University of Nebraska - Lincoln ### DigitalCommons@University of Nebraska - Lincoln Ralph Skomski Publications Research Papers in Physics and Astronomy June 1998 ## Hydrogen in R₂Fe₁₇ intermetallic compounds: Structural, thermodynamic, and magnetic properties S. Wirth Trinity College, Dublin, Ireland Ralph Skomski University of Nebraska-Lincoln, rskomski2@unl.edu J.M.D. Coey Trinity College, Dublin, Ireland Follow this and additional works at: https://digitalcommons.unl.edu/physicsskomski Part of the Physics Commons Wirth, S.; Skomski, Ralph; and Coey, J.M.D., "Hydrogen in R2Fe₁₇ intermetallic compounds: Structural, thermodynamic, and magnetic properties" (1998). Ralph Skomski Publications. 26. https://digitalcommons.unl.edu/physicsskomski/26 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ralph Skomski Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. # Hydrogen in R_2 Fe₁₇ intermetallic compounds: Structural, thermodynamic, and magnetic properties S. Wirth,* R. Skomski,† and J. M. D. Coey Department of Physics, Trinity College, Dublin 2, Ireland (Received 14 June 1996; revised manuscript received 26 August 1996) The absorption and diffusion behavior of hydrogen in iron-rich rare-earth intermetallics of the type R_2 Fe $_{17}$ (R=Y, Sm, Gd) and the resulting changes of their magnetic properties are investigated. Intermediate hydrogen concentration indicate the solid-solution character of the hydrides. From equilibrium and nonequilibrium absorption experiments net reaction energies, bulk diffusion constants, and surface barrier energies for Sm $_2$ Fe $_{17}$ are determined and discussed. The low-temperature quantum diffusion is discussed for the hydride and the corresponding nitride. The interstitial modification changes drastically the crystalline electric field in the rare-earth intermetallics. For Sm $_2$ Fe $_{17}$ H $_4$ the crystalline electric-field parameter A_{20} =110 Ka $_0^{-2}$ is estimated from the anisotropy constants K_1 and K_2 . [S0163-1829(97)00310-X] #### I. INTRODUCTION It has long been known that certain metals are able to absorb large quantities of gases. Among them iron-rich intermetallic compounds with rare-earth elements (*R*) have attracted special interest. A famous example is hydrogen in LaNi₅, where loadings of up to LaNi₅H_{6.7} have been observed. However, the importance of interstitially modified rareearth intermetallics is not only due to their hydrogen storage properties, but also to the significant changes in magnetic properties. Hydrogen in Sm₂Fe₁₇ increases⁴ the Curie temperature by about 140 K. A further enhancement of Curie temperature can be obtained⁵ substituting some iron by cobalt (e.g., T_c =607 K for Nd₂Fe₁₅Co₂H_x, x~2.5). In the case of nitrogen in Sm₂Fe₁₇, the Curie temperature increase is about 360 K, and the nitride Sm₂Fe₁₇N_{3- δ} is a promising permanent magnet material.⁶ In the rhombohedral ${\rm Sm}_2{\rm Fe}_{17}$ structure there are two different interstitial sites which are likely to accommodate interstitial atoms: three large octahedral sites (9e) and six smaller tetrahedrals (18g). Hydrogen occupies both 9e and 18g sites, but the 18g occupancy has been reported to be restricted to two hydrogen atoms per formula units, probably in dumbbell configuration. This behavior reflects a repulsive short-range interaction between different hydrogen atoms and gives rise to the general rule, that the H distances not be shorter than 2.1~Å (cf., e.g., Ref. 9 and references therein). Molecular gases in metals typically dissociate at the metal surface and the atoms occupy octahedral and tetrahedral interstitial sites. A key question is whether the interstitially modified material represents a new compound or simply a gas-solid solution. Hydrides of 1–5 intermetallics usually show an $\alpha-\beta$ phase transition above room temperature at moderate pressure. Above the transition temperature $T_c(\alpha-\beta)$ the hydride represents a gas-solid solution with intermediate hydrogen content. Below $T_c(\alpha-\beta)$ phase segregation occurs and the hydrogen-rich (β) phase is separated from the hydrogen-poor (α) solid solution by a solubility gap. The $\alpha-\beta$ phase transition is evidence of an attractive interaction between interstitial atoms, which has its origin in the elastic deformation of the lattice around the interstitials. This interaction and hence $T_c(\alpha-\beta)$ increase with the concentration of interstitial sites in question and with the lattice expansion v_0 per interstitial atom, which is typically 2.9 Å³ for hydrogen in metals. 