Magnetism of L_10 compounds with the composition MT ($M = \text{Rh, Pd, Pt, Ir}$ and $T = \text{Mn, Fe, Co, Ni}$)

Arti Kashyap
University of Nebraska-Lincoln, akashyap@lnmiit.ac.in

Ralph Skomski
University of Nebraska-Lincoln, rskomski2@unl.edu

Ashok K. Solanki
University of Nebraska - Lincoln, asolanki2@unl.edu

Yinfan Xu
University of Nebraska - Lincoln, yxu2@unl.edu

David J. Sellmyer
University of Nebraska-Lincoln, dsellmyer@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/physicssellmyer

Part of the [Physics Commons](http://digitalcommons.unl.edu/physicssellmyer/26)
Magnetism of L_{10} compounds with the composition MT ($M=$Rh, Pd, Pt, Ir and $T=$Mn, Fe, Co, Ni)aa

A. Kashyap, R. Skomski, A. K. Solanki, Y. F. Xu, and D. J. Sellmyer
Department of Physics and Astronomy, and Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588

(Submitted on 9 January 2004)

The electronic band structure of ordered equiatomic compounds of 3d transition elements (Mn, Fe, Co, Ni) with nonmagnetic 4d and 5d elements (Rh, Pd, Pt, Ir) are investigated by linear muffin-tin orbital calculations. The systematic study considers 3d and 4d/5d spin moments and interatomic exchange interactions, with emphasis on the comparison between ferromagnetic and antiferromagnetic order. Total and site-resolved exchange interactions are calculated from first principles, and the obtained exchange constants are used to estimate ordering temperatures on a mean-field level. © 2004 American Institute of Physics. [DOI: 10.1063/1.1687631]

I. INTRODUCTION

Equiatomic magnetic compounds crystallizing in the tetragonal L_{10} phase have attracted much attention as permanent magnets and in magnetic recording.

These compounds are of fundamental interest for their high uniaxial anisotropy to about 10^7 MJ/m3, which results from their natural superlattice structure, and CoPt was the first true permanent-magnet alloy. In addition, L_{10} nanoclusters have high potential as cluster-assembled granular films for 1 Tb/in.2 perpendicular recording media. Exchange interactions in the compounds are important because they determine the zero- and finite-temperature properties such as magnetic order, finite-temperature anisotropy affecting, for example, domain formation and spin-flop transitions.

The tetragonal L_{10} intermetallics have the general structure MT, where M is an iron-series (3d) transition metal and T is a 4d or 5d transition metal. Many intermetallics where $M=$Fe or Co are ferromagnetic (FM), although antiferromagnetism (AFM) may be possible in some Fe-containing compounds. L_{10} intermetallics where $M=$Mn are typically AFM, which reflects a general trend towards AFM due to half-filled 3d shells. Concerning first-principles calculations on L_{10} magnets, Ravindran et al. calculated the magnetocrystalline anisotropy of some L_{10} compounds. This research was preceded by earlier calculations on various 3d-4d/5d multilayers, which contain the L_{10} structure as a special case. Moruzzi and Marcus discussed structural effects on magnetic properties of FeRh and FePd by first-principles total-energy calculations. Garcia et al. obtained the magnetocrystalline anisotropy of FePd, and there are Curie temperature (T_C) calculations for FePt in a B$_2$O$_3$ matrix. However, compared to Cu$_3$Au and other related structures, little work has been done on L_{10} compounds made from elements other than Fe, Co, Pd, and Pt.

II. METHOD OF CALCULATIONS

To perform the self-consistent, spin-polarized electronic structure calculations, the linear muffin-tin orbital (LMTO) method within the atomic sphere approximation is used.

The calculations are performed for 288 k-points, and the Barth-Hedin exchange-correlation potential was employed. The local spin-up and spin-down densities of states and magnetic moments are calculated using the linearized tetrahedron method. A minimal basis set consisting of of s, p, and d orbitals is used for both types of atoms and the spin-orbit coupling is not included in our calculations. Due to the different sizes of the constituent atoms it is necessary to assume different Wigner-Seitz (WS) cell radii, but the ratio of WS radii is kept to be the same as in their elemental form. Experimental data for the lattice parameters for all the compounds are taken from Ref. 16. One example is that, for FePt compound, WS values are 2.709 a.u. and 2.947 a.u. for Fe and Pt, respectively. The L_{10} structure can be understood as alternate layers of M (Mn, Fe, Co, Ni) and T (Rh, Pd, Ir, Pt) atoms with each M atom surrounded by eight T atoms and four M atoms as nearest neighbors. The unit cell contains four atoms but can be considered as simple tetragonal cell with two atoms. The interatomic exchange interactions (J_{ij}) are calculated in the Heisenberg approximation. Details of the method can be found elsewhere. The total exchange parameter (J_0) reflects the energy change due to small-angle rotation of the moment at one site. In contrast to the J_{ij}, it is given by site-diagonal scattering matrix (or Green function), where $i=j$. Using J_0, transition temperatures are estimated within mean-field theory, using the relation $T_C=2/3k_B(J_0)(T_N=-T_C)$.

