) that are composi-
tions of other complex elements and simple elements (elements with simple types). In
order to generate requests, we must first find suitable input values for the simple ele-
ments. The first stage of the WebAppSleuth methodology, the Analyzer is responsible
for finding these values.

There are three possible sources for these input values. The WSDL file may specify
a set of possible values for a simple type as an enumerated type (as in lines 4-8 of Figure
1). Alternatively, as requests are submitted to a web service, the responses to these
requests may include values that can be used in other requests. Finally, in some cases
it is necessary for the user of our methodology to provide input values for elements.
The Analyzer identifies the elements that a user needs to provide input values for, and
solicits input values from the user for these elements.

The basis for finding elements whose input values can be provided by other op-
erations is through the use of name matching of simple elements with the same type.
For example, in Figure 1, line 12 defines an element sessionId of type string that is
returned by the StartSession operation, and line 17 defines another sessionId element
of type string that is required as an input for the Search operation. Since these elements
have the same name (sessionId) and type (string), we assume that sessionIds returned
by the StartSession operation can be used as inputs for the Search operation.

The Analyzer attempts to minimize the number of elements for which it solicits
input values from the user. Initially, it asks the user to provide input values for all simple
elements used as an input to an operation that can never be produced as an output
of another operation. Next the Analyzer solicits additional required input values. The
function GatherUserInputs (Algorithm 1) is called with the set operations containing
all operations defined for the service and the set elements containing all the simple
elements for which the user has already provided inputs and all elements for which the
WSDL file enumerates input values. The innermost loop (lines 5-10) considers each of
the operations in operations and for each, determines whether it is executable (it is if
there is a potential source for each of its required input values, from prior user-provided
inputs, enumerated values in the WSDL file, or other operations that have already been
found to be executable). If an operation is executable it is removed from operations
and all of the elements which it could return in its output message as defined in the
WSDL are added to the set elements. The while loop in lines 3-12 repeats until no
more executable operations are found. Then, if operations is not empty, the user is



Algorithm 1 GatherUserInputs(Set operations, Set elements)
1: while operations 6= ∅ do
2: boolean changed = TRUE
3: while changed do
4: changed = FALSE
5: for all Operation op ∈ operations do
6: if elements.containsAll(op.requiredElements) then
7: operations.remove(op)
8: elements.addAll(op.outputElements)
9: changed = TRUE

10: end if
11: end for
12: end while
13: prompt user to provide inputs
14: end while

asked to provide input values for all elements of at least one operation in operations
that are not in elements. This process continues until operations is empty, at which
point we should have sufficient input values to generate requests for all operations.

In the case of the Bookstore example the process begins by requiring the user to pro-
vide inputs for login, password, priceMin and priceMax as none of these appear in
the output message of any operations. The WSDL file also provides enumerated values
for category. Thus, GatherUserInputs is called with elements = {login, password,
priceMin, priceMax, category} and operations = {StartSession, Search, Login,
AddToCart, UpdateQuantityInCart}. The inner loop begins with the operation Start-
Session. This operation does not require any input values, therefore it is removed from
operations and sessionId is added to elements. Next, Search is processed. The only
element it requires is sessionId, which is already in elements, therefore it is removed
from operations and the elements itemId and name are added to elements. Lo-
gin is processed similarly. At this point, no further operations in operations are exe-
cutable with the given inputs, so the Analyzer prompts the user to either provide inputs
for quantity for AddToCart or quantity and orderId for UpdateQuantityInCart. If
the user provides input values for quantity, then AddToCart becomes executable and
provides inputs for orderId which makes UpdateQuantityInCart executable, leaving
operations empty and allowing the algorithm to terminate.

The set of input values for simple elements collected by the Analyzer from the
WSDL file and the user are passed to the next stage of the WebAppSleuth methodology,
the Generator.

3.2 Generating Request Sequences

The Generator incrementally generates sequences of requests to be submitted to the
web service. These sequences of requests are generated one request at a time, with each
generated request being passed to the Submitter, and the values of simple elements
in the response being used for further requests in the request sequence. Requests in a



sequence are generated until a request returns an invalid response or a maximum request
length specified by the user of the methodology is reached.

The generation of a single request in a sequence can be broken down into three types
of decisions: selecting the operation, selecting the number of occurrences of each ele-
ment nested in a complex type in the input message and selecting values for the simple
elements of the input message. The Generator includes a submodule, the Chooser, that
is responsible for making each of these decisions. Currently, the Chooser makes each
of these decisions randomly from the range of available options.