13 Beside Curie temperature and saturation magnetization, the magnetic anisotropy of the intermetallic compounds is also influenced by interstitial modification. $^{6,14-18}$ However, unlike nitrogen and carbon, the modification of the crystal electric field by hydrogen is rather small and no change from easy-plane to easy-axis anisotropy occurs for the $\mathrm{Sm}_2\mathrm{Fe}_{\,17}$ -hydrogen system. 4 Generally, hydrogen absorption is of special interest because of the higher solubility and mobility of the hydrogen atoms in metals compared with nitrogen and carbon. Equilibrium can be established readily. Here we investigate solubility and diffusion of hydrogen in 2-17 compounds and the influence of hydrogen on the crystalline electric field in R_2 Fe $_{17}$ compounds. Some structural and magnetic properties of the 2-17 hydrides have recently been discussed by Fruchart *et al.* ¹⁹ It should be noted that our results for solubility and diffusion may be applied to other iron-rich rare-earth intermetallics. #### II. HYDROGEN UPTAKE OF METALS #### A. Hydrogen absorption and desorption behavior A simple way to investigate the absorption and desorption of hydrogen is the observation of the gas pressure in a fixed volume at constant heating (cooling) rate. This method yields rapid results and can be used to get an illustrative idea of the absorption/desorption process. The experiments were carried out in a thermopiezic analyzer²⁰ (TPA) where the temperature dependence of the gas pressure is measured in a closed volume containing the material to be hydrogenated. Intermetallics can be prepared with various hydrogen contents by controlling the temperature T or pressure P in the sample FIG. 1. Lattice expansion for hydrogenated Y₂Fe₁₇H_x. space. Hydrogen contents are derived from the pressure change before and after the reaction, measured at ambient temperature. The R_2 Fe $_{17}$ alloys with R=Y, Sm, Gd were prepared by arc melting the 3N pure elements in an arc furnace, and annealing in vacuum at $1000\,^{\circ}$ C. Powdered material ≤ 40 μ m was used for the hydrogenation experiments. It was noted that R_2 Fe $_{17}$ compounds of the light rare earths in particular will absorb hydrogen if left in ambient air. This may be associated with a layer of water on the surface of the powder particles. The R_2 Fe ₁₇ intermetallics of Sm and Gd crystallize in the rhombohedral Th₂Zn₁₇ structure whereas that of Y is found to form the hexagonal Th₂Ni₁₇ structure. The lattice parameter for Y₂Fe₁₇H_x with x ranging from 0 to 6.5 are shown in Fig. 1. The volume increase of 2.7 Å^3 per hydrogen atom is in agreement with the value reported elsewhere 19 and confirms the complete absorption of the hydrogen onto interstitial sites. However, the maximum hydrogen uptake of $x \approx 3.4$ given in Ref. 19 is much less than that shown in Fig. 1 which can be ascribed to different conditions during hydrogenation [T and P, cf. Eq. (2)]. A typical result for the hydrogen uptake obtained for Y₂Fe₁₇ heated at a constant rate of 10 K min⁻¹ in the TPA is shown in Fig. 2. From the pressure decrease can be seen that the hydrogen absorption starts at 200 °C (stage I), which is a typical value in R_2 Fe₁₇ powder. With increasing temperature the occupation probability (concentration x) decreases as the hydrogen des- FIG. 2. Measured TPA trace of $\rm Y_2Fe_{17}$ for a heating rate 10 K min $^{-1}$. The absorption (I) and disproportionation (II) states are marked. FIG. 3. TPA trace and differential plot dp/dT of $\mathrm{Gd}_2\mathrm{Fe}_{17}\mathrm{H}_{2.0}$ heated in vacuum. The two outgasing modes corresponding to the different binding energies of tetrahedral (I_a) and octahedral (I_b) sites are visible. orbs. The second decrease in pressure (stage II) is due to the decomposition ($RH_{2-\epsilon} + \alpha$ -Fe) of the hydrogen-containing compound.⁴ In the case of Sm_2Fe_{17} or $Nd_2Fe_{14}B$, this decomposition is used for grain refinement in the HDDR process of magnet manufacture as developed by Takeshita.²² If R_2 Fe $_{17}$ H $_x$ is treated in vacuum the differential analysis clearly shows two outgassing modes (example Gd $_2$ Fe $_{17}$ H $_{2.0}$ in Fig. 3). This behavior may be attributed to assuming different binding energies for different interstitial sites, presumably the tetrahedral and octahedral sites. After partial degassing of the compound, the pressure trace measured in the TPA again exhibits two desorption features I $_a$ and I $_b$, indicating that an equilibrium population of hydrogen in weakly and strongly bound sites is established rapidly. Measurements at constant heating rate mix equilibrium and nonequilibrium properties, and it is difficult to determine parameters like diffusion constants or binding energies from constant heating rate experiments. By heating of R_2 Fe $_{17}$ D $_x$ in vacuum and following neutron-diffraction investigation, Isnard *et al.