III. RESULTS AND DISCUSSION

Table I shows self-consistent magnetic moments for all investigated compounds. The results are in agreement with all other calculations and with the available experimental data. Table II shows the calculated J_0 and calculated mean-field ordering temperature along with some available experimental data. As expected, the T_C is overestimated by the
<table>
<thead>
<tr>
<th></th>
<th>Mn</th>
<th>Co</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh</td>
<td>3.010±0.022</td>
<td>2.238±0.022</td>
<td>1.321±0.102</td>
</tr>
<tr>
<td>Pd</td>
<td>4.138±0.293</td>
<td>3.299±0.347</td>
<td>2.281±0.379</td>
</tr>
<tr>
<td>Ir</td>
<td>1.116±0.006</td>
<td>1.909±0.015</td>
<td>0.898±0.098</td>
</tr>
<tr>
<td>Pt</td>
<td>4.022±0.355</td>
<td>3.265±0.349</td>
<td>2.254±0.417</td>
</tr>
</tbody>
</table>

Table II. Total exchange parameter J_0 (mRy=156 K) for M and T sites and Curie temperature (K) along with experimental values given in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>Mn</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh</td>
<td>-17.883</td>
<td>3.024</td>
<td>2.863</td>
<td>1850(200)</td>
</tr>
<tr>
<td>Ir</td>
<td>-2.367</td>
<td>3.436</td>
<td>1.861</td>
<td>240</td>
</tr>
<tr>
<td>Pt</td>
<td>-15.008</td>
<td>8.338</td>
<td>8.766</td>
<td>1318(970)</td>
</tr>
</tbody>
</table>

Table III. Site-resolved exchange interaction parameters (mRy) for the FM and AFM configurations. The table shows the $M-M$ (J_{11}, J_{13}) and $M-T$ (J_{12}, J_{14}) pairs and the number of neighbors with increasing interatomic distance.

<table>
<thead>
<tr>
<th></th>
<th>J_{11} (M)</th>
<th>J_{12} (M)</th>
<th>J_{13} (M)</th>
<th>J_{14} (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh</td>
<td>-0.293</td>
<td>-0.293</td>
<td>-0.293</td>
<td>-0.293</td>
</tr>
<tr>
<td>Pd</td>
<td>-0.400</td>
<td>-0.400</td>
<td>-0.400</td>
<td>-0.400</td>
</tr>
<tr>
<td>Ir</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td>Pt</td>
<td>-0.003</td>
<td>-0.003</td>
<td>-0.003</td>
<td>-0.003</td>
</tr>
</tbody>
</table>
above simple mean-field expression. Our \(J_0 \) values are negative for Mn compounds suggesting the AFM order to be more stable in MnRh, MnPd, MnIr, and MnPt. For the compounds of Fe and Co, \(J_0 \) calculations suggest FM ordering at equilibrium lattice parameters. Compounds of Ni with Rh, Ir, and Pt are paramagnetic (PM) at equilibrium lattice parameters, in accordance with the experimental data.\(^{18}\) However, the strain dependence of the spin structure may yield transitions to a FM state, for example due to embedding of nanoparticles in a matrix. Further experimental complications are coexistent phases, such as disordered fcc. Table III shows site-resolved exchange interaction parameters \([J_{ij}^{ss}]\) for all for the FM and AFM configurations. Nearest neighbors around the magnetic 3\(d \) transition element (Mn, Fe, Co, Ni) are also given up to a distance of nearly twice the lattice parameter. \(J_{11} \) and \(J_{13} \) indicate exchange between \(M \) atoms and \(J_{12} \) and \(J_{14} \) indicate exchange between \(M-T \) atoms. As evident from the data in Table III, all Mn compounds exhibit pronounced negative exchange interactions between four Mn-Mn first nearest pairs, \(J_{11}(4) \), indicating that the Mn spins in a given plane would prefer to align antiferromagnetically, trying to form an intraplane checkerboard pattern in addition to the AFM interlayer coupling. In all Fe and Co compounds, FM ordering is more favorable, whereas the Ni compounds are PM, with the exception of the ferromagnetic NiPd.

IV. CONCLUSIONS

We have performed first-principles calculations for \(L_{10} \) compounds of Mn, Fe, Co with Rh, Pd, Pt, Ir. The obtained moments and exchange coupling constants are then used to discuss the spin structure of the intermetallics and to estimate the ordering temperature. As expected from band-filling arguments, there is a trend from ferromagnetism to antiferromagnetism when going from late 3\(d \) elements towards the middle of the series. However, for some compounds the energy differences are small and strain or doping may stabilize the FM phase.

ACKNOWLEDGMENTS

This research was supported by AFOSR, DOE, NSF MRSEC, by the Keck foundation, and by CMRA. The authors would like to acknowledge helpful discussions with Professor S. S. Jaswal and Professor R. F. Sabirianov. A.K.S. is thankful to MNIT, Jaipur for granting leave.