The first type of decision, selecting the operation, begins with the Generator deter-
mining the set of executable operations. An operation is executable if for all required
simple elements (simple elements minOccurs > 0 that are not nested within any com-
plex elements with minOccurs = 0) we have an input value, either provided by the An-
alyzer or returned in an earlier request in the same sequence. The Chooser then chooses
randomly from ones of these requests.

The second type of decision that must be made is determining the number of occur-
rences for elements nested in complex types in the input message. Each element nested
in a complex type has a minimum and maximum number of occurrences defined. The
Generator uses this as the range of possible number of occurrences to be passed to the
Chooser to be selected from, with three possible exceptions. First, if an element has
minOccurs = 0 then it is possible there are no currently available input values, either
for that element (if it has a simple element) or for one of the elements nested inside of
it with minOccurs > 0 (if it is a complex element). If this is the case, then zero occur-
rences of that element are included in the request. Second, since elements can have an
unbounded number of maximum occurrences, it is necessary to limit the range of oc-
currences that can be selected from. The Generator includes a parameter that specifies
the maximum range of occurrences that will be selected from and adjusts the maximum
number of occurrences accordingly (e.g., if the maximum range is 3, and the minOccurs
of an element is 0 and the maxOccurs is unbounded, then the Generator would select
the possibilities 0, 1, and 2 occurrences for the Chooser to select from). Third, one
common error that we would like to detect in web applications involves cases where the
WSDL file specifies that minOccurs is greater than 0 when it should be 0. Therefore,
the Generator automatically always includes 0 occurrences in the range of number of
occurrences that the Chooser selects from. The Chooser then randomly selects from
this set of values, and the Generator adds the appropriate number of that element to the
input message of the request.

The third type of decision is determining the actual input values for any simple ele-
ments included in the input message. As each occurrence of a simple element is added
to the input message by the Generator, the Generator determines the set of possible
input values for that simple element from the pool of available input values, including
both values from the Analyzer and values return by earlier requests in the request se-
quence. This set is passed to the Chooser, which randomly selects one of these values,
which the Generator then inserts into the appropriate location in the input message,

After a request has been generated, it is submitted (see Section 3.3) and the simple
element values returned for that request are added to the pool of input values available
for use in further requests in the sequence.



To illustrate our generation methodology, we walk through the generation of a
length two request sequence for the Bookstore example. To begin with, remember
that the Analyzer required the user to provide inputs for login, password, priceMin,
priceMax, and quantity (Section 3.1) and there is a set of enumerated values for
category defined in the WSDL file in Figure 1. For the first request, the only opera-
tion that is executable is StartSession, so it is selected. The StartSession operation has
no input message, so no further work needs to be done. This request is passed to the
Submitter, which returns a value for sessionId. The returned value for sessionId is
included in the input value pool.

Now the second request needs to be generated. At this point, StartSession, Login,
and Search are all executable, and the Chooser randomly selects from these three. As-
sume that Search is randomly selected. Consider the definition of the input message
for Search in lines 15 - 27 of Figure 1. According to the WSDL file, sessionId has
minOccurs and maxOccurs both equal to 1. Therefore, the Chooser is asked to select
between 0 and 1 (since 0 is always included in the range to be selected from). Assume
that it chooses 1. According to the WSDL, all of the other elements can occur 0 or 1
times. However, since there are no input values for name, it must occur 0 times in the
request. Since we have input values for category, priceMin, and priceMax they can
occur 0 or 1 times in the request. Assume the Chooser selects 1 occurrence for category
and 0 occurrences for priceMin and priceMax. Finally, input values must be selected
for each of the simple elements included in the input message. For sessionId there is
only one possible input value, the one returned by the earlier StartSession request, so
it is selected. For category there are three input values defined in the WSDL file, and
one of these is randomly selected, and the resulting completed request is passed to the
Submitter to be submitted.

Assume that category is included, and the other two input values are excluded.
Since we have no input values in the pool of input values for name, we exclude it from
the input message. Finally we select input values for each of the simple elements in
the input message. We have one possible value for sessionId, so we select that. For
category we have three possible values defined in lines 3 - 9 of the WSDL file that we
can randomly select from. One of these is randomly selected and the resulting request
is submitted.

3.3 Submitting Requests and Classifying Responses

The Submitter is responsible for actually submitting requests to the web service and for
classifying the responses from the web service. To submit requests to the web service
we have built submission modules that work with Sun’s JAX-WS tools and with the
Apache Software Foundation’s Axis tools.These tools automatically build Java libraries
for accessing web services from WSDL declaration files. Using Java Reflection, we are
able to make use of these libraries to submit requests to the web service. The response
message is then extracted into a format usable by the Generator and Inferer modules.
Since the generated libraries return the responses as complex objects whose structure
depends on which tool was used to generate the library, we again use Java Reflection to
extract the message into a common format used by the other components.



