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Effect of micropattern size on cellular morphology 

 

Pattern of human neuroblastoma cells could not be maintained on patterns without 

PEG backfilling for longer time as they grew and migrated to surrounding areas. 

Confluencey of cells on these micropatterned regions was seen equal or greater than cells 

on non-patterned control group. Therefore, samples prepared without using PEG 

backfilling were removed from further analysis as they could not provide user defined 

geometry for cells to grow and would not produce concrete conclusion on cellular 

behavior from their analysis.   

 

 

Figure 4-12: Fluorescence images of SH-SY5Y cells on collagen-I ECM pattern day 7 without RA. (A) 5 µm, (B) 

10 µm, (C) 20µm, (D)30 µm, (E) 40 µm, and (F) control. Red = actin cytoskeleton, blue = nucleus (scale bar = 50 

µm). 
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Immunostained fluorescence images of cells in pattern were analyzed 

qualitatively. Actin cytoskeletons of cells were stained with rhodamine phalloidin and 

nuclei were stained with DAPI for better visualization and contrasts.  

Very low number of cells was attached on 10 and 20 µm ECM lanes producing 

discontinuous patterns (Fig. 4-12 A, B, and 4-13 A, B). In these narrow lanes, only one 

cell prominently cover the entire width and connected with neighboring cells in the same 

pattern with an extension of long neurite along the protein pattern. Even though 

differentiated neuronal cells usually have neurite extensions in multiple directions, cells 

in these two lane widths only had 2 major neurites to connect with immediate two cells in 

the same pattern. Cells tend to grow slightly beyond the width of protein patterns in such 

narrow lanes. Cells were highly organized in terms of their orientation toward the main 

axis of ECM islands for 5 and 10 µm.          

     

Figure 4-13: Fluorescence images of SH-SY5Y cells on collagen-I ECM pattern on day 7 with 10 µM RA. (A) 5 

µm, (B) 10 µm, (C) 20µm, (D)30 µm, (E) 40 µm, (F) control. Red=actin cytoskeleton, blue= nucleus (scale bar = 

50 µm). 

A C B

D E F 
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ECM islands of 20, 30 and 40 µm contained multiple cells to cover entire width 

(Fig. 4-12 C, D, F; and Fig. 4-13C, D, F). Due to highly compact and overlapping of cells 

in these patterns, distinct neurite extensions were not visible in contrast to 5 and 10 µm 

lanes. Similarly, cells orientated themselves randomly. In accordance with narrow lanes, 

cells in these patterns grew few microns beyond their defined geometry and no random 

extensions of neurites among pattern were seen for at least seven days.   

Quantified cellular behavior 

 

Means and standard deviations were calculated for each set of data, and statistical 

significance among different sets was calculated by using ANOVA. Cellular and nuclear 

spreading area, extension of neurites, and orientation of nuclei were varied depending 

upon the width of ECM patterns.  These variations were also seen in samples that were 

supplemented with or without retinoic acid

 

Figure 4-14: Analysis of cellular and nuclear spreading area for SH-SY5Y neuroblastoma cells on day 7 without 

supplement of retinoic acid. 
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Fig. 4-14 represents variation of cellular and nuclear area among cells that were 

grown in different ECM pattern width without retinoic acid. Nuclear spreading and 

cellular spreading on 5 and 10 µm ECM lanes were significantly smaller (p<0.001) than 

nuclear and cellular spreading on control, 20, 30 and 40 µm lanes. Nuclear and cellular 

area in 20, 30 and 40 µm were statistically insignificant (p>0.05) with control group and 

among each other. Also, spreading of nuclei and cells on 5 and 10 µm was statistically 

insignificant (p>0.05). These results suggest that cellular and nuclear spreading and their 

growth are greatly influenced by pattern sizes used in cellular patterning.   

 

Figure 4-15:  Analysis of cellular and nuclear spreading area for SH-SY5Y neuroblastoma cells at day 7 with 

supplement of retinoic acid. 

