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ABSTRACT

Unit test cases are focused and efficient. System testsfantied

at exercising complex usage patterb#fferential unit test{DUT)
are a hybrid of unit and system tests. They are generatedbiynga
the system components, while executing a system test ¢eént
fluence the behavior of the target unit, and then re-assagithibse
components so that the unit can be exercised as it was by $he sy
tem test. We conjecture that DUTSs retain some of the advasatag
of unit tests, can be automatically and inexpensively gaeer and
have the potential for revealing faults related to intcsfistem ex-
ecutions. In this paper we present a framework for autormidtic
carving and replaying DUTs that accounts for a wide-varigty
strategies, we implement an instance of the framework véth s
eral techniques to mitigate test cost and enhance fleyikalitd we
empirically assess the efficacy of carving and replaying BUT

1. INTRODUCTION

Software engineers develop unit test cases to validateichdil
program units (e.g., methods, classes, packages) be&yata in-
tegrated into the whole system. By focusing on an isolatét un
unit tests are not constrained by other parts of the systeex-in
ercising the target unit. This smaller scope for testingaligure-
sults in significantly more efficient test execution and fadlation
relative to whole system testing and debugging [1, 18]. kst
cases are also used as a component of several popular deeglop
methods, such as extreme programming (XP) [2], test dries®le
opment (TDD) practices [3], continuous testing [35], anficesfnt
test prioritization and selection techniques [32].

Developing effective suites of unit test cases presentsyru of
challenges. Specifications of unit behavior are usuallyrimél and
are often incomplete or ambiguous, leading to the developoie
overly general or incorrect unit tests. Furthermore, symdtiica-
tions may evolve independently of implementations reqgitad-
ditional maintenance of unit tests even if implementaticersain
unchanged. Testers may find it difficult to imagine sets of impiut
values that exercise the full-range of unit behavior andette fail
to exercise the different ways in which the unit will be use@aart

of a system. An alternative approach to unit test developntieat
does not rely on specifications, is based on the analysis pita u
implementation. Testers developing unit tests in this way rio-
cus, for example, on achieving a coverage-adequacy erivéthe
target unit's code. Such tests, however, are inherentlgeqiible
to errors of omission with respect to specified unit behasiod
may thereby miss certain faults. Finally, unit testing liesgithe
development of test harnesses or the setup of a testingvirarke
(e.g., junit [17]) to make the units executable in isolation

System tests are usually developed based on documentsr¢hat a
commonly available for most software systems that desdtibe
system’s functionality from the user’s perspective, foamyple, re-
quirement documents and user’'s manuals. This makes sysstsn t
appropriate for determining the readiness of a system fease,
or to grant or refuse acceptance by customers. Additionadfits
accrue from testing system-level behaviors directly. tFegstem
tests can be developed without an intimate knowledge ofyke s
tem internals, which reduces the level of expertise reduisetest
developers and which makes tests less-sensitive to impl@ien-
level changes that are behavior preserving. Second, sys&m
may expose faults that unit tests do not, for example, fatks
emerge only when multiple units are integrated and jointiljzed.
Finally, since they involve executing the entire systemesi har-
nesses need be constructed.

While system tests are an essential component of all pedstidt-
ware validation methods, they do have several disadvasitadey
can be expensive to execute; for large systems days or waedts,
considerable human effort may be needed for running a tigbrou
suite of system tests [23]. In addition, even very thorouggtesn
testing may fail to exercise the full-range of behavior iempented
by system’s units; thus, system testing cannot be vieweah &s-a
fective replacement for unit testing. Finally, fault istden and re-
pair during system testing can be significantly more expertsian
during unit testing.

The preceding characterization of unit and system testsoudh
not comprehensive, illustrates that system and unit tests bom-
plementary strengths and that they offer a rich set of triislein
this paper, we present a general framework for carving apldye
ing of what we calldifferential unit test§DUT) which aim at ex-
ploiting those tradeoffs. We termed thelifferential because their
primary function is detecting differences between mudtigrsions
of a unit’s implementation. DUTs are meant to be focused &ird e
cient, like traditional unit tests, yet they are automadlyogenerated
along with a custom test-harness, making them inexpenside-t
velop and easy to evolve. In addition, since they indirectipture



the notion of correctness encoded in the system tests froichwh
they are carved, they have the potential for revealing $aelated
to complex patterns of unit usage.

In our approach, DUTSs are created from system tests by ¢agtur
components of the exercised system that influence the whaivi
the targeted unit, and that reflect the results of executieguhit;

we term thiscarving Those components are automatically assem-

bled into a test harness that establishes the pre-state ahththat
was encountered during system test execution. From that ste
unit is replayedand the resulting state is queried to determine if
there are differences with the recorded unit post-state.

Ideally DUTs will (a) retain the fault detection effectivess of sys-
tem tests on the target unit, (b) only report small numberdifof
ferences that are not indicative of differing system testlts, (c)
be executed faster than system tests, and (d) be applicatussa
multiple system versions. We empirically investigate DUaNne
ing and replay techniques with respect to these criteriautyin a
controlled study within the context of regression testirttgere we
compare the performance of system tests and carved uisit Tés
results indicate that carved test cases can be as effestsygstem
test cases in terms of fault detection, but much more efficien

When compared again existing work aimed at providing autecha
extraction of powerful unit tests from system executio§, [28,
33], the contributions of this paper ard) & framework for auto-
matically carving and replaying DUTs that accounts for aewid
variety of implementation strategies with different trafig; (i) a
new state-based strategy for carving and replay at a metwed |
that offers a range of costs, flexibility, and scalabilitpdd(ii ) an
evaluation criteria and an empirical assessment of theiesffiy
and effectiveness of carving and replay of DUTs on multigge v
sions of a Java application. We believe these contributiaps
solid and general foundation for further study of carvingl ae-
play of DUTs and we outline several directions for future kvor
Section 6. In the next Section, we present our frameworkdov-c
ing and replay testing. Section 3 details the implementatioone
of those instantiations. Section 4 describes our study eswlts.

2. A FRAMEWORK FOR TEST CARVING
AND REPLAY

Java programs can have millions of allocated heap instdidés
and hundreds of thousands of live instances at any time. éEons
quently, carving theaw state of real programs is impractical. We
believe that cost-effective carving and replay (CR) bassstirtg
will require the application of multiple strategies tisaiectinfor-
mation in raw program states and use that information toetead
measure of effectiveness to achieve practical cost. Siestenight
include, for example, carving a single representative ohesmuiv-
alence class of program states or pruning information fraereed
state that a method under test is guaranteed to not be deytenmde
The space of possible strategies is vast and we believe gjeateaal
framework for CR testing will aid in exploring cost-effegness
trade-offs possible in the space of CR testing techniques.

