
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department
of

4-15-2006

Carving Differential Unit Test Cases from System Test Cases Carving Differential Unit Test Cases from System Test Cases

Sebastian Elbaum
University of Nebraska-Lincoln, selbaum@virginia.edu

Hui Nee Chin
University of Nebraska-Lincoln, hchin@cse.unl.edu

Matthew B. Dwyer
University of Nebraska-Lincoln, matthewbdwyer@virginia.edu

Jonathan Dokulil
University of Nebraska-Lincoln, jdokulil@cse.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/csetechreports

 Part of the Computer Sciences Commons

Elbaum, Sebastian; Chin, Hui Nee; Dwyer, Matthew B.; and Dokulil, Jonathan, "Carving Differential Unit Test
Cases from System Test Cases" (2006). CSE Technical reports. 26.
https://digitalcommons.unl.edu/csetechreports/26

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csetechreports
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csetechreports/26?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages

Carving Differential Unit Test Cases from System Test Cases

Sebastian Elbaum, Hui Nee Chin, Matthew B. Dwyer, Jonathan Dokulil

Department of Computer Science and Engineering
University of Nebraska - Lincoln

Lincoln, Nebraska
{elbaum,hchin,dwyer,jdokulil}@cse.unl.edu

ABSTRACT
Unit test cases are focused and efficient. System tests are effective
at exercising complex usage patterns.Differential unit tests(DUT)
are a hybrid of unit and system tests. They are generated by carving
the system components, while executing a system test case, that in-
fluence the behavior of the target unit, and then re-assembling those
components so that the unit can be exercised as it was by the sys-
tem test. We conjecture that DUTs retain some of the advantages
of unit tests, can be automatically and inexpensively generated, and
have the potential for revealing faults related to intricate system ex-
ecutions. In this paper we present a framework for automatically
carving and replaying DUTs that accounts for a wide-varietyof
strategies, we implement an instance of the framework with sev-
eral techniques to mitigate test cost and enhance flexibility, and we
empirically assess the efficacy of carving and replaying DUTs.

1. INTRODUCTION

Software engineers develop unit test cases to validate individual
program units (e.g., methods, classes, packages) before they are in-
tegrated into the whole system. By focusing on an isolated unit,
unit tests are not constrained by other parts of the system inex-
ercising the target unit. This smaller scope for testing usually re-
sults in significantly more efficient test execution and fault isolation
relative to whole system testing and debugging [1, 18]. Unittest
cases are also used as a component of several popular development
methods, such as extreme programming (XP) [2], test driven devel-
opment (TDD) practices [3], continuous testing [35], and efficient
test prioritization and selection techniques [32].

Developing effective suites of unit test cases presents a number of
challenges. Specifications of unit behavior are usually informal and
are often incomplete or ambiguous, leading to the development of
overly general or incorrect unit tests. Furthermore, such specifica-
tions may evolve independently of implementations requiring ad-
ditional maintenance of unit tests even if implementationsremain
unchanged. Testers may find it difficult to imagine sets of unit input
values that exercise the full-range of unit behavior and thereby fail
to exercise the different ways in which the unit will be used as a part

of a system. An alternative approach to unit test development, that
does not rely on specifications, is based on the analysis of a unit’s
implementation. Testers developing unit tests in this way may fo-
cus, for example, on achieving a coverage-adequacy criteria of the
target unit’s code. Such tests, however, are inherently susceptible
to errors of omission with respect to specified unit behaviorand
may thereby miss certain faults. Finally, unit testing requires the
development of test harnesses or the setup of a testing framework
(e.g., junit [17]) to make the units executable in isolation.

System tests are usually developed based on documents that are
commonly available for most software systems that describethe
system’s functionality from the user’s perspective, for example, re-
quirement documents and user’s manuals. This makes system tests
appropriate for determining the readiness of a system for release,
or to grant or refuse acceptance by customers. Additional benefits
accrue from testing system-level behaviors directly. First, system
tests can be developed without an intimate knowledge of the sys-
tem internals, which reduces the level of expertise required by test
developers and which makes tests less-sensitive to implementation-
level changes that are behavior preserving. Second, systemtests
may expose faults that unit tests do not, for example, faultsthat
emerge only when multiple units are integrated and jointly utilized.
Finally, since they involve executing the entire system no test har-
nesses need be constructed.

While system tests are an essential component of all practical soft-
ware validation methods, they do have several disadvantages. They
can be expensive to execute; for large systems days or weeks,and
considerable human effort may be needed for running a thorough
suite of system tests [23]. In addition, even very thorough system
testing may fail to exercise the full-range of behavior implemented
by system’s units; thus, system testing cannot be viewed as an ef-
fective replacement for unit testing. Finally, fault isolation and re-
pair during system testing can be significantly more expensive than
during unit testing.

The preceding characterization of unit and system tests, although
not comprehensive, illustrates that system and unit tests have com-
plementary strengths and that they offer a rich set of tradeoffs. In
this paper, we present a general framework for carving and replay-
ing of what we calldifferential unit tests(DUT) which aim at ex-
ploiting those tradeoffs. We termed themdifferentialbecause their
primary function is detecting differences between multiple versions
of a unit’s implementation. DUTs are meant to be focused and effi-
cient, like traditional unit tests, yet they are automatically generated
along with a custom test-harness, making them inexpensive to de-
velop and easy to evolve. In addition, since they indirectlycapture

University of Nebraska–Lincoln, Computer Science and Engineering
Technical Report TR-UNL-CSE-2006-0008
Issued 4/15/2006

the notion of correctness encoded in the system tests from which
they are carved, they have the potential for revealing faults related
to complex patterns of unit usage.

In our approach, DUTs are created from system tests by capturing
components of the exercised system that influence the behavior of
the targeted unit, and that reflect the results of executing the unit;
we term thiscarving. Those components are automatically assem-
bled into a test harness that establishes the pre-state of the unit that
was encountered during system test execution. From that state, the
unit is replayedand the resulting state is queried to determine if
there are differences with the recorded unit post-state.

Ideally DUTs will (a) retain the fault detection effectiveness of sys-
tem tests on the target unit, (b) only report small numbers ofdif-
ferences that are not indicative of differing system test results, (c)
be executed faster than system tests, and (d) be applicable across
multiple system versions. We empirically investigate DUT carv-
ing and replay techniques with respect to these criteria through a
controlled study within the context of regression testing where we
compare the performance of system tests and carved unit tests. The
results indicate that carved test cases can be as effective as system
test cases in terms of fault detection, but much more efficient.