*⁷ have examined the behavior of concentration of the different octahedral and tetrahedral interstitials. #### **B.** Gas-solid solution The solubility of hydrogen in metals depends mainly on three factors: (i) the electronic interaction between interstitial atoms and metal lattice, (ii) the entropy difference between gaseous and interstitial hydrogen, and (iii) the interatomic interaction of the hydrogen atoms in the lattice. If the net reaction energy (absorption energy) U_0 is negative, a high hydrogen concentration in the metal is favorable. On the other hand, thermal activation tries to remove the atoms from the lattice again, and in the high-temperature limit $(k_B T \gg U_0)$ the solubility is very low, and it is mainly determined by the entropy of the solid solution. The interatomic interaction is mainly due to long-range elastic strain. For isolated grains it is attractive 12 and leads to phase segregation for $T < T_c$, where T_c is the critical temperature of the phase transition. T_c depends explicitly on the boundary conditions. As an example, in Ref. 23 a shape dependence of T_c in Nb samples was reported. It is possible to observe the miscibility gap below T_c by x-ray-diffraction line-shape analysis. 24,25 The x-ray-diffraction lines split into two separate lines, whereas above T_c single intermediate peaks indicate intermediate lattice parameters. Hydrogen in R_2 Fe $_{17}$ at room temperature does not yield any line splitting, so the R_2 Fe $_{17}$ H $_x$ system can be regarded as a more or less ideal solution. This corresponds to the behavior of the nitrided system Sm $_2$ Fe $_{17}$ N $_x$, where a gas-solid solution has been deduced from different investigations. The reason for this behavior (hydrogen-metal systems are often treated as nearly two-phase²) is the low mean concentration of interstitial atoms [maximum 6/(17+2)=0.31] compared to LaNi $_5$ [maximum 6/(5+1)=1.0]. This means that there is a lower elastic strain, and thus a lower critical temperature in the 2:17 system. In the framework of a continuum theory, T_c can be estimated 28,29 $$k_B T_c \approx K \left(\frac{\Delta V}{V}\right)^2 \frac{V}{N_i},$$ (1) where K is the bulk modulus, $\Delta V/V$ is the relative lattice expansion due to interstitial modification, and N_i is the number of interstitial sites in the volume V. In this consideration, changes in the electronic configuration of the host system by the hydrogen uptake has been neglected. Using the value K = 106 GPa which should be a good approximation for ironrich rare-earth intermetallics, 31 $T_c \approx 387$ K can be estimated. Although this is only a crude estimate it justifies considering the material as single phase in the following. In the ideal solution case the occupation numbers (interstitial concentrations) can be calculated by a lattice gas $model^{25,32}$ which yields the equilibrium hydrogen content x in R_2 Fe $_{17}$ H $_x$ $$x = \frac{3}{1 + \sqrt{P_0/P} \exp(U_{\text{oct}}/k_B T)} + \frac{2}{1 + \sqrt{P_0/P} \exp(U_{\text{tet}}/k_B T)}.$$ (2) $U_{\rm oct}$ and $U_{\rm tet}$ are the net reaction energies (solution energies) for octahedral and for tetrahedral occupation, respectively, and P_0 is a constant which describes the entropy loss during reaction. For low hydrogen concentration, i.e., at high temperature, Eq. (2) reduces to the well-known Sieverts law. With fixed $P_0 \approx 2 \times 10^6$ bar we obtain $$U_{\text{oct}} = -26 \ (\pm 4) \text{ kJ mole}^{-1},$$ $$U_{\text{tet}} = -18 \ (\pm 10) \text{ kJ mole}^{-1}$$ whereby it was assumed that for high temperatures the octahedral interstitials are occupied only. Note that the given value of $U_{\rm tet}$ is a crude estimation from the temperature dependence of hydrogen pressure during heat treatment of hydrogenated material under vacuum. #### III. HYDROGEN DIFFUSION The propagation of hydrogen in the bulk of a rare-earth intermetallic is diffusion controlled.