Graph on Fig. 4-15 represents cellular and nuclear spreading area on ECM lanes 

width with RA supplementation. Analysis of these data show exactly same trends for 
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nuclear area as mentioned above. Spreading of nuclei area on 5 and 10 µm is 

significantly smaller (p<0.001) than that of control, 20, 30 and 40 µm ECM lanes, and  

spreading of nuclei among control, 20, 30 and 40 µm is statically insignificant (p>0.05). 

On the other hand, cellular spreading in this case was independent of ECM width and is 

statistically insignificant among all groups.  

 

Figure 4-16: Analysis of nuclear orientation for SH-SY5Y neuroblastoma cells on day 7 without retinoic acid.  

Orientation of cells is influenced by orientation of their nuclei. To measure 

orientation of nuclei, we referenced a parallel line to protein patterns as 0 º (prefect 

orientation) and deviation of left or right from this reference line was used as the 

orientation of nuclei.  

Orientation of nuclei also varied with the width of ECM patterns used.  Graph in 

Fig. 4-16 shows, well above 90 % of SH-SY5Y cells nuclei after 7 days of culture on 5 
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and 10 µm collagen lanes had perfect or nearly perfect (<10º) orientation along protein 

patterns, e.g., 100% of nuclei in these two patterns were aligned within 20º of deviation 

from protein patterns. Higher number of cells showed increase in deviation due to 

increase in pattern width. In comparison among pattern widths, 5 and 10 µm contained 

less deviated cells, while 20 µm showed satisfactory result in nuclei orientation by 

orientating more than 80% cells within 20º. The 30 and 40 µm lines had the most 

randomly oriented cells in this group. 

 

Figure 4-17: Analysis of nuclear orientation for SH-SY5Y neuroblastoma cells on day 7 with 10 µg/mL retinoic 

acid.  

 

In comparison with undifferentiated cells, nuclear orientation was not affected in 

differentiated neuronal cells as shown in Fig. 4-17. In this case also, close to 100 % of 
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cells on 5 and 10 µm lanes were orientated less than 20 degrees of deviation from the 

reference line. Cells on 20 µm showed consistent behavior in terms of nuclear orientation 

when compared with undifferentiated cells. Fluctuations were observed among 30 and 40 

µm ECM lanes as they provide ample space for multiple cells to attach in one spot.    

 

Figure 4-18: Neurite extension as a function of ECM lane width. 

Differentiation of neuronal cells using retinoic acid for 7 days significantly 

increased neurite extensions. These extensions were more prevalent in patterned cells 

compared to non-patterned cells. Differentiated non-patterned cells produced multiple 

neurites, while patterned differentiated cells had more organized neurite extension to 

connect with neighboring cells in the same lane. Neurtie extension was significantly 
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increased in patterned cells in both conditions, i.e. differentiated cells and 

undifferentiated cells, when patterned in 5 and 10 µm. Fig. 4-18 shows that length of 

neurite extension in undifferentiated , patterned cells on 5 and 10 µm is significantly 

larger (p<0.001) than undifferentiated non-patterned cells. Similarly, same holds true for 

differentiated patterned cells in 5 and 10 µm ECM lanes with p value less than 0.001. 

However, there was no statistical significant difference between length of neurites on 5 

and 10 µm ECM lanes in both cases. But, neurite length of differentiated cells on 5 and 

10 µm were statistically larger (p< 0.01 and p< 0.001, respectively) than undifferentiated 

cells on the same width islands. 

 

 

Discussions 

 

Neuronal cell patterning and their confinement in defined geometry have been 

reported in previous studies (Branch et al., 1998; Branch et al., 2000; Branch et al., 2001; 

Corey et al., 1991; Frimat et al., 2010; Klein et al., 1999; Kleinfeld et al., 1988; 

Matsuzawa, Potember, Stenger, & Krauthamer, 1993; Morin et al., 2006; Nam, Branch, 

& Wheeler, 2006; Romanova, Fosser, Rubakhin, Nuzzo, & Sweedler, 2004; Scholl et al., 