When compared again existing work aimed at providing automated
extraction of powerful unit tests from system executions, [25, 28,
33], the contributions of this paper are: (i) a framework for auto-
matically carving and replaying DUTs that accounts for a wide-
variety of implementation strategies with different tradeoffs; (ii) a
new state-based strategy for carving and replay at a method level
that offers a range of costs, flexibility, and scalability; and (iii) an
evaluation criteria and an empirical assessment of the efficiency
and effectiveness of carving and replay of DUTs on multiple ver-
sions of a Java application. We believe these contributionslay a
solid and general foundation for further study of carving and re-
play of DUTs and we outline several directions for future work in
Section 6. In the next Section, we present our framework for carv-
ing and replay testing. Section 3 details the implementation of one
of those instantiations. Section 4 describes our study and results.

2. A FRAMEWORK FOR TEST CARVING
AND REPLAY

Java programs can have millions of allocated heap instances[14]
and hundreds of thousands of live instances at any time. Conse-
quently, carving theraw state of real programs is impractical. We
believe that cost-effective carving and replay (CR) based testing
will require the application of multiple strategies thatselectinfor-
mation in raw program states and use that information to trade a
measure of effectiveness to achieve practical cost. Strategies might
include, for example, carving a single representative of each equiv-
alence class of program states or pruning information from acarved
state that a method under test is guaranteed to not be dependent on.
The space of possible strategies is vast and we believe that ageneral
framework for CR testing will aid in exploring cost-effectiveness
trade-offs possible in the space of CR testing techniques.

Regardless of how one develops, or generates, a unit test, there are
four essential steps: (1) identify a program state from which to ini-
tiate testing, (2) establish that program state, (3) execute the unit
from that state, and (4) judge the resulting state as to its correct-
ness. In the rest of this Section, we define a general framework that
allows different strategies to be applied in each of these steps.

Carve ctxm

Replay ctxm on m�

m evolves: m + ! = m�

Given stx { input/s, expected output/s }

Execute stx S0 � Spre Spost ��m outputinput

Spre m�load Spost�

Same?Spost Behavior of m " m�

! has affected behavior of m

yes

no

ctxm {Spre , Spost }
capture

Figure 1: Carving and replay process.

2.1 Program States and Program Executions
For the purposes of explaining our framework, we consider a Java
program to be a kind of state machine. At any point during the
execution of a program theprogram state, S , can be defined, con-
ceptually, as all of the values in memory. As needed, we will define
notation for accessing specific portions of a state, for example, the
parameters in the current active frame of the call stack.

A program executioncan be formalized either as a sequence of
program states or as a sequence of program actions that causestate
changes. A sequence of program states is written asσ = s0, s1, . . .

wheresi ∈ S ands0 is the initial program state as defined by Java.
A statesi+1 is reached fromsi by executing a singleaction (e.g.,
bytecode). A sequence of program actions is written asσ̄. We
denote the final state of an action sequences(σ̄).

2.2 Basic Carving and Replaying
Figure 1 illustrates the CR process. Given a system test casestx,
carving a unit test casectxm

for target unitm during the exe-
cution of stx consists of capturingspre, the program state im-
mediately before the first instruction of an activation of method
m, and spost, the program state immediately after the final in-
struction of the activation ofm has executed. The captured pair
of states(spre, spost), defines adifferential unit test casefor a
method,ctxm

. States in this pair can be defined by capturing the
appropriate states inσ, or through the cumulative effects of a se-
quence of program actions, by capturings(σ̄) at the appropriate
points in σ̄. A CR testing approach is said to bestate-basedif
it records pairs(spre, spost) and action-basedif it records pairs
(σ̄pre, spost) wherespre = s(σ̄pre).

In practice, it is common for a method,m, to undergo some modifi-
cation, e.g., tom′, over the program lifetime. To efficiently validate
the effects of a modification, wereplay ctxm

on m′. Replaying a
differential unit test for a methodm′ requires the ability to either
load statespre into memory or executēσpre depending on how the
state was carved. From this state, execution ofm′ is initiated and
it continues until it reaches the point corresponding to thecarved
spost. At that point, the current execution state,s′post, is compared
to spost. If the resulting states are the same, we can attest that the
change did not affect the behavior of the target unit. However, if
the change altered the behavior ofm, then further processing will
be required to determine whether the alteration matches thedevel-
oper’s expectations.

There are multiple techniques for diagnosing the root causeof de-

tected differences. For example, a difference could trigger the ex-
ecution of system teststx to determine whether a difference man-
ifests at higher levels of abstractions, the results ofctxm

could be
compared with the results of manually developed unit tests for m,
or intermediate states within the execution ofm andm′ (e.g., after
every statement) could be compared to identify the earliestpoint at
which states differ. We discuss support for some of these diagnos-
tics in Section 2.4 and leave the others for future work.

Several fundamental challenges must be addressed in order to make
CR cost-effective. First, the proposed basic carving procedure is at
best inefficient and likely impractical. Inefficient because a method
may only depend on a small portion of the program state, thus stor-
ing the complete state is wasted effort. Furthermore, two distinct
complete program states may be identical from the point of view
of a given method, thus carving complete states would yield re-
dundant unit tests. Impractical because storing the complete state
of a program may be prohibitively expensive in terms of time and
space. Second, changes tom may renderctxm

unexecutable in
m′. Reducing the cost of CR testing is important, but we must
produce DUTs that are robust to changes so that they can be exe-
cuted across a series of system modifications in order recover the
overhead of carving. Finally, the use of complete post-states to de-
tect behavioral differences is not only inefficient but may also be
too sensitive to behavior differences caused by reasons other than
faults (e.g., fault fixes, improvements, internal refactoring) leading
to the generation of brittle tests. The following sections address
these challenges.

2.3 Improving CR with Projections
We focus CR testing on a single unit by defining projections on
carved pre-states that preserve information related to theunit under
test and provide significant reduction in pre-state size.

2.3.1 State-based Projections
A state projection functionπ : S → S preservesselected pro-
gram state components. For example, a state projection function
may preserve only the values of reference fields, thereby elimi-
nating all scalar fields, which would maintain theheap shapeof
a program state. Many useful state projections are based on the
notion of heap reachability. A referencer′ is reachablein one
dereference fromr if the value of some field ofr holds r′; let
reach(r) = {r′ | ∃f∈Fvfield(r, f) = r′} wherevfield is the
dereference function. References reachable through any chain of
dereferences up to lengthk from r are defined by using the iter-
ated composition of this binary relation,

S

1≤i≤k
reachi(r); as a

notational convenience we will refer to this asreachk(r). The
positive-transitive closure of the relation,reach+(r), defines the
set of all reachable references fromr in one or more dereferences.