³⁴ In general, the diffusion of hydrogen can be described in a mean-field approximation by³⁵ $$D_{\rm MF} = D \left[1 - 4c(1 - c) \frac{T_c}{T} \right], \tag{3}$$ FIG. 4. Arrhenius plot for the measured hydrides; the decrease of absorption by the surface barrier is clearly recognizable; the LaNi₅H₆ data were obtained by quasielastic neutron scattering (Ref. 34). where c is the fractional concentration of H atoms on the interstitial sites in the intermetallic compound $(0 \le c \le 1)$ and D_{MF} is the resulting diffusivity which is concentration dependent. The diffusion constant D is controlled by the dominant diffusion mechanism at the temperature considered and hence the diffusion mechanism itself is not influenced by the value of T_c . For temperatures $T > T_c$ the diffusivity D_{MF} is positive and spatial differences of c will be smoothed out with time. It should be noted that for the case of interest here, where $T > T_c$ and thermal activation is predominant the temperature dependence of $D_{\rm MF}$ is mainly given via D [exponential law Eq. (13)] and—according to a general rule the 1/T dependence [brackets in Eq. (3)] cannot be separated experimentally but leads to a small correction of the diffusion constant. Henceforth, we will not distinguish between D_{MF} and D. For $T < T_c$ and $\frac{1}{2}(1 - \sqrt{1 - T/T_c})$ $< c < \frac{1}{2}(1 + \sqrt{1 - T/T_c})$ the diffusivity D_{MF} is negative and a phase segregation occurs. The absorption rate of hydrogen at about $200 \,^{\circ}$ C is much lower than expected from the bulk diffusion constant of the similar LaNi $_5$ H $_6$ system³⁴ (Fig. 4). This difference can be explained by the experimental conditions. In the TPA, the hydrogen molecules have to dissociate and to penetrate the surface of the particles to be hydrogenated (in contrast to the neutron measurements of Ref. 34). Therefore a surface barrier energy U_s arises, as illustrated in Fig. 5. If the particle flux j_s through the surface barrier is smaller than the possible diffusion flux j_d under the surface layer the reaction rate is FIG. 5. Definition of the used energies. FIG. 6. Particle size distribution (P_R) and corresponding volume (P_V) and surface area distribution (P_{SF}) of the powder used for investigation of the surface barrier. surface controlled. In the opposite case, the surface barrier can be neglected and the absorption of the hydrogen atoms in the bulk material is controlled by the bulk diffusion constant. The surface and bulk controlled diffusion regimes may be distinguished in experiments where the gas pressure dependence on time is measured at fixed temperature. #### A. Surface controlled reaction To realize this mode, a high diffusion flux must be assured. Considering the diffusion equation for spherical grains (site-blocking effects do not yield any concentration dependence of the diffusion constant³⁵) $$\frac{\partial c}{\partial t} = D \left(\frac{\partial^2 c}{\partial r^2} + \frac{2}{r} \frac{\partial c}{\partial r} \right) \tag{4}$$ with the boundary condition $$\left. \frac{\partial c}{\partial r} \right|_{R} = \frac{j_{s}}{D},$$ (5) a solution in the small j_s limit is given by $$c(r,t) = \frac{j_s}{D} \left(\frac{r^2}{2R} + \frac{3Dt}{R} - \frac{3R}{10} \right).$$ (6) This solution is valid for the initial stage of hydrogenation only. In order to obtain a reasonable surface flux rate the surface-volume ratio should be chosen high. Here grains with a mean particle diameter of about 40 μ m have been used. The particle size distribution as obtained from optical micrographs and the corresponding particle surface area and volume distributions are shown in Fig. 6. The flux through the surface barrier $\boldsymbol{U}_{\boldsymbol{s}}$ can be described by $$j_s = j_0 \exp(-U_s/k_B T), \tag{7}$$ where j_0 is the flux of hydrogen atoms arriving the grain surface. The penetration of hydrogen in the grains results in a decreasing of hydrogen pressure registered by the TPA. Considering the molecular hydrogen gas as an ideal one, the number of hydrogen atoms is $N=2 pV/k_BT$, where p, V, and T are pressure, volume, and temperature in the TPA, respectively. Because of $Aj_s = -\partial N/\partial t^{\alpha} - dp/dt$ (A is the total surface area of grains) we obtain $$\Delta p \propto -\Delta t \exp(-U_{\rm s}/k_B T).$$ (8) FIG. 7. Time dependence of pressure hydrogenating $\mathrm{Sm}_2\mathrm{Fe}_{17}$ at 200 °C in a surface controlled reaction. The linear decrease of pressure corresponds to Eq. (8). A typical result for $T=200\,^{\circ}\text{C}$ (corresponding to a temperature in stage I of Fig. 2) is shown in Fig. 7. During heating, after a few minutes we find the expected linear decrease of pressure as a function of time. After 15 min the diffusion becomes slower and the linear variation eventually breaks down. For determination of U_s , Eq. (8) can be written as $$\ln\left(\frac{\Delta p}{m\Delta t}\right) = C - \frac{U_s}{k_B T},$$ (9) where C is an unspecified constant and the surface area of the powdered material has been assumed to be proportional to its mass. Corresponding results in the temperature range 450-520 K are shown in Fig. 8, whence $$U_s = 81(\pm 15) \text{ kJ mole}^{-1}$$. In comparison, for the Nd(Fe $_{11}$ Ti)-hydrogen system a surface barrier $U_s = 59(\pm 15) \text{kJ mole}^{-1}$ has been found. The surface barrier is not an intrinsic property of R_2 Fe $_{17}$. It reflects the extent of contamination of the intermetallic surface. Such contamination of the particle surface could be due to H_2 O or OH, as discussed in Ref. 21. #### **B.