Regardless of how one develops, or generates, a unit tesg, e
four essential steps: (1) identify a program state from wiicini-

tiate testing, (2) establish that program state, (3) exethg unit
from that state, and (4) judge the resulting state as to iecb

ness. In the rest of this Section, we define a general franketivat
allows different strategies to be applied in each of thesgsst

Given st { input/s, expected output/s }

e, rou {12l
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Carve ct |

g

mevolves:m+A=m’
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Figure 1: Carving and replay process.

2.1 Program States and Program Executions
For the purposes of explaining our framework, we consideva J
program to be a kind of state machine. At any point during the
execution of a program tharogram stateS, can be defined, con-
ceptually, as all of the values in memory. As needed, we \efilree
notation for accessing specific portions of a state, for gtanhe
parameters in the current active frame of the call stack.

A program executiorcan be formalized either as a sequence of
program states or as a sequence of program actions thatstatese
changes. A sequence of program states is written-asso, s1, . . .
wheres; € S andsy is the initial program state as defined by Java.
A states;; is reached frons; by executing a singlaction(e.g.,
bytecode). A sequence of program actions is writters asWe
denote the final state of an action sequen@®.

2.2 Basic Carving and Replaying

Figure 1 illustrates the CR process. Given a system testsase
carving a unit test caset,,, for target unitmn during the exe-
cution of st, consists of capturing,.., the program state im-
mediately before the first instruction of an activation ofthoal
m, and spest, the program state immediately after the final in-
struction of the activation ofn has executed. The captured pair
of states(spre, Spost), defines adifferential unit test casdor a
method,ct,,,. States in this pair can be defined by capturing the
appropriate states if, or through the cumulative effects of a se-
quence of program actions, by capturin@) at the appropriate
points inag. A CR testing approach is said to Istate-basedf

it records pairs(spre, spost) and action-basedif it records pairs
(Tpre, Spost) Wherespre = s(Tpre).

In practice, it is common for a methodh, to undergo some modifi-
cation, e.g., ton/, over the program lifetime. To efficiently validate
the effects of a modification, weplay ct.,, onm’. Replaying a
differential unit test for a methoeh’ requires the ability to either
load states,,. into memory or execute,.. depending on how the
state was carved. From this state, executiomobfs initiated and
it continues until it reaches the point corresponding todhaesed
spost. At that point, the current execution statg,;, is compared
to spost- If the resulting states are the same, we can attest that the
change did not affect the behavior of the target unit. Howefe
the change altered the behaviorraf then further processing will
be required to determine whether the alteration matchedehel-
oper’s expectations.

There are multiple techniques for diagnosing the root cafiske-



tected differences. For example, a difference could trigige ex-
ecution of system testt,, to determine whether a difference man-
ifests at higher levels of abstractions, the resultstgf, could be
compared with the results of manually developed unit testsf,

or intermediate states within the executiomefandm’ (e.g., after
every statement) could be compared to identify the eapieistt at
which states differ. We discuss support for some of thesgnadist
tics in Section 2.4 and leave the others for future work.

Several fundamental challenges must be addressed in oncheike
CR cost-effective. First, the proposed basic carving mooeis at
best inefficient and likely impractical. Inefficient becawsmethod
may only depend on a small portion of the program state, ttaus s
ing the complete state is wasted effort. Furthermore, tvgtirdit
complete program states may be identical from the point @fvvi
of a given method, thus carving complete states would yield r
dundant unit tests. Impractical because storing the camglate
of a program may be prohibitively expensive in terms of timd a
space. Second, changesrtomay renderct,,, unexecutable in

m'. Reducing the cost of CR testing is important, but we must
produce DUTs that are robust to changes so that they can be exe

cuted across a series of system modifications in order recbge
overhead of carving. Finally, the use of complete posestti de-
tect behavioral differences is not only inefficient but mégoabe

too sensitive to behavior differences caused by reasoms tthn

faults (e.g., fault fixes, improvements, internal refaictgy leading

to the generation of brittle tests. The following sectiodsir@ss
these challenges.

2.3 Improving CR with Projections

2.3.2 Action-based Projections and Transformations
Projections on sequences of program actiohs, ¢ — &. can

be used to distill the portion of a program run that affeceshe-
state of a unit method. Unfortunately, a purely projecti@sed
approach to state-capture will not work for all Java prografor
example, a program that calls native methods does not, iergkn
have access to the native methods instructions. To accoatmod
this, we can allow fotransformatiorof actions during carving, i.e.,
replace one sequence of instructions with another. Tramsfioon
could be used, for example, to replace a call to a native metho
with an instruction sequence that implements the sidesstiaf the
native method. More generally, one could design an instah@e
that would replace any portion of a trace wite@mmarizingaction
sequence.

2.3.3 Applying Projections
Figure 2 illustrates two potential applications of the patjons:
test case reduction and test cases filtering.

Reduction aims at thinning a single carved test case byniatai
only the projected pre-state (in Figure 2 the projectios,ef carved
from ct,., leads to a smalles,,.). Reducing a DUT's pre-state
results in reduced space requirements and, more impgstantl
quicker replay since loading time is a function of the pitesize.
As we shall see, depending on the type of projection, theses ga
may be achieved at the expense of reduced fault detectioerpow
(e.g., a projection may discard an object that was necessay-
pose the fault). Furthermore, test executability may beifszed

as well. State-based projections may become unexecufatble i

We focus CR testing on a single unit by defining projections on data structures used by the target unit changes, for exastgfe

carved pre-states that preserve information related tarfieinder
test and provide significant reduction in pre-state size.

2.3.1 State-based Projections

A state projection functiomr : S — S preservesselected pro-
gram state components. For example, a state projectionidanc
may preserve only the values of reference fields, therehwi-eli
nating all scalar fields, which would maintain theap shapef

ing from an array to a heap-based structure, even if behasior
preserved. Action-based projections may become unexgeufa
the behavior of a unit method changes so that a different rumb
sequence of methods is needed in the modified program to geodu
the desired pre-state. Still, reduction can be a valuableharésm

to improve the efficiency of CR by keeping just the portionshef
pre-state that are most likely to be relevant to the targetetthod.