State-based CR testing approaches should use projections that re-
tain at most theinterface reachableprojection which is defined
to preserve the set of heap objects reachable from a calling con-
text, {r | ∃p∈Paramsreach+(p)}. This includes the local frame
of the method, all reachable objects from parametersParams to
the method (includingthis), and all fields of those objects. Ro-
bustness to change under this projection is identical to that of the
complete program pre-state since all data that the method could
possibly reference is captured. It is possible to trade robustness
for reduction in carving cost by defining projections that eliminate
more state information. Section 3 presents two projectionsthat ex-
ercise this trade-off.

2.3.2 Action-based Projections and Transformations
Projections on sequences of program actions,π̄ : σ̄ → σ̄. can
be used to distill the portion of a program run that affects the pre-
state of a unit method. Unfortunately, a purely projection-based
approach to state-capture will not work for all Java programs. For
example, a program that calls native methods does not, in general,
have access to the native methods instructions. To accommodate
this, we can allow fortransformationof actions during carving, i.e.,
replace one sequence of instructions with another. Transformation
could be used, for example, to replace a call to a native method
with an instruction sequence that implements the side-effects of the
native method. More generally, one could design an instanceof π̄

that would replace any portion of a trace with asummarizingaction
sequence.

2.3.3 Applying Projections
Figure 2 illustrates two potential applications of the projections:
test case reduction and test cases filtering.

Reduction aims at thinning a single carved test case by retaining
only the projected pre-state (in Figure 2 the projection ofspre carved
from ctxm leads to a smallerspre). Reducing a DUT’s pre-state
results in reduced space requirements and, more importantly, in
quicker replay since loading time is a function of the pre-state size.
As we shall see, depending on the type of projection, these gains
may be achieved at the expense of reduced fault detection power
(e.g., a projection may discard an object that was necessaryto ex-
pose the fault). Furthermore, test executability may be sacrificed
as well. State-based projections may become unexecutable if the
data structures used by the target unit changes, for example, shift-
ing from an array to a heap-based structure, even if behavioris
preserved. Action-based projections may become unexecutable if
the behavior of a unit method changes so that a different number or
sequence of methods is needed in the modified program to produce
the desired pre-state. Still, reduction can be a valuable mechanism
to improve the efficiency of CR by keeping just the portions ofthe
pre-state that are most likely to be relevant to the targetedmethod.

Filtering aims at removing redundant DUTs from the suite. Con-
sider a method that is invoked during the program initialization and
is independent of the program parameters. Such method wouldbe
exercised by all the system tests in the same way and result inmul-
tiple identical DUTs for that particular methods. A simple filter
would remove such duplicates tests, keeping just the uniqueDUTs.
Now consider a simple accessor method with no parameters that
just returns the value of a scalar field. If this method is invoked
by the tests from different pre-states, then multiple DUTs will be
carved, and a simple lossless filter will not discard any DUT even
though they exercise similar behavior. In this case, applying a pro-
jection that preserves the pre-state components directly reachable
from thiswould result in many DUTs that are redundant (in Figure
2 π(spre) for ctxm and forctzm are identical so one of them can
be removed). Clearly, in some cases, this kind of lossy filtering
may result in a lower fault detection capability since we maydis-
card a DUT that is indeed different and hence potentially valuable.
Note that, contrary to test case reduction, filtering only uses pro-
jections to judge test equivalence, consequently, test executability
is preserved since the DUTs that are kept are complete. In practice,
however, reduction and filtering are likely to be applied in tandem
such that reduced tests are then filtered, or filtered tests are then re-
duced (without necessarily using the same projection for reduction
and filtering).

Test Case

Reduction
ctxm

Spre
!

Spre

Test Cases

Filtering

ctxm
Spre

!
Spre

ctzm
Spre

!
Spre

Keep ctxm

Drop ctzm

Reduced ctxm

!!

Figure 2: Sample applications of projections functions.

2.4 Adjusting Sensitivity through Differenc-
ing Functions

The basic CR testing approach described earlier compares a carved
complete post-state to a post-state produced during replayto detect
behavioral differences in a unit. The use of complete post-states is
both inefficient and unnecessary for the same reasons as outlined
above for pre-states. While we could use comparison of post-state
projections to address these issues, we believe that there is a more
flexible solution.

Method unit test are typically structured so that, after a sequence
of method calls that establish a desired pre-state the method under
test is executed. When it returns additional method calls and com-
parisons are executed to implement apseudo-oracle. For example,
unit tests for a red-black tree might execute a series of insert and
delete calls and then query the tree-height and compare it toan ex-
pected result to judge partial correctness. We allow a similar kind
of pseudo-oracle in CR testing by definingdifferencing functions
on post-states that preserve selected information about the results
of executing the unit under test. These differencing functions can
take the form of post-state projections or can be more aggressive,
capturing simple properties of post-states, such as tree height, and
consequently may greatly reduce the size of post-states while pre-
serving information that is important for detecting behavioral dif-
ferences.

We define differencing functions that map states to a selected dif-
ferencing domain, dif : S → D. Differencing in CR testing is
achieved by evaluatingdif(spost) = dif(spost′). State projection
functions are simply differencing functions whereD = S . In ad-
dition to the reachability projections defined in the previous sub-
section, projections on unit method return values, calledreturn dif-
ferencing, and on fields of the unit instance,this, calledinstance
differencing, are useful since they correspond to techniques used
widely in hand-built unit tests.

A central issue in differential testing is the degree to which dif-
ferencing functions are able to detect changes that correspond to
faults while masking implementation changes. We refer to this as
thesensitivityof a differencing function. Clearly, comparing com-
plete post-states will be highly-sensitive, detecting both faults and
implementation changes. A projection function that only records
the return value of the method under test will be insensitiveto im-
plementation changes while preserving some fault-sensitivity. Note
also that these differencing functions provide different incomplete
views on program state. Their incompleteness reduces cost and
provides a measure of implementation change insensitivity, but it is

spre

}
}

activation of m

calls out of unit

spost3spost1 spost4 spost5spost2

1 2 3 4

5

Figure 3: Differencing sequences of post-states.

problematic since it may reduce their fault detection effectiveness.