** Bulk diffusion In the case of spherical grains the diffusion Eq. (4) can be solved³⁶ (Fig. 9), FIG. 8. Temperature dependence of normalized pressure decrease per time corresponding to Eq. (9) in the case of surface controlled absorption of hydrogen by $\mathrm{Sm}_2\mathrm{Fe}_{17}$. FIG. 9. Calculated concentration profile of diffusion controlled absorption using $\tau = Dt/R^2$. $$c(r,t) = c_{\infty} \left(1 + \frac{2R}{\pi r} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin \frac{n\pi r}{R} e^{-n^2 \pi^2 D t / R^2} \right), \tag{10}$$ where c_{∞} is the hydrogen concentration for $t \rightarrow \infty$. Integration over the grain volume yields $$\frac{c(t)}{c_{\infty}} = 1 - \frac{6}{\pi} \sum_{m=1}^{\infty} \frac{1}{m^2} e^{-m^2 \pi^2 D t / R^2}.$$ (11) The decrease of TPA pressure corresponds to an increase of concentration of hydrogen atoms in the bulk material, $c(t) \propto p_0 - p(t)$ and $c_\infty \propto p_0 - p_\infty$, where p_0 and p_∞ represent the pressures for times t=0 and $t=\infty$, respectively. Due to the high mobility of hydrogen only the first term of the sum in Eq. (11) needs to be considered and we obtain $$\frac{p(t) - p_{\infty}}{p_0 - p_{\infty}} = \frac{\Delta p(t)}{\Delta p_0} = \frac{6}{\pi^2} e^{-\pi^2 D t / R^2}.$$ (12) The diffusion constant can be determined from a plot $\ln(\Delta p(t)/\Delta p_0)$ as a function of time, where a straight line is expected. The temperature dependence of the diffusion constant is given by $$D = D_0 e^{-U_a/k_B T}. (13)$$ The activation energy U_a as well as D_0 are obtained from the Arrhenius plot Fig. 4 resulting in $U_a = 31(\pm 10)$ kJ mol $^{-1}$ and $D_0 = 4.4 \times 10^{-7(\pm 2)}$ m 2 s $^{-1}$. The high error of D_0 is caused by the relatively small temperature region in which the diffusion experiments can be carried out. The agreement of the results of $\mathrm{Sm}_2\mathrm{Fe}_{17}\mathrm{H}_x$ with given data 34 for LaNi $_5\mathrm{H}_6$ can be explained by the similarity of the lattice structures. The diffusion values for $\mathrm{Sm}_2\mathrm{Fe}_{17}$ are substantially higher than in the tetragonal Nd(Fe $_{11}\mathrm{Ti}$) compound $[U_a = 45(\pm 12) \text{ kJ mol}^{-1}, D_0 = 5.8 \times 10^{-7(\pm 2)} \text{ m}^2 \text{ s}^{-1}]$. A possible reason for this could be the lack of tetrahedral interstitial sites in the ThMn $_{12}$ structure (where only one octahedral 2b site per formula unit can be occupied by H). Hence the preferred diffusion paths of the 1:5 and 2:17 compounds are unavailable. FIG. 10. Measured (markers, only every second data point is included) and calculated (lines) demagnetization curves of a $\rm Sm_2Fe_{17}H_4$ sample with well-aligned grain c axes. The sample texture axis has been orientated parallel and perpendicular to the magnetic field, respectively. #### IV. MAGNETIC PROPERTIES OF Sm₂Fe₁₇H₄ For magnetic measurements, a sample was prepared from $\mathrm{Sm}_2\mathrm{Fe}_{17}$ powder (grain size $\leq 25~\mu\mathrm{m}$) which was hydrided in the TPA for 3 h at 520 K. Under these conditions the hydrogen concentration should be nearly in equilibrium. From the pressure decrease inside the TPA the hydrogen content in $\mathrm{Sm}_2\mathrm{Fe}_{17}\mathrm{H}_x$ has been determined as x=4.0. A lattice expansion of $\Delta a/a=1.3\%$, $\Delta c/c=0.64\%$ and hence $\Delta V/V=3.4\%$ after hydrogenation (2.3 Å³/H) has been observed in agreement with data given in Ref. 37. A preferred alignment of the c axes of the particles was achieved by applying a rotating magnetic field of 0.6 T while the powder was set in epoxy resin. Demagnetization curves of the Sm₂Fe₁₇H₄ sample measured with the sample texture axis parallel and perpendicular to the applied field are shown in Fig. 10. From a fit of the demagnetization curves¹⁸ the anisotropy constants and the spontaneous polarization of the material have been determined, $K_1 = -4.2$ MJ m⁻³, $K_2 = 0.6$ MJ m⁻³, and $J_s = 1.34$ T, respectively, whereby the K_i values correspond to the expected anisotropy of easy plane. Also, a texture parameter of the sample, $\sigma_g = 12.5^{\circ}$, has been determined [a Gaussian-like texture function, $f(\alpha) \propto \exp(-\alpha^2/2\sigma_o^2)$, has been assumed where α is the orientation of the grains c axes with