Filtering aims at removing redundant DUTs from the suitenCo

a program state. Many useful state projections are basetieon t  sjger a method that is invoked during the program initiaiczaand

notion of heap reachability. A refereneé is reachablein one
dereference fromr if the value of some field of holds r’; let
reach(r) = {r' | Jrerviica(r, f) = 7'} wherevy;cq is the
dereference function. References reachable through aaip cif
dereferences up to lengthfrom r are defined by using the iter-
ated composition of this binary relatiof), ., ., reach’(r); as a

notational convenience we will refer to this asach®(r). The
positive-transitive closure of the relatioreach™ (r), defines the
set of all reachable references frenm one or more dereferences.

State-based CR testing approaches should use projedtianget
tain at most thenterface reachableprojection which is defined
to preserve the set of heap objects reachable from a calling c
text, {r | IpeParamsreach™ (p)}. This includes the local frame
of the method, all reachable objects from paramef&igams to
the method (including hi s), and all fields of those objects. Ro-
bustness to change under this projection is identical tbahthe
complete program pre-state since all data that the methaoldi co
possibly reference is captured. It is possible to trade stimss
for reduction in carving cost by defining projections thatnéhate
more state information. Section 3 presents two projectibasex-
ercise this trade-off.

is independent of the program parameters. Such method veeuld
exercised by all the system tests in the same way and resulilin
tiple identical DUTSs for that particular methods. A simplkeii
would remove such duplicates tests, keeping just the uriuies.

Now consider a simple accessor method with no parameters tha

just returns the value of a scalar field. If this method is kaab

by the tests from different pre-states, then multiple DUTK lve
carved, and a simple lossless filter will not discard any Du@ne
though they exercise similar behavior. In this case, apgly pro-

jection that preserves the pre-state components direzdighable

from thiswould result in many DUTSs that are redundant (in Figure
2 7w(spre) fOr ctzm and forct., are identical so one of them can
be removed). Clearly, in some cases, this kind of lossy ffiiger
may result in a lower fault detection capability since we ndést
card a DUT that is indeed different and hence potentiallyable.
Note that, contrary to test case reduction, filtering onlgsupro-

jections to judge test equivalence, consequently, testugability

is preserved since the DUTSs that are kept are complete. ttipea
however, reduction and filtering are likely to be applieddndem
such that reduced tests are then filtered, or filtered testhan re-
duced (without necessarily using the same projection fiucton
and filtering).



Test Case m
Reduction Chn | Spee Sp"’( Reduced ct,,
m <
Ctxm Spre Spre 1
Test Cases ¥/ %E """ Keep ct,,
Filtering Drop ct,,
ct,, Spre

Figure 2: Sample applications of projections functions.

2.4 Adjusting Sensitivity through Differenc-

ing Functions

The basic CR testing approach described earlier compa@yec:

complete post-state to a post-state produced during réplstect

behavioral differences in a unit. The use of complete ptes is

both inefficient and unnecessary for the same reasons asealitl
above for pre-states. While we could use comparison of giase-

projections to address these issues, we believe that therebre

flexible solution.

Method unit test are typically structured so that, after gusece
of method calls that establish a desired pre-state the methder
test is executed. When it returns additional method caliiscam-
parisons are executed to implememiseeudo-oracleFor example,
unit tests for a red-black tree might execute a series oftirzsel
delete calls and then query the tree-height and compareit &x-
pected result to judge partial correctness. We allow a ainkind
of pseudo-oracle in CR testing by definid@ferencing functions
on post-states that preserve selected information abeutesults
of executing the unit under test. These differencing fuumgican
take the form of post-state projections or can be more aggees
capturing simple properties of post-states, such as trigéthand
consequently may greatly reduce the size of post-statds wie-
serving information that is important for detecting beloaal dif-
ferences.

We define differencing functions that map states to a selatife
ferencing domaindif : S — D. Differencing in CR testing is
achieved by evaluatindif(spost) = dif(s,0s7). State projection
functions are simply differencing functions whele= S. In ad-
dition to the reachability projections defined in the pregicub-
section, projections on unit method return values, catiéarn dif-
ferencing and on fields of the unit instancehi s, calledinstance

differencing are useful since they correspond to techniques used

widely in hand-built unit tests.

A central issue in differential testing is the degree to \lhiif-
ferencing functions are able to detect changes that camesto
faults while masking implementation changes. We refer i® dls
the sensitivityof a differencing function. Clearly, comparing com-
plete post-states will be highly-sensitive, detectinghifaults and
implementation changes. A projection function that onlgorels
the return value of the method under test will be insensttivien-
plementation changes while preserving some fault-seitgitNote
also that these differencing functions provide differemomplete

views on program state. Their incompleteness reduces oost a

provides a measure of implementation change insensjthuityit is

S S

pre posti Spost2 SpostS Spost4 Spost5

Vs

{ } activation of m

} calls out of unit

Figure 3: Differencing sequences of post-states.

problematic since it may reduce their fault detection dffeness.

We address this by allowing for multiple differencing fuiocis to

be applied in CR testing which has the potential to increas#-f
sensitivity, without necessarily increasing implemetatchange-
sensitivity. For example, using a pair of return and insteditfer-
encing functions allows one to detect faults in both instafield
updates and method results, but will not expose differerslated
to deeper structural changes in the heap. Fault isolatitriezfcy
could also be enhanced by the availability of multiple difecing
functions, since each could focus on a specific property bofse
program state components that which will help developessiot
their attention on a potentially small portion of prograratstthat
may reflect the fault.

There is another differencing dimension that can improud fao-
lation. It consists of generalizing the definition of DUTscpture
a sequence of post-stat€s,., opost), that capture intermediate
points during the execution of the method under test. Figuite
lustrates a scenario in which a generalized DUT begins ¢xacu
of m atspr.. Conceptually, during replay a sequence of post-states
is differenced with corresponding states at intermeditdaes of
the method under test. For example, at point 1, the test ca@npa
the current state to the capturegh.:1, similarly at points 2 and
3 the pre and post-states of the call out of the unit are combar
Using a sequence of post-states requires that a correspznde
defined between locations in andm’. Correspondences could be
defined using a variety of approaches, for example, one ameéd
the calls out ofm andm’ to define points for post-state compari-
son (asis illustrated in Figure 3) or common points in the téxn
andm’ could be detected via textual differencing. Fault isolaii
enhanced using multiple post-states, since if the firstotiededif-
ference is at location then that difference was introduced in the
region of execution between location- 1 andi. Of course, stor-
ing multiple post-states may be expensive so we advocateste
of 0,05t t0 Narrow the scope of code that must be considered for
fault isolation once a behavioral difference is attributed fault.

3. INSTANTIATING THE FRAMEWORK

In this section we describe the architecture and some ingian
tion details of a state-based instantiation of the fram&w{8ection
5 discusses existing carving and replay implementatiorisiwdre
action-based).