We address this by allowing for multiple differencing functions to
be applied in CR testing which has the potential to increase fault-
sensitivity, without necessarily increasing implementation change-
sensitivity. For example, using a pair of return and instance differ-
encing functions allows one to detect faults in both instance field
updates and method results, but will not expose differencesrelated
to deeper structural changes in the heap. Fault isolation efficiency
could also be enhanced by the availability of multiple differencing
functions, since each could focus on a specific property or set of
program state components that which will help developers restrict
their attention on a potentially small portion of program state that
may reflect the fault.

There is another differencing dimension that can improve fault iso-
lation. It consists of generalizing the definition of DUTs tocapture
a sequence of post-states,(spre, σpost), that capture intermediate
points during the execution of the method under test. Figure3 il-
lustrates a scenario in which a generalized DUT begins execution
of m atspre. Conceptually, during replay a sequence of post-states
is differenced with corresponding states at intermediate states of
the method under test. For example, at point 1, the test compares
the current state to the capturedspost1, similarly at points 2 and
3 the pre and post-states of the call out of the unit are compared.
Using a sequence of post-states requires that a correspondence be
defined between locations inm andm′. Correspondences could be
defined using a variety of approaches, for example, one coulduse
the calls out ofm andm′ to define points for post-state compari-
son (as is illustrated in Figure 3) or common points in the text of m

andm′ could be detected via textual differencing. Fault isolation is
enhanced using multiple post-states, since if the first detected dif-
ference is at locationi then that difference was introduced in the
region of execution between locationi − 1 andi. Of course, stor-
ing multiple post-states may be expensive so we advocate theuse
of σpost to narrow the scope of code that must be considered for
fault isolation once a behavioral difference is attributedto a fault.

3. INSTANTIATING THE FRAMEWORK
In this section we describe the architecture and some implementa-
tion details of a state-based instantiation of the framework. (Section
5 discusses existing carving and replay implementations which are
action-based).

3.1 System Architecture
Figure 4 shows the architecture of the CR tools, with the shaded
rectangles being the primary components. The carving activity
starts with theCarver class which takes four inputs: the program
name, the target methodm within the program, the system test case
stx inputs, and options to bound the carving process.

m:Spre

Program

m

ContextFactory

ContextBounding

Carver

Options stx

XStream

CustomLoader

bcel

Bounding Analysis

Side effect

…

stx

m

m

pre/post

Program m

ContextLoader

XStream

ContextFactory

ContextBounding

Replay

XStream

CustomLoader

bcel

Bounding Analysis

Side effect

…

m’

m’

post

m’m

m

m’

Options

Dif

Spostm m’

function

Filter

Dut

Dut

m’:Spost

m:Spre,Spost

Spre

Spost

projection

Figure 4: CR Tool Architecture.

Carver utilizes a custom class loaderCustomLoader(that utilizes
BCEL [13]) to incorporate into the program: a singletonContextFac-
tory class configured to store pre and post states, and invocations of
theContextFactoryat the entry and exit(s) ofm. Then, every exe-
cution ofm will cause two invocations ofContextFactory: one to
storespre and one to storespost. ContextFactoryutilizes theCon-
textBoundingclass to assist with the determination of what part of
the state should be stored when test case reduction is utilized. By
default,ContextBoundingperforms the most conservative projec-
tion: an interface reachability projection (as described in Section
2.3). More restrictive projections can be performed through the
BoundingAnalysisclass; we have implemented two such projec-
tions and describe them in the next section. Finally, the open source
packageXStream, described in more detail in the next section, per-
forms state serialization and temporary storage. Finally,the data is
compressed with the off-the shelf compression utility bzip.

TheReplaycomponent shares many of the classes withCarver. As
in Carver, Replayinstruments the class of the target unit, in this
casem′, and utilizes theContextFactory, but only to storespost.
TheContextLoaderclass obtains and loadsspre, usingXStreamto
unmarshall the stored program state, and then invokes the target
unit for execution.

Two set of scripts, represented with double-side rectangles in Fig-
ure 4, are utilized to provide the filtering and differencingmecha-
nisms. While a test suite is being generated, only the DUTs that
capture a uniquespre (not captured by others DUTs), and that
can be replayed successfully in the same version where they were
carved, are retained. Once a test suite of DUTs is generated,test
case filtering can be performed to remove redundant test cases based
on the same set of projections available throughBoundingAnalysis.
Dif scripts compare twospost according to a specified differencing
function to determine whether the changes fromm to m′ generate
a behavioral difference. Currently, differencing functions on return
values, on instance fields, on full program state (the default) are
fully automated. To facilitate experimentation with different Dif
functions our tools currently store the fullspost, but we plan to im-
plement options to store onlydif(spost) which has the potential to
significantly reduce the cost of carving, replay and differencing.

3.2 Interesting Implementation Aspects
In this section we briefly describe the most interesting aspects of
the implementation.

Limitations of the java.io.Serializable interface. Our approach
requires the ability to save and restore object data representing the
program state. However, the Javajava.io.Serializable in-
terface limits the type of objects that can be serialized. For exam-
ple, Java designates file handler objects as transient (non-serializable)
because it reasonably assumes that a handler’s value is unlikely to
be persistent, and restoring it could enable illegal accesses. The
same limitations apply to other objects, such as database connec-
tions and network streams. In addition, the Java serialization in-
terface may impose additional constraints on serialization. For ex-
ample, it may not serialize classes, methods, or fields declared as
private or final in order to avoid potential security threats.

Fortunately, we are not the first to face these challenges. Wefound
multiple serialization libraries that offer more advancedand flexi-
ble serialization capabilities with various degrees of customization.
We ended up choosing the XStream library [39] because it comes
bundled with many converters for non-serializable types and a de-
fault converter that uses reflection to automatically capture all ob-
ject fields, it serializes to XML which is more compact and easier to
read than native Java serialization, and it has built-in mechanisms
to traverse and manage the storage of the heap which was essential
in implementing the following projections.

Interface k-bounded reachable projection.Theinterface k-bounded
reachableprojection defines the set of preserved references to in-
clude only those reachable via reference chains of lengthk, i.e.,
{r | ∃p∈Paramsreachk(p)}. Using small values ofk can greatly
reduce the size of the recorded pre-state and for many methods it
will have no impact on unit-test robustness. For example, a value of
1 would suffice for a method whose only dereferences are accesses
to fields ofthis. In the implementation, when traversing the pro-
gram using Xstream to store the program state, we keep track of
the length of dereference chains to halt traversal whenk is reached.