The Classifier submodule of the Submitter is responsible for classifying responses
as valid or invalid. This requires specific checks depending on the web service, as the
mechanism for reporting errors varies depending on the web service implementation.
For example, Amazon’s e-Commerce service uses the SOAP exception model to in-
dicate problems in requests, while eBay’s service includes a list of Error elements in
the response message. The classification serves two purposes. First, if a response is
classified as invalid, the Generator stops generating new requests in the current request
sequence, and begins a new request sequence. Second, some of the inference algorithms
in the Inferer use these classifications.

3.4 Generating Inferences

The Inferer takes the set of submitted request sequences with their corresponding re-
sponses and classifications and uses this information to generate inferences. These in-
ferences take the form of suggestions for changing the WSDL file or statements about
the behavior the web service. Currently, we have three different inference algorithms
implemented. The first two of these algorithms, “number of occurrences” and “sim-
ple element types”, were chosen based on initial inspections of real WSDL files that
showed that certain types of errors were common. The third algorithm, “precedence”,
was chosen as a simple temporal relationship that WSDL files do not include support
for.

Number of Occurrences. Our first inference algorithm attempts to correct errors in the
minOccurs of elements defined in the WSDL declaration, specifically finding elements
with minOccurs = 1 that should be 0 or minOccurs = 0 that should be 1. These two
cases were chosen because our initial examination of the WSDL file and html documen-
tation for the Amazon E-Commerce service found inconsistencies in the definitions of
the minimum occurrences of elements.

The inference algorithm used in this case is based on the algorithm for inferring
mandatory and optional variables presented in [3]. For each element e nested in a
complex type t used for an input message as defined in the WSDL specification, four
boolean variables, absentV alid, absentInvalid, presentV alid, and presentInvalid,
are created. Then for each request that is submitted, if that request included t, the ap-
propriate boolean variable is set to true depending on whether the response was valid
or invalid, and whether that request included any elements e. After processing all sub-
mitted requests, if absentInvalid is true, absentV alid is false and presentV alid is
true, minOccurs should be 1. If absentV alid is true, minOccurs should be 0. In all
other cases, there is not enough information to determine what minOccurs should be.
Any cases where the calculated value of minOccurs differs from the value defined in
the WSDL are reported to the user as possible errors in the WSDL file.

Simple Element Types. XML schema definitions can include a variety of types for
simple elements. Although the XML schema standard does not do so, these types can
be arranged into a simple type hierarchy as shown in Figure 2. Due to the variety of
possible types, and the fact that all types are transmitted as strings, it is often the case



string

decimal boolean

integer

nonNegativeInteger nonPositiveInteger
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Fig. 2. (partial) XML Schema simple type hierarchy

that the WSDL file uses a more general type than possible. For example, an early version
of the WSDL file for Amazon’s E-Commerce service used the type “string” for nearly
all simple elements. Additionally, in some cases simple elements with the same name
but in different operations have different types. Although it is not always the case that
these elements should have the same type, in many cases we expect that they should.
Therefore we would like to find cases where the types can be improved in the WDSL
file.

To do this, for each value returned in a simple element of a valid response, the most
specific XML schema type that the returned value matches is determined. Since all
values are returned as strings in the XML document, various Java parse functions and
constructors are used to make this determination. For example, if a call to new BigInte-
ger(value) succeeds, and the type is positive, that value has a type of positiveInteger. To
facilitate the selection of the correct type, we added a psuedo-type to the hierarchy for
the value zero as a subtype of both nonPositiveInteger and nonNegativeInteger. After
collecting the set of all actual returned types, these types are generalized to the most spe-
cific type in the hierarchy that is a supertype of all actual returned types. For example,
if an element has values “0”, “1”, and “50”, the set of types is {zero, positiveInteger},
and this generalizes to type nonNegativeInteger. If a new value “5.27” is received for
this element, then decimal is be added to the set of types, which generalizes to type
decimal. The generalized type is compared to all of the declared types for all elements
with the same name, and if it is a subtype of all of the declared types, it is reported as a
possible improvement to the WSDL file.