3.1 System Architecture

Figure 4 shows the architecture of the CR tools, with the stad

rectangles being the primary components. The carving igctiv

starts with theCarver class which takes four inputs: the program
name, the target methoed within the program, the system test case
st inputs, and options to bound the carving process.
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Figure 4: CR Tool Architecture.

Carver utilizes a custom class load€ustomLoade(that utilizes
BCEL [13]) to incorporate into the program: a singlet@ontextFac-
tory class configured to store pre and post states, and invosaifon
the ContextFactoryat the entry and exit(s) ofi. Then, every exe-
cution of m will cause two invocations ofontextFactory one to
stores,r. and one to store,,,s:. ContextFactoryutilizes theCon-
textBoundingclass to assist with the determination of what part of
the state should be stored when test case reduction isedtiliBy
default, ContextBoundingperforms the most conservative projec-
tion: an interface reachability projection (as describe®ection
2.3). More restrictive projections can be performed thiotige
BoundingAnalysiglass; we have implemented two such projec-
tions and describe them in the next section. Finally, thexgoeirce
packageXStreamdescribed in more detail in the next section, per-
forms state serialization and temporary storage. Findlé/data is
compressed with the off-the shelf compression utility bzip

TheReplaycomponent shares many of the classes @#ihver. As

in Carver, Replayinstruments the class of the target unit, in this
casem’, and utilizes theContextFactory but only to stores,os:.
The ContextLoadeclass obtains and loads,., usingXStreanto
unmarshall the stored program state, and then invokes thetta
unit for execution.

Two set of scripts, represented with double-side rectanigléig-
ure 4, are utilized to provide the filtering and differencimgcha-
nisms. While a test suite is being generated, only the DU@st th
capture a unique,.. (not captured by others DUTSs), and that
can be replayed successfully in the same version where teey w
carved, are retained. Once a test suite of DUTSs is generasd,
case filtering can be performed to remove redundant tess based
on the same set of projections available throBghindingAnalysis
Dif scripts compare twe,,s: according to a specified differencing
function to determine whether the changes frento m’ generate

a behavioral difference. Currently, differencing funasmn return
values, on instance fields, on full program state (the dgfané
fully automated. To facilitate experimentation with diéat Dif
functions our tools currently store the full,s:, but we plan to im-
plement options to store onbif(sp.s¢) Which has the potential to
significantly reduce the cost of carving, replay and diffeiag.

3.2 Interesting Implementation Aspects
In this section we briefly describe the most interesting etspef
the implementation.

Limitations of the java.io.Serializable interface. Our approach
requires the ability to save and restore object data reptiegethe
program state. However, the Jgvava. i 0. Seri al i zabl ein-
terface limits the type of objects that can be serialized. &xam-
ple, Java designates file handler objects as transientq@walizable)
because it reasonably assumes that a handler’s value kelyrtid
be persistent, and restoring it could enable illegal aesesThe
same limitations apply to other objects, such as databaseece
tions and network streams. In addition, the Java seriabizah-
terface may impose additional constraints on serialipatior ex-
ample, it may not serialize classes, methods, or fields detlas
private or final in order to avoid potential security threats

Fortunately, we are not the first to face these challengesoue
multiple serialization libraries that offer more advaneed! flexi-

ble serialization capabilities with various degrees otamszation.

We ended up choosing the XStream library [39] because it some
bundled with many converters for non-serializable types @ae-
fault converter that uses reflection to automatically capall ob-
jectfields, it serializes to XML which is more compact andieat®
read than native Java serialization, and it has built-intraesms

to traverse and manage the storage of the heap which wagiaksen
in implementing the following projections.

Interface k-bounded reachable projection.Theinterface k-bounded
reachableprojection defines the set of preserved references to in-
clude only those reachable via reference chains of lehgtte.,

{r | Ipeparamsreach®(p)}. Using small values of can greatly
reduce the size of the recorded pre-state and for many nmethod
will have no impact on unit-test robustness. For exampla)aevof

1 would suffice for a method whose only dereferences are agsess
to fields oft hi s. In the implementation, when traversing the pro-
gram using Xstream to store the program state, we keep tfack o
the length of dereference chains to halt traversal whisrreached.



If the unit accesses data along a reference chain of lengtitegr
than k, then ak-bounded projection will retain insufficient data
about the pre-state to allow replay. Our implementationadyin
cally detects this situation and issueSemt i nel AccessExcepti on
to distinguish replay failure from aapplicationexception. This is
achieved by extending Xstream with a custom converter thiak a
matically transforms objects that lie at a depthkof 1 to contain

an additional boolean field that marks it asemtinelinstance. The
unit under test is then instrumented to insert a test of thadan
field and raise the exception if true.

May-reference reachable projection. The may-reference reach-
able projection uses a static analysis that calculates a clamiract
zation of the heap instances that may be referenced by a thetho
activation either directly or through method calls. Thisct-
terization is expressed as a set of regular expression dbthe

pfi ... fo(FT)? This captures an access path that is rooted at a
parameterp and consists of: dereferences by the named fields

cases versus the costs of utilizing regression test sefecti
techniques that work on system test cases.

RQ2: What is the fault detection effectiveness of the carved test
cases? This is important because saving testing costs while
reducing fault detection is rarely an enticing trade-off.

RQ3: How robust are the carved tests in the presence of software
evolution? We would like to assess the reusability of the
carved unit test cases under a real evolving system, and ex-
amine how different types of change can affect the carved
tests sensitivity.

4.1 Testing Techniques

Let P be a program, leP’ be a modified version of, and letT’
be a test suite developed initially fét. Regression testing seeks to
test P’. To facilitate regression testing, test engineers maysee-u
T to the extent possible. In this study we considered fourdygfe
test regression techniques, two that work with system {&jtand

fi. If the analysis calculates that the method may reference an yq that worked with carved tests (C):

object through a dereference chain of length greater thathe
optional final term is included to capture objects that amche
able from the end of the chain through dereference of fieldsan
setF. Letreachr(r) = {r' | Irervsiaa(r, f) = 7'} capture
reachability restricted to a set of fields reachy denotes reacha-
bility for the singleton seff. For a regular expression of the form
pfi ... fm, Wwherem < n, we construct the setreachy, (p) U
... Ureachy,, (... (reachy, (p))), since we want to capture all
references touched along the path. If the regular expressids
with the termF'™ then we union an additional term of the form
reach}(reachy, (... (reachy (p)))). This projection can signif-
icantly reduce the size of carved pre-states while retgiaibitrar-
ily large heap structures that are relevant to the methoeniedgt.