If the unit accesses data along a reference chain of length greater
than k, then ak-bounded projection will retain insufficient data
about the pre-state to allow replay. Our implementation dynami-
cally detects this situation and issues aSentinelAccessException
to distinguish replay failure from anapplicationexception. This is
achieved by extending Xstream with a custom converter that auto-
matically transforms objects that lie at a depth ofk + 1 to contain
an additional boolean field that marks it as asentinelinstance. The
unit under test is then instrumented to insert a test of this boolean
field and raise the exception if true.

May-reference reachable projection. The may-reference reach-
able projection uses a static analysis that calculates a characteri-
zation of the heap instances that may be referenced by a method
activation either directly or through method calls. This charac-
terization is expressed as a set of regular expression of theform:
pf1 . . . fn(F+)? This captures an access path that is rooted at a
parameterp and consists ofn dereferences by the named fields
fi. If the analysis calculates that the method may reference an
object through a dereference chain of length greater thann, the
optional final term is included to capture objects that are reach-
able from the end of the chain through dereference of fields inthe
setF . Let reachF (r) = {r′ | ∃f∈F vfield(r, f) = r′} capture
reachability restricted to a set of fieldsF ; reachf denotes reacha-
bility for the singleton setf . For a regular expression of the form
pf1 . . . fm, wherem ≤ n, we construct the set:reachf1

(p) ∪
. . . ∪ reachfm

(. . . (reachf1
(p))), since we want to capture all

references touched along the path. If the regular expression ends
with the termF+ then we union an additional term of the form
reach+

F (reachfm
(. . . (reachf1

(p)))). This projection can signif-
icantly reduce the size of carved pre-states while retaining arbitrar-
ily large heap structures that are relevant to the method under test.

We implemented ak-bounded access path based may-reference
analysis that used the flow-insensitive context-sensitiveequivalence-
class based read-write analysis implemented in Indus [27].This
analysis partitions parameter and variable names into equivalence
classes. The two distinct features of the analysis are: 1) for each
equivalence class, an abstract heap structure based on the names
involved in read/write access is maintained, and 2) distinct equiv-
alence classes are maintained for each method scope except in the
case of static fields and variable names occurring in methodsin-
volved in recursive call chains. We generate regular expressions
that capture the set of all possible referenced access pathsup to a
given fixed length,k, with a default ofk = 2. When traversing the
program using Xstream, we simultaneously keep track of all regular
expressions and mark only those objects that lie on a defined access
path for storage in XML. This analysis is also capable of detecting
when a method is side-effect free and in such cases the storage of
post-states is skipped since method return values completely define
the effect of such method.

4. EMPIRICAL STUDY
The goal of the study is to assess execution efficiency, faultdetec-
tion effectiveness, and robustness of the DUTs. We will perform
such assessment through the comparison of system tests and their
corresponding carved unit test cases in the context of regression
testing. Within this context, we are interested in the following re-
search questions:

RQ1: Can carving techniques save regression test execution costs?
We would like to compare the cost of reusing carved unit test

cases versus the costs of utilizing regression test selection
techniques that work on system test cases.

RQ2: What is the fault detection effectiveness of the carved test
cases? This is important because saving testing costs while
reducing fault detection is rarely an enticing trade-off.

RQ3: How robust are the carved tests in the presence of software
evolution? We would like to assess the reusability of the
carved unit test cases under a real evolving system, and ex-
amine how different types of change can affect the carved
tests sensitivity.

4.1 Testing Techniques
Let P be a program, letP ′ be a modified version ofP , and letT
be a test suite developed initially forP . Regression testing seeks to
testP ′. To facilitate regression testing, test engineers may re-use
T to the extent possible. In this study we considered four types of
test regression techniques, two that work with system tests(S) and
two that worked with carved tests (C):

S-retest-All
WhenP is modified, creatingP ′, we simply reuse all non-obsolete
test cases inT to testP ′; this is known as theretest-alltechnique
[21] and it has been said to represent current industrial practices
[23].

S-selection
The retest alltechnique can be expensive: rerunning all test cases
may require an unacceptable amount of time or human effort.Re-
gression test selectiontechniques [6, 10, 22, 30] use information
aboutP , P ′, andT to select a subset ofT , T ′, with which to test
P ′. We utilize themodified entitytechnique [10], which selects
test cases that exercise methods, inP , that (1) have been deleted
or changed in producingP ′, or (2) use variables or structures that
have been deleted or changed in producingP ′.

C-selection-k
Similar in concept toS-selection, this technique executes all DUTs,
carved with a k-bounded reachable projection, that exercise meth-
ods that were changed inP ′. This technique follows the conjecture
that deeper references are less likely to be required for replay, so
bounding the carving depth may improve the CR efficiency while
maintaining a DUT’s strengths. Within this technique we explore
depth bounding levels of 1, 5, and∞ (unlimited depth which cor-
responds to the interface reachable projection.)

C-selection-mayref
Similar toC-selection-kexcept that it carves DUTs utilizing a may-
reference reachable projection. This technique is based onthe no-
tion that program changes are more likely to affect reachable meth-
ods, so it concentrates in carving just those.

4.2 Measures
Regression test selection techniques achieve savings by reducing
the number of test cases that need to be executed onP ′, thereby
reducing the effort required to retestP ′. We conjecture that CR
techniques achieve additional savings by focusing on unitsof P ′.
To evaluate these effects, we measure thetime to executeand the
time to check the outputsof the test cases in the original test suite,
the selected test suite, and the carved selected test suites. For a
carved test suite we also measure thetime and space to carvethe
original DUT test suite.

Version Methods Changed-covered Tests executing Faults
methods changed methods

v0 109 - - -
v1 100 2 494 3
v5 111 2 494 1
v6 111 2 8 1
v7 107 10 550 2

Table 1: Siena’s components attributes.

One potential cost of regression test selection is the cost of miss-
ing faults that would have been exposed by the system tests prior
to test selection. Similarly, DUTs may miss faults due to theuse
of projections aimed at improving carving efficiency. We will mea-
sure fault detection effectiveness by computing thepercentage of
faults found by each test suite. We will also qualify our findings
by analyzing instances where the outcomes of a carved test case is
different from its corresponding system test case.