respect to the sample texture axis] confirming that a good crystallite alignment is achieved by the rotating field. In the fit procedure, reversible rotational processes of the magnetization of the differently oriented individual grains were taken into account and hence, the procedure is suitable for investigation of polycrystalline samples. The value obtained for J_s is in agreement with those given elsewhere, 8,37 but the value of K_1 is significantly higher than that of Ref. 8. A maximum residual deviation between measured and fitted polarization values of less than 4 mT confirms the fit results. Note that polarization values measured at low fields are influenced by stray fields inside the sample and therefore, these were not taken into account in the fit procedure. Starting from the anisotropy constants the parameters of the crystalline electric field (CEF) acting on the aspherical 4f electron shell of the rare-earth can be estimated. The CEF is mainly caused by the interstitial H atoms on the TABLE I. Saturation polarization J_s , anisotropy constants K_1 and K_2 and calculated CEF parameter A_{20} at room temperature of $\mathrm{Sm}_2\mathrm{Fe}_{17}\mathrm{H}_4$ compared with the parent compound and the nitride and carbide (Ref. 38). | | J_s | <i>K</i> ₁ | K_2 | A ₂₀ | |---------------------------------------------------|-------|-----------------------|-------|-----------------| | | (T) | $(MJ m^{-3})$ | | (Ka_0^{-2}) | | Sm ₂ Fe ₁₇ | 1.12 | -2.1 | 0.4 | 35 | | $\mathrm{Sm}_{2}\mathrm{Fe}_{17}\mathrm{H}_{4}$ | 1.34 | -4.2 | 0.6 | 110 | | $\mathrm{Sm}_{2}\mathrm{Fe}_{17}\mathrm{C}_{2.6}$ | 1.45 | 7.5 | 0.8 | -310 | | $\mathrm{Sm}_{2}\mathrm{Fe}_{17}\mathrm{N}_{3}$ | 1.54 | 9.1 | 1.6 | -400 | octahedral sites surrounding the rare earth in a plane perpendicular to the crystallographic c axis. This anisotropy is transferred to the 3d electron system and hence to the magnetization via strong 4f-5d R-Fe coupling and 5d-3d hybridization. The results are $A_{20}{\approx}110~{\rm Ka_0}^{-2}$ and $A_{40}{\approx}42~{\rm Ka_0}^{-4}$. Here, the molecular field coefficient $n_{\rm SmFe}{=}215$ has been estimated from the Curie temperatures of ${\rm Sm}_2{\rm Fe}_{17}{\rm H}_x$ (554 K) and ${\rm Y}_2{\rm Fe}_{17}{\rm H}_x$ (516 K) as described elsewhere. Note that the value obtained for $n_{\rm SmFe}$ depends sensitively on the Curie temperatures, e.g., using given data would result in $n_{\rm SmFe}{=}265$. In Table I, the magnetic properties of $Sm_2Fe_{17}H_4$ at room temperature are compared with those³⁸ of $Sm_2Fe_{17}N_3$, $Sm_2Fe_{17}C_{2.6}$ and the parent Sm_2Fe_{17} compound. Note that the increase of J_s for the interstitially modified compounds is not only caused by the changed magnetic moment of the iron atoms⁴¹ but mainly by the increased exchange coupling giving rise to the enhanced Curie temperature. Starting from the parent compound, the A_{20} is changed in opposite directions by interstitial modification with H or N/C, respectively. According to Coehoorn and co-workers^{42,43} we expect opposite trends in the change of the rare-earth valence electron density in the plane containing R and interstitial atoms for H and N/C. Considering only relative electronegativity as in the screened charge model⁴⁴ our result shows the "electropositive" character of hydrogen whereas N and C are strongly electronegative. #### V. DISCUSSION #### A. Mobility Hydrogen in metals generally shows a high mobility because its small atomic radius leads to comparatively small activation energies. The time τ which is necessary to overcome the potential barrier between two neighboring interstices can be estimated using $$\tau = \tau_0 \exp(-U_a/k_B T), \tag{14}$$ where τ_0^{-1} is the attempt frequency ($\tau \approx 10^{-13}$ s). At room temperature this yields times τ of about 1000 years in the case of nitrogen, but only $\tau \approx 10$ ms in the case of hydrogen. Whenever the measuring time is longer than about 10 ms, the experiment gives the impression that hydrogen is mobile at room temperature. This statement can be generalized to other metals, but often the hydrogen absorption is limited by the low equilibrium concentration, and the high diffusivity is less obvious. #### B. Diffusion mechanism, tunneling Below some crossover temperature T_0 , the leading diffusion mechanism is incoherent quantum tunneling. ^{45–47} For hydrogen, T_0 is of order 200 K, whereas the values for deuterium and tritium are much lower (isotope effect⁴⁶). Following this rule, we should expect an even lower T_0 for other gases, such as nitrogen. This conclusion, however, is not quite correct. To estimate T_0 we use Eq. (14) and