We implemented &-bounded access path based may-reference
analysis that used the flow-insensitive context-sensttiwevalence-
class based read-write analysis implemented in Indus [ZTijs
analysis partitions parameter and variable names intoalguice
classes. The two distinct features of the analysis are: ri¢doh
equivalence class, an abstract heap structure based omutesn
involved in read/write access is maintained, and 2) disgqiiv-
alence classes are maintained for each method scope erdépt i
case of static fields and variable names occurring in metheds
volved in recursive call chains. We generate regular expoas
that capture the set of all possible referenced access pptisa
given fixed lengthk, with a default ofs = 2. When traversing the
program using Xstream, we simultaneously keep track oéglllar
expressions and mark only those objects that lie on a defreba
path for storage in XML. This analysis is also capable of clixtg
when a method is side-effect free and in such cases the stofag
post-states is skipped since method return values corhptiéne
the effect of such method.

4. EMPIRICAL STUDY

The goal of the study is to assess execution efficiency, émitic-
tion effectiveness, and robustness of the DUTs. We will grenf
such assessment through the comparison of system testhaind t
corresponding carved unit test cases in the context of segne
testing. Within this context, we are interested in the follyy re-
search questions:

RQ1: Can carving technigues save regression test executiosfcost
We would like to compare the cost of reusing carved unit test

S-retest-All

WhenP is modified, creating®’, we simply reuse all non-obsolete
test cases if" to testP’; this is known as theetest-alltechnique
[21] and it has been said to represent current industriatioes
[23].

S-selection

Theretest alltechnique can be expensive: rerunning all test cases
may require an unacceptable amount of time or human efRet.
gression test selectiorechniques [6, 10, 22, 30] use information
aboutP, P’, andT to select a subset af, 7”, with which to test

P’. We utilize themodified entitytechnique [10], which selects
test cases that exercise methodspPinthat (1) have been deleted
or changed in producing”’, or (2) use variables or structures that
have been deleted or changed in produditig

C-selection-k

Similar in concept t&-selectionthis technique executes all DUTS,
carved with a k-bounded reachable projection, that exeristh-
ods that were changed i . This technique follows the conjecture
that deeper references are less likely to be required fdayepo
bounding the carving depth may improve the CR efficiency evhil
maintaining a DUT's strengths. Within this technique welerp
depth bounding levels of 1, 5, ard (unlimited depth which cor-
responds to the interface reachable projection.)

C-selection-mayref

Similar toC-selection-lexcept that it carves DUTs utilizing a may-
reference reachable projection. This technique is baseteono-
tion that program changes are more likely to affect reachatath-
ods, so it concentrates in carving just those.

4.2 Measures _ _ _ _
Regression test selection techniques achieve savingsdoging

the number of test cases that need to be executeR’pthereby
reducing the effort required to reteB. We conjecture that CR
techniques achieve additional savings by focusing on wfitg’.

To evaluate these effects, we measuretiime to executand the
time to check the outputsf the test cases in the original test suite,
the selected test suite, and the carved selected test.skitesa
carved test suite we also measure tinge and space to carviae
original DUT test suite.



Version | Methods | Changed-covered Tests executing | Faults
methods changed methods
vO 109 - - -
vl 100 2 494 3
v5 111 2 494 1
v6 111 2 8 1
v7 107 10 550 2
Table 1: Siena’s components attributes.

One potential cost of regression test selection is the dostigs-
ing faults that would have been exposed by the system teists pr
to test selection. Similarly, DUTs may miss faults due to tlke

of projections aimed at improving carving efficiency. Welwika-
sure fault detection effectiveness by computing pleecentage of
faults found by each test suite. We will also qualify our findings
by analyzing instances where the outcomes of a carved testisa
different from its corresponding system test case.

To evaluate the robustness of the carved test cases in tengesof
program changes, we are interested in considering thrempait
outcomes of replaying&..,, on unitm': 1) fault is detectegct.,,
causesn’ to reveal a behavioral differences due to a faultfa®ye
difference is detectedt.,, causesn’ to reveal a behavioral change
from m to m’ that is not a fault (not captured by..); andtest is
unexecutablect,,, is ill-formed with respect ton’. Tests may be
ill-formed for a variety of reasons, e.g., object protodwhnges, in-
ternal structure of object changes, invariants change wancefer
to the degree to which a test set becomes ill-formed undeaiageh
its sensitivity to change We assess robustness by computing the
percentage of carved tests and program units falling inth eae

Carving Metric Reduction
C-select-k C-select
1 5 oo mayref
Plain Minutes | 113 | 157 | 158 467
MB 11K | 1.9K | 1.9K 2K
Compressed Minutes | 129 | 186 | 188 496
MB 6 7 7 9

Table 2: Carving times and sizes to generate initial DUT su.

they were already available in the repository. The prearalf the
carved selection suite€{selection-k’'andC-selection-mayref re-
quired for us to run the CR tool to carve all the DUTs for all the
methods inv0 executed by the system tests.

Second, we run each of the generated test suites on thefriailt-
versions of Siena to obtain an oracle for each version. Ircése
of the system test suite, the oracle consisted in the settplitau
generated by the program. For the carved tests, the oratsisted
of the method return value and the relevap,: (we later explore
several alternative projections to define the relevanéjtat

Third, we run each test suite on each faulty instance of eaion
(some versions contained multiple faults) and recordeid éixecu-
tion time. We dealt with each fault instance individuallycantrol
for potential masking effects among faults that might niegt
affect the fault detection performance of the tests.

Fourth, to assess fault detection effectiveness, for estistite, we
compared the outcome of each test case between the faaikdre
sion (oracle) and the faulty instances of each version. Topzwe
the system test outcomes between correct and fault versions

of the outcomes. Since the robustness of a test case depends oysed pre-defined differencing functions that are part ofimyle-

the change, we qualify robustness by analyzing the relshiprbe-
tween the type of change and the lifespan and sensitivithef t
DUT.

4.3 Artifact

The artifact we will use to perform this experiment study isréa
[9]. Sienais an event notification middleware implementediiva.
This artifact is available for download in the Subject Istracture
Repository (SIR) [15, 31]. SIR provides Siena’s source ¢c@de
system level test suite with 567 test cases, multiple vessaor-
responding to product releases, and a set of seeded fatcm
version (the authors were not involved in this latest atgt)vi

For this study we consider Siena’s core components (not plirap
cation included in the package that is built with those congmts).
We utilize the five versions of Siena that have seeded fehatsdid
not generate compilation errors (faults that generatedpdation
errors cannot be tested) and that were exposed by at leasysne
tem test case (faults that were not found by system testsowmil
affect our assessment). For brevity, we summarize the netest r
vant information to our study in Table 1 and point the readeSIR
[31] to obtain more details about the process employed tpguee
the Siena artifact for the empirical study. Table 1 provithesnum-
ber of methods, methods changed between versions and dduere
the system test suite, system tests covering the changdwdset
and faults included in each version.