To evaluate the robustness of the carved test cases in the presence of
program changes, we are interested in considering three potential
outcomes of replaying actxm

on unitm′: 1) fault is detected, ctxm

causesm′ to reveal a behavioral differences due to a fault; 2)false
difference is detected, ctxm

causesm′ to reveal a behavioral change
from m to m′ that is not a fault (not captured bystx); and test is
unexecutable, ctxm

is ill-formed with respect tom′. Tests may be
ill-formed for a variety of reasons, e.g., object protocol changes, in-
ternal structure of object changes, invariants change, andwe refer
to the degree to which a test set becomes ill-formed under a change
its sensitivity to change. We assess robustness by computing the
percentage of carved tests and program units falling into each one
of the outcomes. Since the robustness of a test case depends on
the change, we qualify robustness by analyzing the relationship be-
tween the type of change and the lifespan and sensitivity of the
DUT.

4.3 Artifact
The artifact we will use to perform this experiment study is Siena
[9]. Siena is an event notification middleware implemented in Java.
This artifact is available for download in the Subject Infrastructure
Repository (SIR) [15, 31]. SIR provides Siena’s source code, a
system level test suite with 567 test cases, multiple versions cor-
responding to product releases, and a set of seeded faults ineach
version (the authors were not involved in this latest activity).

For this study we consider Siena’s core components (not on appli-
cation included in the package that is built with those components).
We utilize the five versions of Siena that have seeded faults that did
not generate compilation errors (faults that generated compilation
errors cannot be tested) and that were exposed by at least onesys-
tem test case (faults that were not found by system tests would not
affect our assessment). For brevity, we summarize the most rele-
vant information to our study in Table 1 and point the reader to SIR
[31] to obtain more details about the process employed to prepare
the Siena artifact for the empirical study. Table 1 providesthe num-
ber of methods, methods changed between versions and covered by
the system test suite, system tests covering the changed methods,
and faults included in each version.

4.4 Study Setup and Design
The overall process consisted of the following steps. First, we
prepared the test suites generated byS-retest-all, S-selection, C-
selection-k*, andC-selection-mayreffor their automatic execution.
The preparation of the system level test suites was trivial because

Carving Metric Reduction
C-select-k C-select

1 5 ∞ mayref
Plain Minutes 113 157 158 467

MB 1.1K 1.9K 1.9K 2K
Compressed Minutes 129 186 188 496

MB 6 7 7 9

Table 2: Carving times and sizes to generate initial DUT suite.

they were already available in the repository. The preparation of the
carved selection suites (C-selection-k*andC-selection-mayref), re-
quired for us to run the CR tool to carve all the DUTs for all the
methods inv0 executed by the system tests.

Second, we run each of the generated test suites on the fault-free
versions of Siena to obtain an oracle for each version. In thecase
of the system test suite, the oracle consisted in the set of outputs
generated by the program. For the carved tests, the oracle consisted
of the method return value and the relevantspost (we later explore
several alternative projections to define the relevant state).

Third, we run each test suite on each faulty instance of each version
(some versions contained multiple faults) and recorded their execu-
tion time. We dealt with each fault instance individually tocontrol
for potential masking effects among faults that might negatively
affect the fault detection performance of the tests.

Fourth, to assess fault detection effectiveness, for each test suite, we
compared the outcome of each test case between the fault-free ver-
sion (oracle) and the faulty instances of each version. To compare
the system test outcomes between correct and fault versions, we
used pre-defined differencing functions that are part of ourimple-
mentation which ignore “non-deterministic” output data (e.g, dates,
times, random numbers). For the unit tests, we performed a simi-
lar differencing, but applied to the target method return values and
spost. When the outcome of a test case differed between the fault-
free and the faulty version, a fault is found.

Last, we compared the measures across the test suites generated by
S-retest-all, S-selection, C-selection-k*, andC-selection-mayref. We
then repeated the same steps to collect data for the same tech-
niques when utilizing test case filtering and compression. The re-
sults emerging from this comparison are presented in the next sec-
tion. All these activities were performed on an Opteron 250 pro-
cessor, with 4GB of RAM, running Linux-Fedora, and Java 1.5.

4.5 Results
In this section we provide the results addressing each research ques-
tion regarding carving and replaying efficiency, fault detection ef-
fectiveness, and robustness and sensitivity of the DUTs suites.

RQ1: Efficiency. We first focus on the efficiency of the carving
process. Although our infrastructure automates carving, this pro-
cess does consume time and storage so it is important to assess its
efficiency as it might impact its adoption and scalability. Table 2
summarizes the time (in minutes) and the size (in MB) that took
to carve and store the complete initial suite of DUTs utilizing the
different techniques without and with the use of compression on
the spre andspost. Each column in the table contains a test case
reduction technique.

For Siena, constraining the carving depth affects the carving time.
This is more noticeable when carving atk = 1 which approxi-

mately a quarter of the time required to carve with eitherk = 5 or
the wholespre. We observe the same patterns in terms of storage
requirements. Note again that for depths greater than one the dif-
ferences in storage space are minimal due to the rather “shallow”
nature of the subject (dereference chains with length greater than
2 are rare in Siena). The may-reference projection requiresalmost
three times of additional analysis time, but as we shall see,it is
able to provide some gains in replay time. In the second row of
Table 2 we see that simply compressing the state data increased the
carving time in proportion to the carved state size (and it will add
uncompression time as well for the DUTs selected for replaying),
but it consistently provided between two and three-orders of mag-
nitude reduction in the space required by the DUTs, offeringa very
interesting tradeoff.

It is important to note that the carving numbers reported in Table
2 correspond to the initial carving of thecomplete DUT suite–
DUTs carved for each of the over 100 methods in Siena from each
of the over 560 system tests that may execute each method – and
can be performed automatically without the tester’s participation.
During the evolution of the system, DUTs will be replayed repeat-
edly amortizing the initial carving costs, and only a subsetof the
DUTs will need to be recarved. Recarving will be necessary when
is determined that changes in the program may affect a DUT’s rele-
vant pre-state. We believe that existing impact analysis techniques
[24] could be used, for example, to determine what DUTs must be
recarved when the a unit is changed, and we plan to integrate those
into our infrastructure in the future.

We now proceed to analyze the replay efficiency. Replay efficiency
is particularly important since it is likely that a carved DUT will be
repeatedly replayed as the target unit evolves. Figure 5 summarizes
the replay execution times for some of the techniques we consider.
Each observation corresponds to the replay time of each generated
test suite under each version, while the lines joining observations
are just meant to assist in the interpretation. Note that theplots for
C-select-k5andC-select-k∞ overlapped almost completely so we
display only one of them.