2000; Stenger et al., 1998; Suzuki et al., 2005; Thompson & Buettner, 2001; Wheeler et 

al., 1999; Yang, Co, & Ho, 2005a). Most of these studies were conducted to develop 

techniques for spatial organization of neuronal cells or for the sake of controlled neurite 

growth along a defined path. Organization of cells in different geometry alters stiffness 

and stress level of cells affecting their morphology and mechanics (Tee, Fu, Chen, & 

Janmey, 2011).Cellular morphology in turn controls various cellular functions through 

organization of cellular organelles. Therefore, understanding the influence of substrate 

surfaces and their geometry on cellular morphology would establish a better way of 

organizing cells for effective neuronal tissue regeneration or biomedical applications in 
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general. In this study, we have demonstrated that neuronal cell morphology and behavior 

can be altered by using different geometry of substrates that cells attached to. 

Efficacy of PLL-g-PEG to confine different types of cells to different geometry 

has been reported in previous studies (Akiyama, Ito, Kawabe, & Kamihira, 2010; Branch 

et al., 2000; Branch et al., 2000; Branch et al., 2001; Branch et al., 2001; Csucs, Michel, 

Lussi, Textor, & Danuser, 2003; M. Zhang et al., 1998) (58,59,66,95,96). In this study, 

we have successfully immobilized PEG on TCP surfaces to confine SH-SY5Y on 

confined geometry of collagen-I lanes. PEG prevented cells from attaching or migrating 

to the areas where protein was not available. Attachment of secreted ECM proteins from 

cells or protein molecules from supplement media is also very limited for longer period 

of culture. Interestingly, our results suggest that confining of SH-SY5Y cells in smaller 

geometry such as 5 µm can only be achieved with application of PEG or similar protein 

and cell resisting chemicals. These cells tend to attach to the area beyond smaller ECM 

lanes due to very limited available space to attach. Moreover, cells in these smaller ECM 

lanes without backfilling molecules can attach randomly and decrease ordered 

organizations of cells and their nuclei. On the other hand, an application of PEG like 

molecules restricts cells to attach and grows along the main axis of protein patterns. Cells 

attached to smaller ECM islands (5 and 10 µm) did not grow as big as cells attached to 

bigger islands (20, 30 and 40 µm) or the controlled unpatterned cells in the same 

culturing condition. Cells require a critical area to properly attach and grow (Yan, Sun, & 

Ding, 2011) on the substrates. In our study, widths of ECM islands have greater influence 

in cell and nuclear spreading over their lengths, in accordance with previous studies 

(Yang, Co, & Ho, 2005a).  

As mentioned earlier, due to critical area of attachment, number of attached cells 

is proportional to width of ECM lanes. Multiple cells randomly attached side to side in 

wider lanes. Upon their growth, some of the cells overlapped, and grow compactly 

covering entire width and length of ECM lanes making it complicated to measure number 

and length of neurite extensions. Application of neuronal biochemical factors enhanced 

multiple growths of neurites in SH-SY5Y cells. Patterned cells, especially in 5 and 10 µm 



63 
 

 
 

 

ECM lanes, showed significant increase in neurite length along the main axis of pattern. 

Also, total cell spreading areas of differentiated SH-SY5Y cells in these islands were 

statically equivalent to non-patterned, and or cells in bigger islands, when these 

excessively long neurite extensions were incorporated in total cellular spreading area. 

Despite of higher cell spreading area, nuclear areas were statistically compromised in 

smaller islands. This effect may lead to change in gene expression and protein synthesis 

as nuclear shape determines DNA organization (Ingber, 1999; Maniotis, Chen, & Ingber, 

1997).  

For both cases of differentiated and undifferentiated neuroblastoma cells, 5 and 10 

µm ECM lanes produced longer and more organized growth of neurites. Differentiated 

SH-SY5Y cells on 5 µm statically had longest neurite extension when compared with 

control and other sample groups. In our study, 5 µm ECM lanes produced longest 

neurites length of 214.23 µm. Moreover, higher nodal compliance, cellular; and nuclear 

orientation and organization were achieved. Organization of neuronal cells in smaller 

cellular adhesive cues may provide an effective alternative for specific neuronal 

regeneration applications. However, due to compromised nuclear area in smaller 

geometry, further studies should be conducted to assess their effect in neuronal gene 

expression and protein synthesis.     