4.4 Study Setup and Design

The overall process consisted of the following steps. Finst
prepared the test suites generated®getest-all S-selectionC-
selection-k* andC-selection-mayrefor their automatic execution.
The preparation of the system level test suites was trivdabbse

mentation which ignore “non-deterministic” output datay(elates,
times, random numbers). For the unit tests, we performetha si
lar differencing, but applied to the target method returiuea and
spost- When the outcome of a test case differed between the fault-
free and the faulty version, a fault is found.

Last, we compared the measures across the test suitestgeiaya
S-retest-all S-selectionC-selection-k¥andC-selection-mayrefwe
then repeated the same steps to collect data for the same tech
nigues when utilizing test case filtering and compressidme -

sults emerging from this comparison are presented in thessex

tion. All these activities were performed on an Opteron 268 p
cessor, with 4GB of RAM, running Linux-Fedora, and Java 1.5.

4.5 Results

In this section we provide the results addressing eachnesgaes-
tion regarding carving and replaying efficiency, fault atitn ef-
fectiveness, and robustness and sensitivity of the DUTesui

RQ1: Efficiency. We first focus on the efficiency of the carving
process. Although our infrastructure automates carvinig, firo-
cess does consume time and storage so it is important tcsatses
efficiency as it might impact its adoption and scalabilityable 2
summarizes the time (in minutes) and the size (in MB) thak too
to carve and store the complete initial suite of DUTSs utilizthe
different techniques without and with the use of compressio

the spre andspost. Each column in the table contains a test case
reduction technique.

For Siena, constraining the carving depth affects the ngriime.
This is more noticeable when carving fat= 1 which approxi-



mately a quarter of the time required to carve with eithet 5 or

the wholes,.. We observe the same patterns in terms of storage
requirements. Note again that for depths greater than andith
ferences in storage space are minimal due to the ratherdstial
nature of the subject (dereference chains with length grehan

2 are rare in Siena). The may-reference projection reqairesst
three times of additional analysis time, but as we shall geie,
able to provide some gains in replay time. In the second row of
Table 2 we see that simply compressing the state data irct¢las
carving time in proportion to the carved state size (and it add
uncompression time as well for the DUTs selected for replglyi

but it consistently provided between two and three-ordéraag-
nitude reduction in the space required by the DUTSs, offeaingry
interesting tradeoff.

It is important to note that the carving numbers reportedahl&
2 correspond to the initial carving of tteomplete DUT suite-
DUTs carved for each of the over 100 methods in Siena from each

140
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Figure 5: Execution times.

of the over 560 system tests that may execute each method — andor the C-selection-mayreveraged 6 minutes. When filtering was

can be performed automatically without the tester’s pigiton.
During the evolution of the system, DUTs will be replayedeap
edly amortizing the initial carving costs, and only a sulisfethe
DUTs will need to be recarved. Recarving will be necessargrwh
is determined that changes in the program may affect a DUdlés r
vant pre-state. We believe that existing impact analysisrtigjues
[24] could be used, for example, to determine what DUTs mast b
recarved when the a unit is changed, and we plan to intedrase t
into our infrastructure in the future.

We now proceed to analyze the replay efficiency. Replay effimy

is particularly important since it is likely that a carved Dwill be
repeatedly replayed as the target unit evolves. Figure Srmrines
the replay execution times for some of the techniques weidens
Each observation corresponds to the replay time of eachrageae
test suite under each version, while the lines joining olzems
are just meant to assist in the interpretation. Note thaplbies for
C-select-ksand C-select-ko overlapped almost completely so we
display only one of them.

The test suite resulting from ti& retest-altechnique consistently
averages 135 minutes per version. The test suites resinitinmgS-
selectfor each version averages 92 minutes per version, with sav-
ings overS-retest-allranging from a minimum of 4 minutes 6
maximum of 132 minutes in7. (Factors that affect the efficiency
of this technique are not within the scope of this paper bathm
found at [16]). On averag&-selectakes 67% of the time required
by S-retest-all

The test suites selected by tBeselection-k*techniques show very
similar tendencies. On average, all teselection-k*techniques
replay execution time was less than 9 minutes, and they &sx |
than a minute to replay v6 and up to 24 minutes @selection-
koo to replay v5. On average, these suites takes 6% of the time
required byS-retest-all and 9% of the time required bg-select
The test suites selected Byselection-mayrefakes 6% of the time
required byS-retest-all 10% of the time required b-selection
and 92% of the time required lfy-selection-ko. Last, we observe
that handling compressed files (only shown ko= 5) increased
the replaying time by up to a factor of four.

We also measured thdiffing time required by all techniques. For
the system test suites the diffing times were consistensly flean
a minute, for theC-selection-k*suites it averaged 12 minutes, and

employed, diffing time for theC-selection-k*techniques was re-
duced by an average of 54%. Overall, although the diffing/eayti
is important to the performance of the carved suites, implging
simple incremental differencing functions could draniticim-
prove their diffing performance. For example, we currentyne
pare all the program post-state, but we could instead firspeoe
the return values to see if it reveals any differences, aitddifes
not, then compare the rest of the post-state. This simpleigae
would suffice to reduce5 diffing time by 96%.

RQ2: Fault detection effectiveness The test suites directly gen-
erated byS-selectionC-selection-k¥ and C-selection-mayretie-
tected as many faults as tiSeretest-alltechnique. This indicates
that aDUT test suite can be as effective as a system test suite at de-
tecting faults, even when using aggressive projectionis wtorth
noting, however, that when computing fault detection difecess
over a whole DUT suite we do not account for the fact that, for
some system tests, their corresponding carved DUTs maylbsive
or gained fault detection effectiveness. We conjecture tthia is

a likely situation with our subject because many of the faalte
detected by multiple system tests. To address this situatéoper-
form an effectiveness analysis at the individual test cesel |

For each carving technique we compute: 1) PP, the percenfage
passing selected system tests (selected utilidBelectionthat

have all corresponding carved unit test cases passing, JaR#:2

the percentage of failing system tests that have at leastame-
sponding failing carved unit test case. Table 3 presentPkhand

FF values for all the techniques under all version instanicegen-

eral we observe that the average most for PP and FF are over 90%
indicating that DUTSs carved from a system test case tendte co
serve much of its effectiveness. We now discuss some ititeges
instances of the PP and FF values.