The test suite resulting from theS-retest-alltechnique consistently
averages 135 minutes per version. The test suites resultingfrom S-
selectfor each version averages 92 minutes per version, with sav-
ings overS-retest-allranging from a minimum of 4 minutes inv6
maximum of 132 minutes inv7. (Factors that affect the efficiency
of this technique are not within the scope of this paper but can be
found at [16]). On average,S-selecttakes 67% of the time required
by S-retest-all.

The test suites selected by theC-selection-k*techniques show very
similar tendencies. On average, all theC-selection-k*techniques
replay execution time was less than 9 minutes, and they took less
than a minute to replay v6 and up to 24 minutes forC-selection-
k∞ to replay v5. On average, these suites takes 6% of the time
required byS-retest-all, and 9% of the time required byS-select.
The test suites selected byC-selection-mayreftakes 6% of the time
required byS-retest-all, 10% of the time required byS-selection,
and 92% of the time required byC-selection-k∞. Last, we observe
that handling compressed files (only shown fork = 5) increased
the replaying time by up to a factor of four.

We also measured thediffing time required by all techniques. For
the system test suites the diffing times were consistently less than
a minute, for theC-selection-k*suites it averaged 12 minutes, and

0

20

40

60

80

100

120

140

v1 v5 v6 v7

Versions

M
in
u
te
s

S-restest-all S-selection C-select-k1

C-select-k5 C-select-mayref C-select-k5-comp

Figure 5: Execution times.

for theC-selection-mayrefaveraged 6 minutes. When filtering was
employed, diffing time for theC-selection-k*techniques was re-
duced by an average of 54%. Overall, although the diffing activity
is important to the performance of the carved suites, implementing
simple incremental differencing functions could dramatically im-
prove their diffing performance. For example, we currently com-
pare all the program post-state, but we could instead first compare
the return values to see if it reveals any differences, and ifit does
not, then compare the rest of the post-state. This simple technique
would suffice to reducev5 diffing time by 96%.

RQ2: Fault detection effectiveness. The test suites directly gen-
erated byS-selection, C-selection-k*, andC-selection-mayrefde-
tected as many faults as theS-retest-alltechnique. This indicates
that aDUT test suite can be as effective as a system test suite at de-
tecting faults, even when using aggressive projections. Itis worth
noting, however, that when computing fault detection effectiveness
over a whole DUT suite we do not account for the fact that, for
some system tests, their corresponding carved DUTs may havelost
or gained fault detection effectiveness. We conjecture that this is
a likely situation with our subject because many of the faults are
detected by multiple system tests. To address this situation we per-
form an effectiveness analysis at the individual test case level.

For each carving technique we compute: 1) PP, the percentageof
passing selected system tests (selected utilizingS-Selection) that
have all corresponding carved unit test cases passing, and 2) FF:
the percentage of failing system tests that have at least onecorre-
sponding failing carved unit test case. Table 3 presents thePP and
FF values for all the techniques under all version instances. In gen-
eral we observe that the average most for PP and FF are over 90%
indicating that DUTs carved from a system test case tend to con-
serve much of its effectiveness. We now discuss some interesting
instances of the PP and FF values.

— FROM HERE —

When using the test suite resulting fromC-selection-k1we find that
for v7 : f1, only 24% of the passing system tests had all their
associated DUTs passing. The rest of the tests had a DUT that
detected a behavioral difference that was not detected by the system
test case oracle because it did not propagate to the output tobe
detected.

using this restrictive reduction, the FF values are on average 97%.

C-selection-k C-selection
1 5 ∞ mayref

PP FF PP FF PP FF PP FF
v1:f1 100 100 100 100 100 100 100 100
v1:f2 100 100 100 100 100 100 100 100
v1:f3 100 100 100 100 100 100 100 100
v5 100 0 100 99 100 99 100 99
v6 100 100 100 100 100 100 100 100
v7:f1 24 100 24 100 24 100 24 100
v7:f2 100 91 100 91 100 91 100 91
Average 89 84 89 99 89 99 89 99

Table 3: Fault Detection Effectiveness.

In the cases where FF is not 100% such as inv6, we observed that
replaying the test suite carved utilizingC-selection-k1did not de-
tect all the behavioral differences exhibited by the selected system
test cases (1 out of the 8 system tests exposed a behavioral dif-
ference that was not exposed by any of its corresponding DUTs).
This reduction in FF was due to the depth-1 projection which did
not capture enough pre-state to detect a behavioral difference. The
other carved suites, however, did detect this fault.

In v5, and independently of the carved test suite used, 3 out of 300
failing system tests did not have any corresponding DUT on the
changed methods failing (99%). We observed the same situation
in v7 : f2 where 18 out of 203 DUTs (9%) did not expose behav-
ioral differences even though the corresponding system tests failed.
When we analyzed the reasons for this reduction in FF we discov-
ered that in both cases the tool did not carve inv0 the pre-state for
one of the changed methods. The tool did not carve any pre-state
for those methods because the system test case did not reach them.
Changes in the code structure (e.g., addition of a method call, han-
dling of an exception), however, made the system test cases reach
those changed methods (and expose a fault) in later versions. In
both circumstances, improved DUTs that would have resultedin
100% FF could have been generated by re-carving the test cases in
later versions (carve fromvi to replay invi+1). More generally,
these observations point out again for the need to establishmecha-
nisms to detect changes in the code that should trigger re-carving.

RQ3: Robustness and sensitivity.We previously examined how
DUTs obtained throughC-selection-k1are quite fragile in terms
of their executability, and how certain code changes may make a
method reach a new part of the heap that was not originally carved.
A complementary way to evaluate the robustness and sensitivity of
DUTs is to compare their performance in the presence of meth-
ods that changed, and in the presence of methods that changedand
are indeed faulty. We performed such detailed comparison onthe
filtered suites forC-selection-∞ andC-selection-mayref, and now
briefly discuss three distinct instances of the scenarios wefound.

In both faulty instances ofv7, the version with the most methods
changed (10), none of the behavioral differences were foundby
methods other than the faulty ones. This is clearly an ideal situa-
tion. V 1 : f1 represents perhaps a more common case were none
of the DUTs going through non-faulty changed methods failed, but
only 78% of the DUTs traversing faulty methods actually failed.
Yet a different perspective is offered byv5. Only two methods
changed in this version, and one them is invoked exclusivelyby the
other. The fault is located in the callee. The caller method is exer-
cised by 6354 DUTs out of which 736 detect behavioral differences
(12%). The (faulty) callee method is exercised by 26173 DUTsout
of which 928 detect behavioral differences (less than 4%). This

last scenario, in which carving still generates more behavioral dif-
ferences for the faulty method than for change one, is interesting
because it shows that even for correct changes the number of af-
fected DUTs may be large.