the semi-empirical relation³⁶ $$U_a = c_a E Z^{2/3} a_0^3, (15)$$ where $c_a \approx 3$ is a numerical factor, E is the elastic modulus, and Z is the atomic number of the diffusing atom. The exponent 2/3 reflects the R^2 dependence of the ion energy, where $R \sim Z^{1/3}$ is the size of the diffusing atom. To describe the quantum tunneling we use the following Gamov factor: $$\tau' = \tau_0 \exp\left(-\sqrt{\frac{8 \, m U_a}{\hbar}}d\right),\tag{16}$$ where $d \sim 1$ Å is the thickness of the energy barrier. The tunneling time τ' is temperature independent, so at low temperatures, where thermal activation can be neglected, tunneling becomes the leading mechanism. Putting $\tau' = \tau$ we obtain the critical temperature $$T_0 = \sqrt{\frac{\hbar^2 c_a E Z^{2/3} a_0^3}{8 k_B^2 m d^2}},$$ (17) which is T_0 =170 K for hydrogen in Sm₂Fe₁₇, and T_0 =90 K for nitrogen in Sm₂Fe₁₇. Note that the nitrogen value is about two times higher than expected from the simple $1/\sqrt{m}$ isotope law.⁴⁶ Assuming $m\sim Z$ in Eq. (17) the surprising dependence $T_0\sim Z^{-1/6}$ is obtained. This leads us to believe that below 77 K all interstitial atoms in question diffuse preferentially via quantum tunneling. Unfortunately, low-temperature measurements of D(N) are very difficult and no experimental values $T_0(N)$ have been given thus far. #### C. Structure X-ray investigations of $\mathrm{Sm}_2\mathrm{Fe}_{17}\mathrm{H}_x$ prepared under equilibrium conditions did not show any evidence for phase segregation at above room temperature. However, because of the smaller lattice expansion (Fig. 1) such investigations are not as conclusive as in the case of $\mathrm{Sm}_2\mathrm{Fe}_{17}\mathrm{N}_x$.²⁵ As already described, equilibrium conditions are required for measurements of U_0 , U_a , and D_0 . For measurements at constant heating rate, the deviations from equilibrium can be seen from Fig. 2 (Y₂Fe₁₇H_x sample). For temperatures below about 200 °C the hydrogen cannot be absorbed by the sample because of the surface barrier and the low diffusion constant. In a temperature region of about 270–340 °C the hydrogen cannot desorb as fast as the temperature increases (diffusion length \sim 30 μ m after 1 min at 270 °C, mean grain size 40 μ m). Only at higher temperatures is the equilibrium established. The different sites (tetrahedral and octahedral) complicate the determination of $U_{\rm oct}$ and $U_{\rm tet}$ in Eq. (2). However, a quantitative discussion is very difficult due to the possibility of gas absorption and desorption at the grain surface. #### D. Magnetic properties The opposite trend in A_{20} of the hydrided material compared to the nitride and carbide shows that different effects are involved in interstitial modification: changes of the spatial distances of the atoms/ions and changes of the electric charge distribution by the interstitial atoms and their hybridization with neighboring atoms (the hybridization of interstitially modified $R_2 {\rm Fe}_{17}$ is discussed, e.g., from *ab initio* calculations ^{43,48}). Since the host lattice always expands with interstitial modification the hybridization effect should be opposite in the hydrides compared with the N and C modification. A similar result was reported by Mössbauer spectroscopy of ${\rm Gd}_2 {\rm Fe}_{17} {\rm H}_x$. ⁴⁹ #### VI. CONCLUSIONS Iron-rich rare-earth intermetallics such as Sm₂Fe₁₇ can absorb large quantities of hydrogen. Intermediate hydrogen concentration indicate a more or less ideal solid solution with net reaction energies of $26(\pm 4)$ kJ mole $^{-1}$ for the octahedral sites in Sm $_2$ Fe $_{17}$. The gas-solid reaction rate is determined by bulk diffusion (above about $350\,^{\circ}$ C) whereas at lower temperatures the particle flux is limited by surface energy barriers of $81(\pm 15)$ kJ mole $^{-1}$. The bulk diffusion constant of $4.4\times 10^{-7(\pm 2)}$ m 2 s $^{-1}$ and activation energy of $31(\pm 10)$ kJ mole $^{-1}$ are typical for intermetallic compounds. An estimation of the transition temperature between thermally activated diffusion and quantum tunneling yields that quantum tunneling dominates below about 170 K for hydrogen and 90 K for nitrogen. It would be interesting to confirm this prediction experimentally. The effect of hydrogen interstitial modification of $\rm Sm_2Fe_{17}$ on the magnetocrystalline anisotropy is shown to be opposite to N and C. The hydrogen does not provide useful, easy-axis anisotropy in $\rm Sm_2Fe_{17}$, but there is a possibility that it could be used for rare earths such as Nd or Dy which have a negative Stevens coefficient α_I . #### ACKNOWLEDGMENTS The authors are grateful to Dr. Hong Sun for help in experimental details. This work formed part of the CEAM program of the EC. S.W. has been financially supported by CEAM–HCM. ^{*}Present address: IFW Dresden, P.O. 270016, 01171 Dresden, Germany. [†]Present address: MPI for Microstructural Physics, Halle, Germany. ¹T. Graham, Philos. Trans. R. Soc. **156**, 399 (1866). ²K. H. J. Buschow, Rep. Prog. Phys. **54**, 1123 (1991). ³H. H. van Mal, K. H. J. Buschow, and A. R. Miedema, J. Less-Common Met. **42**, 65 (1975). ⁴X.