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In recent years the transport properties of al-
kali halide crystals have been discussed in terms 
of fi ve defects, i.e. isolated anion vacancies, iso-
lated cation vacancies, isolated impurity ions, 
nearest neighbor vacancies of opposite electric 
charge (divacancies), and nearest neighbor impu-
rity-vacancy complexes [1]. Originally these de-
fects were treated as noninteracting particles lo-
cated at appropriate lattice sites (the presence of 
divacancies and complexes was not assumed) and 
the defect concentrations were obtained from sta-
tistical mechanics. Subsequently the defects were 
allowed to interact with oppositely charged de-
fects located at nearest neighbor lattice sites and 
the concentrations of divacancies and complex-
es were included in the analysis of experimen-
tal data. In 1954, Lidiard improved the theory of 
ionic conductivity by including the long-range 
Coulomb interactions between isolated defects 
[2]. Lidiard obtained closed-form equations for 
ionic conductivity by using the Debye-Hückel 
approximation for the Coulomb interactions. Re-
cently these equations have become more widely 
used in the analysis of ionic conductivity data [3–
5]. Now nonrandom deviations between the Lid-
iard-Debye-Hückel equations (LDH) and exper-
imental ionic transport data have been reported 
[4–6]. This has on the one hand led to specula-
tion about other defects being important in ionic 
transport phenomena. Cation Frenkel defects [4–
6] and cation trivacancies [5–7] have both been 
discussed in recent conductivity and diffusion 
papers. On the other hand, the deviations be-
tween experiments and the LDH equations may 
arise from the assumptions and approximations 
implicit in those equations [8, 9]. In particular, 

the LDH derivation [2] assumes that the Helm-
holtz free energy of an alkali halide crystal can 
be written as the sum of two parts: (a) a confi gu-
rational term directly dependent on the presence 
of impurities and (b) a vibrational term which is 
independent of the arrangement of the impurities 
and vacancies in the lattice. This paper presents 
an alternative to the assumption that the vibra-
tional term of the free energy is independent of 
the arrangement of the impurities and vacancies. 

We begin by dealing with the cation sublat-
tice of an alkali halide crystal containing ni im-
purity ions and nc vacant lattice sites. The impu-
rities and vacancies are assumed to interact with 
energy –B and hence form a number nk of bound 
impurity-vacancy complexes. We further assume 
that there is a defi nite change in vibrational mo-
tion when an impurity moves from an isolated 
site to a bound site near a vacancy. We treat this 
change in vibrational motion in the Einstein ap-
proximation, i.e. each impurity ion is an inde-
pendent oscillator with the same frequency, but a 
different frequency is assigned to the bound im-
purity ions (complexes) than to the isolated im-
purity ions. The isolated impurity ions vibrate in 
shallow potential wells with energy level spac-
ings of ћωL , and the tightly bound impurity ions 
vibrate in deep potential wells with energy level 
spacings of ћωk [10].

In general, when cj states of energy εj are 
available for N particles subject to Boltzmann 
statistics the number found in the jth state is giv-
en by [11]

In the present situation this becomes
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and

with ck = Znc where Z is the number of possible 
bound sites near a vacancy and nc is the number 
of cation vacancies and cL = N – Znc where N is 
the total number of sites available. When equa-
tions (2) and (3) are summed over j the following 
results are obtained.

where β is identifi ed as (kT)-l. Then equations (4) 
and (5) can be cast into a form similar to the usu-
al law of mass action equation for complex con-
centration,

The term in square brackets results from allow-
ing the crystal energy to be dependent upon the 
arrangements of the impurities in the lattice. The 
LDH result is readily incorporated into our result 
by replacing the exp(B/kT) term in equation (6) 
by the more complete expression from the LDH 
equation (See for example equation (12) [2]).

An illustration of the usefulness of equa-
tion (6) can be found in the analysis of the tem-
perature dependence of the ionic conductivity 
of an alkali halide crystal containing a diva-
lent-cation impurity. For example, an analysis 
of the conductivity data for a KCl:SrCl2 crys-
tal containing 375 ppm mole fraction of stron-
tium has already been reported[5]. The data was 

fi tted to the LDH equations by the method of 
least squares with eleven adjustable parameters. 
In that analysis values were obtained for a jump 
attempt frequency ω¯, for an impurity-vacan-
cy binding energy B expressed as an enthalpy 
minus the temperature-entropy product. and for 
the cation migration enthalpy and entropy.

To compare least square analyses of experi-
mental data using two different sets of theoretical 
equations. i.e. the LDH equations and the LDH 
equations modifi ed by equation (6), it is desirable 
to use the same number of adjustable parameters 
in each analysis. So values for the quantities in 
equation (6) that do not appear in the LDH equa-
tions were estimated in terms of LDH parame-
ters. These estimates were obtained from Ein-
stein oscillator models of the isolated and bound 
impurity ions. The jump attempt ω̄ as determined 
from the LDH analysis of the conductivity was 
taken as the average of the potassium and chlo-
rine ion vibration frequencies and was related to 
the masses of the potassium (MK) and chlorine 
(MCl) ions by the following equations:

and the Einstein frequency ωL for an isolated Sr 
ion was estimated to be

The binding energy B as determined from the 
least squares analysis was related to ωk and ωL in 
a simple harmonic approximation. It seems rea-
sonable that the particles in deeper traps would 
vibrate with higher frequency. To simply esti-
mate the frequency difference let us assume that 
both bound and isolated impurity ions oscillated 
with a maximum displacement of a/2. The two 
oscillators were taken to have force constants 
of MSrωk

2/2 and MSrωL
2/2 respectively. Further-

more, the lowest energy levels of the two oscil-
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lators differ by an energy of B[10]. On the basis 
of such a model the following relationship can be 
derived for ωk and ωL :

where

A value of 207 × 1026 sec–2 eV–1 for γ gave the 
best fi t to the experimental data. This leads to a/2 
= 0·10 Å, a reasonable value for the maximum 
displacement amplitude, and to ωk = 26.6 × 1012 
sec–1 at room temperature as compared to 24.1 × 
1012 sec–1 for ωL.

The results of analyses before and after inclu-
sion of equation (6) are shown in terms of param-
eter values in Table 1 and in terms of the per cent 
deviation between theoretical and experimen-
tal values of conductivity as a function of tem-
perature in Fig. 1. (The complete discussion of 
the computer analysis procedure is contained in 
[5].) The theoretical values of ionic conductivity 
calculated with the LDH equations modifi ed by 
equation (6) do provide the better fi t to the ex-
perimental conductivity data, and reduce the rms 
percent deviation from 0·67 to 0·33 per cent.

In summary an equation for the equilibri-
um concentration of impurity-vacancy complex-
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es has been derived. This derivation has includ-
ed the dependence of the vibrational term of the 
crystal free energy upon the arrangement of the 
impurity ions. The vibrational changes in a sim-
ple Einstein approximation have been incorporat-
ed into the equation for complex concentration. 
It is encouraging to note that even in this simple 
approximation the resulting equations for ionic 
transport are more in accord with experimental 
data than transport equations which neglect the 
vibrational effects of the arrangement or the im-
purity ions.
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