Precedence. Our third inference algorithm attempts to detect dependencies between
different operations. There are two classes of dependencies that we could detect. The
first class are data dependencies where a value for an element that is returned by some
operation is used as an input value for another operation. These dependencies can be
determined by static analysis of the WSDL. The second class of dependency involves
hidden dependencies, where an operation changes some state on the server that affects



Table 1. Details about objects

Lines Operations Operations Number of
Object in WSDL in WSDL Analyzed Request Sequences
Amazon E-Commerce Service 3,244 19 19 70,000
eBay Trading Web Service 90,450 132 102 300,000

the behavior of a later operation. It is this class of dependencies that we are interested
in here. In particular we are concerned with the case in which, for some operation
to succeed (have a valid response), another operation must be successfully submitted
earlier in the request sequence.

To find these precedence relationships, for each pair of operations Oi and Oj defined
for the web service, four boolean variables, precedesV alid, doesntPrecedeV alid,
precedesInvalid, and doesntPrecedeInvalid are created. Then each time Oj is sub-
mitted, the appropriate boolean is set to true depending on whether Oi was submitted
earlier in the request sequence and whether the response to Oj is valid. After submit-
ting all requests, the relationship “Oi must precede Oj” is reported if precedesV alid
is true, doesntPrecedeV alid is false and doesntPrecedeInvalid is true.

4 Evaluation

To evaluate our methodology we performed two case studies on production web ser-
vices, one provided by Amazon3 and the other provided by eBay4. Columns 2 and 3 of
Table 1 provide some basic details relating to the size of the web services. For eBay,
there were a number of operations that required additional access privileges to execute.
These were removed from the set of operations that we considered, leaving 102 of the
132 total operations. For each object we submitted a number of request sequences (col-
umn 5 of Table 1). The number of request sequences submitted was determined by the
complexity of the web service (eBay has a much larger number of operations, there-
fore more request sequences are required), the rate at which we were able to submit
requests (eBay processed requests significantly faster than Amazon) and the amount of
time available to collect the data (we collected these requests over an approximately
one week period).

There are several areas where user input is required in the methodology. First the
analyzer requires the user to provide inputs for several simple elements. For many of
these, the documentation for the service provided a list of suitable values (e.g. Amazon
has a sort element that has a list of possible values defined in the documentation). For
others, we produced values that we considered reasonable based on our knowledge of
the service. Second, the generator requires us to specify the maximum sequence length
and maximum range of occurrences for elements. For the maximum sequence length,

3 http://www.amazon.com/E-Commerce-Service-AWS-home-page/b?
node=12738641

4 http://developer.ebay.com/products/trading/



Table 2. Summary of results

Inference Type Amazon eBay
minOccurs = 0 should be 1 7 4
minOccurs = 1 should be 0 0 6
same element name, different types 0 1
imprecise types 1 41
non-static precedences 1 0

ten was found to be sufficient to produce request sequences that included all operations.
For the maximum range of occurrences for elements we chose three. Finally we need
to provide a classification criteria for responses from each of the services As mentioned
in Section 3.3 eBay returns error elements detailing errors in the request while Amazon
uses the SOAP exception model to return errors.

Table 2 provides an overview of the results from applying WebAppSleuth to these
services. On Amazon we found seven elements that were defined as having minOc-
curs = 0 where we were unable to submit a valid request with that element missing.
Of those, five are defined in developer documentation provided by Amazon as being
required, indicating that these five elements are defined incorrectly in the WSDL file.
The other two cases are defined in other documentation as being required under some
circumstances, but the minOccurs of these elements should not be changed. On eBay
we found four elements that were defined as optional that should be mandatory. Devel-
oper documentation suggests that one of these elements is required and the minOccurs
should be changed in the WSDL. The other three are defined as being required under
certain conditions, but the minOccurs of these elements should not be changed.

On eBay we found six elements that were defined with minOccurs = 1 where it
should have been 0. Of these, four are specified to be optional in other documenta-
tion, indicating an error in the WSDL. The other two are specified to be mandatory in
other documentation, and further examination indicates that there may be missing error
checks in the web service code itself.

On eBay we found one element name, V ersion, that had two different types, string
and int, indicated in different portions of the WSDL. Since the value of this element
was always a positiveInteger, the type of the element should be changed in the WSDL.

On Amazon we found one element, IsV alid, that was defined as type string and
should have been defined as boolean. This agrees with the possible values for the ele-
ment defined in other documentation. On eBay we found nine elements that were de-
fined with the type string that should have been defined as some type of integer. The
remaining 32 elements that were found to have imprecise types were all defined as int
in the WSDL and could have been defined as positiveInteger, nonNegativeInteger, or
nonPositiveInteger based on the returned values. Since int represents a 32-bit integer
and each of these other integer types are arbitrary precision, these elements should be
defined in the WSDL as int with appropriate range constraints placed on them.