-Z. Wang, K. Donnelly, J. M. D. Coey, B. Chevalier, J. Etourneau, and T. Berlureau, J. Mater. Sci. 23, 329 (1988). ⁵Hu Bo-ping and J. M. D. Coey, J. Less-Common Met. **142**, 295 (1988). ⁶J. M. D. Coey and Hong Sun, J. Magn. Magn. Mater. **87**, L251 (1990). O. Isnard, J. L. Soubeyroux, S. Miraglia, D. Fruchart, L. M. Garcia, and J. Bartolomé, Physica B 180–181, 629 (1992). ⁸O. Isnard, S. Miraglia, M. Guillot, D. Fruchart, and K. H. J. Buschow, J. Appl. Phys. **76**, 6035 (1994). ⁹ K. Yvon and P. Fischer, in *Hydrogen in Intermetallic Compounds I*, edited by L. Schlapbach (Springer-Verlag, Berlin, 1988), p. 87. ¹⁰J. D. Fast, *Gases in Metals* (Macmillan, London, 1976). ¹¹F. Spada and H. Oesterreicher, J. Less-Common Met. **107**, 301 (1985) ¹²H. Wagner and H. Horner, Adv. Phys. **23**, 587 (1974). ¹³H. Peisl, in *Hydrogen in Metals I*, edited by G. Alefeld and J. Völkl (Springer, Berlin, 1978), p. 53. ¹⁴M. Katter, J. Wecker, L. Schultz, and R. Grössinger, J. Magn. Magn. Mater. **92**, L14 (1990). ¹⁵D. Fruchart and S. Miraglia, J. Appl. Phys. **68**, 5578 (1991). ¹⁶ Ying-chang Yang, Xiao-dong Zhang, Lin-shu Kong, Qi Pan, and Sen-li Ge, Appl. Phys. Lett. 58, 2042 (1991). ¹⁷X. C. Kou, R. Grössinger, M. Katter, J. Wecker, L. Schultz, T. H. Jacobs, and K. H. J. Buschow, J. Appl. Phys. **70**, 2272 (1991). ¹⁸K.-H. Müller, D. Eckert, P. A. P. Wendhausen, A. Handstein, S. Wirth, and M. Wolf, IEEE Trans. Magn. 30, 586 (1994). ¹⁹D. Fruchart, O. Isnard, S. Miraglia, and J.-L. Soubeyroux, J. Alloys Compd. **231**, 188 (1995). ²⁰D. H. Ryan and J. M. D. Coey, J. Phys. E **19**, 693 (1986). ²¹C. Murray, N. Dempsey, and J. M. D. Coey, J. Alloys Compd. 215, 345 (1994). ²²T. Takeshita, J. Alloys Compd. **193**, 231 (1993). ²³ H. Zabel and H. Peisl, Phys. Rev. Lett. **42**, 511 (1979). ²⁴H. Zabel and H. Peisl, J. Phys. F **9** 1461 (1979). ²⁵ J. M. D. Coey, R. Skomski, and S. Wirth, IEEE Trans. Magn. 28, 2332 (1992). ²⁶M. Katter, J. Wecker, C. Kurth, L. Schultz, and R. Grössinger, J. Magn. Magn. Mater. 117, 419 (1992). ²⁷C. N. Christodoulou and T. Takeshita, J. Alloys Compd. **202**, 173 (1993). ²⁸J. D. Eshelby, Acta Metall. **3**, 487 (1955). ²⁹ H. Wagner, in *Hydrogen in Metals I*, edited by G. Alefeld and J. Völkl (Springer, Berlin, 1978), p. 5. ³⁰M. Brouha and K. H. J. Buschow, J. Appl. Phys. **44**, 1813 (1973). ³¹ J. P. Gavigan, D. Givord, H.-S. Li, and J. Voiron, Physica B 149, 349 (1988). ³²R. Skomski, S. Brennan, and S. Wirth, in *Interstitial Intermetallic Alloys*, edited by F. Grandjean, G. J. Long, and K. H. J. Buschow (Kluwer, Dortrecht, 1995), p. 371. ³³Y. Fukai, *The Metal-Hydrogen System* (Springer-Verlag, Berlin, 1993). ³⁴R. Hempelmann, J. Less-Common Met. **101**, 69 (1984). ³⁵R. Kutner, K. Binder, and K. W. Kehr, Phys. Rev. B **26**, 2967 (1982). ³⁶B. S. Bokštein, *Diffusion in Metals* (Russian) (Metallurgija, Moscow, 1978). - ³⁷C. N. Christodoulou and T. Takeshita, J. Alloys Compd. **194**, 113 (1993). - ³⁸S. Wirth, M. Wolf, K.-H. Müller, R. Skomski, S. Brennan, and J. M. D. Coey, IEEE Trans. Magn. 32, 4746 (1996). - ³⁹E. Belorizky, M. A. Fremy, J. P. Gavigan, D. Givord, and H. S. Li, J. Appl. Phys. **67**, 3971 (1987). - ⁴⁰O. Isnard, S. Miraglia, J. L. Soubeyroux, D. Fruchart, and P. l'Héritier, J. Magn. Magn. Mater. 137, 151 (1994). - ⁴¹G. Wiesinger and G. Hilscher, in *Handbook of Magnetic Materials VI*, edited by K. H. J. Buschow (Elsevier, Amsterdam, 1991), p. 511. - ⁴²R. Coehoorn, in *Supermagnets, Hard Magnetic Materials*, edited - by G. J. Long and F. Grandjean (Kluwer, Dortrecht, 1991), p. 133. - ⁴³R. Coehoorn and G. H. O. Daalderop, J. Magn. Magn. Mater. 104-107, 1081 (1992). - ⁴⁴R. Skomski, Philos. Mag. B **70**, 175 (1994). - ⁴⁵ K. W. Kehr, in *Hydrogen in Metals I*, edited by G. Alefeld and J. Völkl (Springer, Berlin, 1978), p. 197. - ⁴⁶L. L. Dhawan and S. Prakash, J. Phys. F **14**, 2329 (1984). - ⁴⁷Zh. Qi, J. Völkl, R. Lässer, and H. Wenzel, J. Phys. F **13**, 2053 (1983). - ⁴⁸T. Beuerle and M. Fähnle, Phys. Status Solidi B **174**, 257 (1992). - ⁴⁹O. Isnard, P. Vulliet, A. Blaise, J. P. Sanchez, S. Miraglia, and D. Fruchart, J. Magn. Magn. Mater. **131**, 83 (1994).