— FROM HERE —

When using the test suite resulting fra@@rselection-kive find that

for v7 : f1, only 24% of the passing system tests had all their
associated DUTs passing. The rest of the tests had a DUT that
detected a behavioral difference that was not detecteddsytstem

test case oracle because it did not propagate to the outfhg to
detected.

using this restrictive reduction, the FF values are on @ye8¥%.



C-selection-k C-selection last scenario, in which carving still generates more begraviif-

1 > oo mayref ferences for the faulty method than for change one, is istierg
PP| FF | PP| FF | PP | FF | PP | FF .
Vil 100 100 | 100 100 | 100 [ 100 | 100 | 100 because it shows that even for correct changes the numbér of a
vi:f2 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 fected DUTs may be large.
v1:f3 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
v5 100 0 | 100| 99 | 100 | 99 | 100 | 99 It is worth noting that the differencing functions offer appmrtu-
VG_f 1200 188 1200 188 1200 188 1200 188 nity to control this problem. For example, a more relaxetedinc-
v7: L 411 41t 4L 401 ing mechanism focused on just return values would have tgtec
v7:f2 100 | 91 | 100 | 91 | 100 | 91 | 100 | 91 X ! ) )
Average| 89 | 84 | 89 | 99 | 89 | 99 | 89 | 99 all the faults inv5 andwv6, while reducing the number of false dif-
ferences significantly since both faults manifest theneseln the
Table 3: Fault Detection Effectiveness. return value. Such a differencing function, however, leads re-

duced fault detection in the casewf. Mechanisms to select and

) ) appropriately combine these differencing functions wdlimpor-
In the cases where FF is not 100% such astinwe observed that  tant for the robustness and sensitivity of DUTS.

replaying the test suite carved utilizifgrselection-kidid not de-
tect all the behavioral differences exhibited by the sel@cystem
test cases (1 out of the 8 system tests exposed a behavibral di
ference that was not exposed by any of its corresponding RUTs 5. RELAT_ED,WORK o . .

This reduction in FF was due to the depth-1 projection which d Our work was inspired by Weide’s notion of modular testing as

not capture enough pre-state to detect a behavioral difereThe a means to evaluate the modular reasoning property of a pfece
other carved suites, however, did detect this fault. software [36]. Although Weide’s focus was not on testing dt

the evaluation of the fragility of modular reasoning, heeai some
In v5, and independently of the carved test suite used, 3 out of 300 IMPortant questions regarding the poterltlal applicapdftwhat he
failing system tests did not have any corresponding DUT @n th called a “modular regression technique” that led to our work
changed methods failing (99%). We observed the same situati o . . ) )
in v7 : £2 where 18 out of 203 DUTS (9%) did not expose behay- Within the context of regression testing, our approachse almi-
ioral differences even though the corresponding systetafaited. ~1ar to Binkley's semantic guided regression testing in thaims to
When we analyzed the reasons for this reduction in FF we disco "€duce testing costs by running a subset of the program.[&j8k-
ered that in both cases the tool did not carve(rthe pre-state for ~ 1€y’S technique proposes the utilization of static slicingdentify
one of the changed methods. The tool did not carve any pte-sta Potential semantic differences between two versions obgrpm.
for those methods because the system test case did not hemch t ~ He @lso presents an algorithm to identify the system teatsmlst
Changes in the code structure (e.g., addition of a methdghead- be run on the slices resulting from the differences betweermpto-
diing of an exception), however, made the system test cagehr ~ 9ram versions. The fundamental distinction between thisaar
those changed methods (and expose a fault) in later versions ~ @PProachis thatwe do not run system level tests, but rathaller
both circumstances, improved DUTSs that would have resutted ~ 2nd more focused unit tests. Another important distinctsotat
100% FF could have been generated by re-carving the test rase the testing target are not the semantic differences betwasions,

later versions (carve frorm; to replay inv;11). More generally, but rather methods in the program.
these observations point out again for the need to estabikstha- o n )
nisms to detect changes in the code that should triggerrenga The preliminary results from our original test carving jptype

[28] evidenced the potential of carved tests to improve tiiie e

ciency and the focus of a large system test suite, identified- c
RQ3: Robustness and sensitivityWe previously examined how  lenges to scale-up the approach, and defined some scenadies u
DUTs obtained througtC-selection-klare quite fragile in terms which the carved test cases would and would not perform wel.
of their executability, and how certain code changes mayer@ak  have built on that work by presenting a generic frameworlkdfér
method reach a new part of the heap that was not originallyedar ferential carving, extending the type of analysis we penfed to
A complementary way to evaluate the robustness and setysiafv make the approach more scalable, and by developing a futifset
DUTs is to compare their performance in the presence of meth- tools that can enable us to explore different techniquesaniows
ods that changed, and in the presence of methods that chanded programs.
are indeed faulty. We performed such detailed comparisotihen
filtered suites foiC-selection=o andC-selection-mayrefand now We are aware of two other research efforts related to themati
briefly discuss three distinct instances of the scenariofowead. test carving. First, Orso et al. prototyped the notion oéstle

record and replay mechanisms of program executions by iagtu
In both faulty instances of7, the version with the most methods  the interactions between the observed subsystem and itexton
changed (10), none of the behavioral differences were fdynd  and then replaying just the result of those interaction$. [Zec-
methods other than the faulty ones. This is clearly an idiéah-s ond, the test factoring approach introduced by Saff et degsa
tion. V1 : f1 represents perhaps a more common case were nonesimilar approach to Orso’s with the creation of what theyezhl

of the DUTSs going through non-faulty changed methods fatbed mock objects that serve to create the scaffolding to supbertxe-
only 78% of the DUTSs traversing faulty methods actuallyddil cution of the test unit [34]. The same group introduced asebfor
Yet a different perspective is offered hys. Only two methods fully-featured Java execution environments that can reamdiny of
changed in this version, and one them is invoked exclusivglthe the subtle interactions present in this programming laggua.g.,
other. The fault is located in the callee. The caller metlsoeixier- callbacks, arrays, native methods) [33]. In terms of oumiaork,

cised by 6354 DUTSs out of which 736 detect behavioral difiess both of these approaches would be considered action-b&Rewh<C
(12%). The (faulty) callee method is exercised by 26173 Dbilts proaches. We have presented, what is to the best of our kdgejle
of which 928 detect behavioral differences (less than 49)isT  the first state-based approach to CR testing.