Smaller geometries restrict cellular and nuclear spreading. In order to evaluate 

minimum suitable dimension of ECM islands for healthy growth and migration of 

neuronal cells, we selected bigger ECM lanes having width of 20, 30 and 40 µm. Cells 

and nuclear spreading areas in these patterns were significantly equal, but the nuclear 

organization found to be significantly ordered in 20 µm ECM lanes. These results suggest 

that growing cells in smaller pattern affect both nuclear and cellular spreading, and higher 

lanes produced randomization of nuclear organization.  

In summary, cellular behaviors are affected by size of ECM lane widths. 

Incorporation of neuronal cells on smaller lanes may produce effective regeneration of 

neuronal cells in terms of neurite growth and organization of their nuclei. Similarly, In 
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terms of cellular and nuclear spreading, a minimum of 20 µm lanes is required for the 

healthy growth of cells.  
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Chapter 5 : Conclusion 

 

Through these studies, we have demonstrated a versatile method of cellular 

patterning for biomedical applications. Efficacies of this optimized microcontact 

pattering techniques have been demonstrated via reproducibility of different synthetic 

ECM protein patterns on 3 different biosurfaces, and confining three different cell lines 

on a wide range of microgeometry of above mentioned ECM protein patterns.   

Using optimized techniques of photolithography and microcontact printing, in the 

second part of the study, we successfully confined SH-SY5Y human neuroblastoma cells 

in various geometry to control their morphology and cellular behaviors. Our results 

concluded that SH-SY5Y cells can be patterned to as low as 5 µm wide geometry to 

control their connectivity with other cells as well as their orientation. Cells conform to 

the geometry that they are constrained to grow but spreading area of cells and their nuclei 

is controlled by the width of the geometry of substrate surfaces. The 20 µm parallel lane 

was found to be optimal dimension for neuronal cell in terms of their growth. Highly 

ordered organization of cells and their connectivity can be obtained by confining cells on 

smaller width geometry, while an increase in their dimension influences randomization 

and disordered connectivity of cells. Similarly, for neuronal cells, longer neurite growth 

can be achieved by incorporating them on narrow lanes such as 5 and 10 µm widths, 

which might be useful for neuron regeneration or repair applications. 

Our studies have shown PLL-g-PEG as an excellent cell and protein repellent 

molecule to organize and maintain spatial localization of cells for longer period of time. 

Differentiated neuronal cells on smaller islands may spread their area to the maximum 

but nuclear spreading is extremely constrained. Since nucleus is the hub for most of the 

cellular functions, they may also be affected with constrained geometry applied for it to 

spread. 
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Future direction 

Our results show that behavior and morphology of SH-SY5Y human 

neuroblastoma cells can be modulated through different geometry and synthetic 

extracellular matrix proteins. Assessing of functions of these cells with altered 

morphologies and behavior will lead to proper nerve regeneration in-vitro.  

Studies have reported cell seeding density also affects cellular morphology and 

behavior on patterned surfaces. Similarly, biochemical features of ECM proteins have 

also been reported as a cause to altered cell morphologies and functions.  Human 

neuroblastoma cells occur in three different sub types, S-type (e.g. SH-EP), N- type (e.g. 

SH-SY5Y) and I-type (e.g. IMR-32). These cells may behave independently in terms of 

attachment, migration and proliferation on different substrates.    

Therefore, further investigation including all of these 3 different neuronal cell 

types, with varying cell seeding densities on ECM patterns of different geometry will 

lead us toward better understanding and control of neuron cell morphology. Quantitative 

analysis of various human neuronal marker genes (e.g. MAP2, ChAT, NFH, GAD 67, 

NFM, NSE, PAP, Peripherin, Beta-Tubulin 3, TAU) expressed due to these constrained 

microenvironments will provide breakthrough progress toward neuronal regenerative 

medicines and biomedical applications.   
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