Finally, on Amazon we found one precedence relationship beyond the statically de-
termined ones. This precedence was between a ListSearch operation that would search



for wish lists, baby registries and wedding registries based on criteria such as the name
and location of the person who posted the list, and ListLookup which would look up a
list based on ListId. This precedence represents a data dependency between ListSearch
and ListLookup through the ListId variable. It was not found statically because ListId
was defined with minOccurs = 0 in the ListLookup operation when it should have been
defined with minOccurs = 1 (this was one of the minOccurs errors mentioned earlier).

Overall, we found that we were able to accurately suggest improvements to the
minOccurs and types of several elements in both applications. This suggests the num-
ber of occurrences and simple element types inference algorithms can be used to help
improve the WSDL files for applications. However, the single precedence we found was
not particularly useful, either because these types of relationships do not exist in the web
services we used or because the request sequences we submitted were not sufficient to
detect these relationships.

5 Related Work

The first step of our methodology is the static generation of the relationship between
input and output values of various WSDL operations that is similar to the Jungloids
described in [5] or the relationships found as the first step of the WSDL-based test
generation strategy proposed in [6].

Our request generation strategy is similar to random or exhaustive test generation
strategies proposed for object-oriented applications [7–10]. The primary differences be-
tween these methods and our work is domain (object-oriented applications versus web
services) and the intended use of the inputs (testing versus generating inferences). One
methodology [11] explicitly uses automatically generated inputs to drive the process
of generating properties. This methodology uses a form of bounded exhaustive gener-
ation of expressions consisting of sequences of method calls on Java objects. All of
these methodologies that perform input generation for object-oriented applications are
implemented for Java and take advantage of Java’s type system to ease the problem of
generating well-formed inputs. The XML schema based types used in WSDL files are
much less rigorously defined, and making the problem of relating the types of inputs
and outputs more difficult and less reliable.

XPT is a methodology for systematically generating XML inputs to applications
based on a schema [12]. XPT uses a form of bounded exhaustive generation to generate
a wide variety of XML documents and then uses heuristics based on category-partition
testing [13] to reduce the number of test cases. It would be possible to adapt XPT for
use in our methodology at the level of determining the structure of the XML requests,
but this would need to be modified to take into account the set of available input values
at each step.

There has been a great deal of work in developing techniques for dynamically infer-
ring properties about programs [11, 14–21]. These methodologies work by instrument-
ing the program being examined. They then execute the program under some test suite,
collecting traces of program events and states of interest. These traces are analyzed to
produce a set of properties. These properties can be in the form of invariants on the
states of variables (e.g. variable v > 0) or temporal relationships between events (e.g.



an open event must be followed by a close event). These methodologies differ from
our approach in two major aspects. First, most assume that an engineer can instrument
the code they are interested in examining. Since we are working with web services and
applications that are accessed via a network, we assume that we can not instrument the
system, instead we only have the input and outputs to examine. Second, all of these
methods (except [11]) require that there is an existing set of inputs. Our methodology
generates these inputs automatically with minimal interaction from the user.

6 Conclusion

In this work we have presented a methodology for automatically refining and augment-
ing WSDL files. This methodology collects static information from the WSDL file to
drive a request generation process, and automatically submits large numbers of gener-
ated requests to the web service to collect dynamic information about the behavior of
the web service. We have applied our methodology to two commercial web services,
and found a number of improvements that could be made to the WSDL files.

In future work we intend to improve our methodology in various ways. In earlier
work on web applications we have had a great deal of success using the inference gen-
eration process to guide the request generation process [3]. We intend to adapt that
methodology to the process of generating requests for web services. There are also sev-
eral additional kinds of inferences that we would like to generate. For example XML
schemas can define an either-or relationship between elements, however this feature
appears to be rarely used in actual WSDL files. We believe that we can adapt the at-
least-one-of inference described in [3] to automatically detect case where these either-or
relationships could be used in web services.

Additionally, we would like to perform additional studies to evaluate different as-
pects of our methodology. Currently we make several assumptions that can directly im-
pact the ability of our methodology to provide meaningful suggestions to the user. For
example, we assume that in all cases where two elements have the same name and same
type they represent the same abstract type in the application. This can limit the ability of
our methodology to generate appropriate request sequences. We also make several as-
sumptions about the ability of the users of our methodology to make appropriate choices
at several different points in the process, such as providing appropriate inputs or devel-
oping a reasonable method for differentiating valid from invalid responses. Additional
controlled studies can be designed to evaluate the correctness of these assumptions. We
would also like to apply our methodology to additional web services to determine how
it generalizes to other applications.
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