Saff et al. describe their approach in detail allowing usrvigle

As stated, the post-state differencing functions thatledguhe de-

a more in depth comparison with our approach. While carving a tection of differences between encodings of unit behavaborgs

method test case, their infra-structure records the seguefcalls

to a larger body of testing work on differential-based ogaclFor

that can influence the method and then they record the seguenc example, the work of Weyuker [37] on the development of pseud

of calls made by the method and the return values and uné stat
side-effects of those calls. In our framework, this wouldoamt

to calculatingg such thats(c) = spr. for the method of inter-
est and then calculating summarizing traéeg;;, that reflect the
return value and side effects for each call out of the methutl a
carving spre;, the relevant pre-state for each call. During replay
the same sequence of calls with the same parameters is edpect
any deviation results in a report of a difference during agplin
our framework, we would identify the points at which the,calls
out of the method occur as post-state locations to define a &fUT
the form(a, (Spreys- - - s Spren))-

Both of these action-based approaches, capture the ititersibe-
tween the target unit and its context and then build the sichiffy
to replay just those interactions. Hence, they do not incwoists
associated with capturing and storing the system stateafdr tar-
geted unit. On the other hand, this approach may generasehes
are sensitive to changes that do not effect meaning, e.angimg
the order of independent method calls. Saff et al. have iiitkaht
this issue and propose to analyze the lifespan of the fattmst
cases across sequences of method modifications [33]. This is
critical factor in judging the cost-effectiveness of CRtiteg and
we have studied this issue in Section 4.5.

These two related efforts have shown their feasibility imm® of
being able to replay tests and the latter approach has gabindtial
evidence that it can save time and resources under severgarius.
Neither approach, however, has been evaluated in terms faililt
detection effectiveness which ultimately determines tiee/of the
carved tests, or in the context of regression testing.

Our work also relates to efforts aimed at developing unitd¢ases.
Several frameworks grouped under the umbrella of Xunit e
developed to support software engineers in the developofemtit
tests. Junit, for example, is a popular framework for thea Jaro-
gramming language that lets programmers attach testing tmd
their classes to validate their behavior [17].

There are also multiple approaches that automate, to eliffate-
grees, the generation of unit tests. For example, comneotits
such as Jtest develops unit test cases by analyzing metioat- si
tures and selecting test cases that increase some coveitagia c
[20]. Some of these tools aim to assess software robustagss (
whether an exception is thrown [12]). Others utilize soneetpf
specification such as pre and post conditions or operataiysttac-
tions, to guide the test case generation and actually chaekher
the test outcome meets the expectation results [7, 11, 26)138
terestingly enough, Parasoft new version of JTest enhaheasit
test case generated with “Sniffer”, a tool that monitorsning ap-
plications to pick interesting values to exercise the tangé [20],
which can be perceived as a primitive type of carving prégect

Although carving also aims to generate unit test cases, phe a
proach we propose is different from previous unit test case g
eration mechanisms since it consists of the projection gfstem
test case onto the targeted software unit. As such, we expect
carved unit tests to retain some of the interesting interastex-
posed by systems tests that are harder to design into regpitar
test cases that do not consider the system context.

oracles, Jaramillo et al. [19] on using comparisons to cHeck
optimization induced errors in compilers, or the comparigbpro-
gram spectra [29] are instances of utilizing differenciypge ora-
cles at the system or subsystem level. When focusing at tite un
level of object oriented programs, as we are doing, Binder su
gests the term “concrete state” oracles, which aim to coenfie
value of all the unit’s attributes against what is expectddBriand

et al. refer to this type of oracle as a “precise” oracle bsedt
was the most accurate one employed in their studies [8]. -Over
all, the notion of testing being fundamentally differehtias long
been understood [37], since theeudo-oracleagainst which sys-
tems are judged correct are themselves subject to errors, The:
guestion we aimed to answer is not whether our CR method fudge
a system correct or incorrect, but rather whether it is clepab
cost-effectively detecting differences between encalfgsystem
behavior that developers can easily mine to judge whetleedifh
ference reflects an error.

6. CONCLUSION

We have presented a general framework for automaticallyirogr
and replaying DUTs. The framework incorporates sophitita
projection and differencing strategies that can be ingtted in
various ways to accommodate distinct trade-offs. We hawe im
plemented a state-based instance of the framework thajates
testing costs through two types of reachability-basedegtans,
and that can adjust the DUTs sensitivity through two diffieieg
functions. Our evaluation of this implementation has réashat
DUTs can be automatically generated from system tests,cesdu
average test suite execution time to a tenth of our bestrayste
lection techniqug and still retain most of the fault detection power
of system tests

The experiences gained while instantiating and assedsrfgame-
work suggest several directions for future work. First, wil w
perform further studies not only to confirm our findings onesth
subjects under similar settings, but also to compare DUTls tna-
ditional unit tests developed by software engineers. Wgecture
that software engineers develop rather shallow unit tewdstlaat
we can effectively complement those with DUTs that expose th
target units to more complex execution settings.

Second, we will extend our implementation with additiorestiires
to reduce the cost of CR testing while preserving test éffeicess.
We will store the results of applying differencing functsoto post-
states rather than storing post-states themselves. Wewilide
mechanisms for testers to define differencing functiongllesghe
ones provided by the framework. We expect that experienply-ap
ing these techniques to a broad collection of examples wjlbse
additional opportunities for cost-reduction. For exampleen col-
lecting the data for Siena we realized that applying somes}i
projections to filter DUTs may yield more interesting trafiebe-
tween scalability and fault detection effectiveness.

Third, we believe that it is possible to combine multiple D&JT
to create acompoundDUT for a larger program unit, for exam-
ple a class. This can be achieved by correlating multiple BUT

!See the Filtered-C-selection-k5 and Filtered-C-selaatimyref
results in Figure 5



based on the identity of the receiver object. For a sequefice o [9] Antonio Carzaniga, David Rosenblum, and Alex Wolf.

method callsg, . .., c;, on an object in a system test, the set of
DUTs for those calls is replaced by a single DUT that captures
(Sprei, (Sposti, - - - s Spost;))- IN this test, the sequence of calls are

replayed for each method &S,.stk, Spostk+1) Wherek > i; for
k = i the replay is fof(sprei, Sposti). This effectively transfers the
effects of methods on the receiver object throughout theesse
achieving a kind of interaction testing between calls. Véapb im-
plement this approach and assess it relative to other oldested
testing techniques.

Last, we will develop a supporting infrastructure to inceéhe use
of DUTs in practice. We will leverage some of the static asaly
techniques already at our disposal to determine, for examgien
changes in a method may suggest a re-carving operatiorteédrge
at that specific method. We would also like to extend the amaly
performed after a DUTs detects a behavioral difference onita u
that is later deemed correct. In this situation, we woule lik
know what other DUTs might be obsolete and require re-cgrvin
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