It is worth noting that the differencing functions offer an opportu-
nity to control this problem. For example, a more relaxed differenc-
ing mechanism focused on just return values would have detected
all the faults inv5 andv6, while reducing the number of false dif-
ferences significantly since both faults manifest themselves in the
return value. Such a differencing function, however, leadsto a re-
duced fault detection in the case ofv1. Mechanisms to select and
appropriately combine these differencing functions will be impor-
tant for the robustness and sensitivity of DUTs.

5. RELATED WORK
Our work was inspired by Weide’s notion of modular testing as
a means to evaluate the modular reasoning property of a pieceof
software [36]. Although Weide’s focus was not on testing buton
the evaluation of the fragility of modular reasoning, he raised some
important questions regarding the potential applicability of what he
called a “modular regression technique” that led to our work.

Within the context of regression testing, our approach is also simi-
lar to Binkley’s semantic guided regression testing in thatit aims to
reduce testing costs by running a subset of the program [6, 5]. Bink-
ley’s technique proposes the utilization of static slicingto identify
potential semantic differences between two versions of a program.
He also presents an algorithm to identify the system tests that must
be run on the slices resulting from the differences between the pro-
gram versions. The fundamental distinction between this and our
approach is that we do not run system level tests, but rather smaller
and more focused unit tests. Another important distinctionis that
the testing target are not the semantic differences betweenversions,
but rather methods in the program.

The preliminary results from our original test carving prototype
[28] evidenced the potential of carved tests to improve the effi-
ciency and the focus of a large system test suite, identified chal-
lenges to scale-up the approach, and defined some scenarios under
which the carved test cases would and would not perform well.We
have built on that work by presenting a generic framework fordif-
ferential carving, extending the type of analysis we performed to
make the approach more scalable, and by developing a full setof
tools that can enable us to explore different techniques on various
programs.

We are aware of two other research efforts related to the notion of
test carving. First, Orso et al. prototyped the notion of selective
record and replay mechanisms of program executions by capturing
the interactions between the observed subsystem and its context,
and then replaying just the result of those interactions [25]. Sec-
ond, the test factoring approach introduced by Saff et al. takes a
similar approach to Orso’s with the creation of what they called
mock objects that serve to create the scaffolding to supportthe exe-
cution of the test unit [34]. The same group introduced a toolset for
fully-featured Java execution environments that can handle many of
the subtle interactions present in this programming language (e.g.,
callbacks, arrays, native methods) [33]. In terms of our framework,
both of these approaches would be considered action-based CR ap-
proaches. We have presented, what is to the best of our knowledge,
the first state-based approach to CR testing.

Saff et al. describe their approach in detail allowing us to provide
a more in depth comparison with our approach. While carving a
method test case, their infra-structure records the sequence of calls
that can influence the method and then they record the sequence
of calls made by the method and the return values and unit state
side-effects of those calls. In our framework, this would amount
to calculatingσ̄ such thats(σ̄) = spre for the method of inter-
est and then calculating summarizing tracesσ̄calli that reflect the
return value and side effects for each call out of the method and
carving sprei

, the relevant pre-state for each call. During replay
the same sequence of calls with the same parameters is expected -
any deviation results in a report of a difference during replay. In
our framework, we would identify the points at which the,n, calls
out of the method occur as post-state locations to define a DUTof
the form(σ̄, (spre1

, . . . , spren
)).

Both of these action-based approaches, capture the interactions be-
tween the target unit and its context and then build the scaffolding
to replay just those interactions. Hence, they do not incur in costs
associated with capturing and storing the system state for each tar-
geted unit. On the other hand, this approach may generate tests that
are sensitive to changes that do not effect meaning, e.g., changing
the order of independent method calls. Saff et al. have identified
this issue and propose to analyze the lifespan of the factored test
cases across sequences of method modifications [33]. This isa
critical factor in judging the cost-effectiveness of CR testing and
we have studied this issue in Section 4.5.

These two related efforts have shown their feasibility in terms of
being able to replay tests and the latter approach has provided initial
evidence that it can save time and resources under several scenarios.
Neither approach, however, has been evaluated in terms of its fault
detection effectiveness which ultimately determines the value of the
carved tests, or in the context of regression testing.

Our work also relates to efforts aimed at developing unit test cases.
Several frameworks grouped under the umbrella of Xunit havebeen
developed to support software engineers in the developmentof unit
tests. Junit, for example, is a popular framework for the Java pro-
gramming language that lets programmers attach testing code to
their classes to validate their behavior [17].

There are also multiple approaches that automate, to different de-
grees, the generation of unit tests. For example, commercial tools
such as Jtest develops unit test cases by analyzing method signa-
tures and selecting test cases that increase some coverage criteria
[20]. Some of these tools aim to assess software robustness (e.g.,
whether an exception is thrown [12]). Others utilize some type of
specification such as pre and post conditions or operationalabstrac-
tions, to guide the test case generation and actually check whether
the test outcome meets the expectation results [7, 11, 26, 38]. In-
terestingly enough, Parasoft new version of JTest enhancesthe unit
test case generated with “Sniffer”, a tool that monitors running ap-
plications to pick interesting values to exercise the target unit [20],
which can be perceived as a primitive type of carving projection.

Although carving also aims to generate unit test cases, the ap-
proach we propose is different from previous unit test case gen-
eration mechanisms since it consists of the projection of a system
test case onto the targeted software unit. As such, we expectfor
carved unit tests to retain some of the interesting interactions ex-
posed by systems tests that are harder to design into regularunit
test cases that do not consider the system context.

As stated, the post-state differencing functions that regulate the de-
tection of differences between encodings of unit behavior belongs
to a larger body of testing work on differential-based oracles. For
example, the work of Weyuker [37] on the development of pseudo-
oracles, Jaramillo et al. [19] on using comparisons to checkfor
optimization induced errors in compilers, or the comparison of pro-
gram spectra [29] are instances of utilizing differencing-type ora-
cles at the system or subsystem level. When focusing at the unit
level of object oriented programs, as we are doing, Binder sug-
gests the term “concrete state” oracles, which aim to compare the
value of all the unit’s attributes against what is expected [4]. Briand
et al. refer to this type of oracle as a “precise” oracle because it
was the most accurate one employed in their studies [8]. Over-
all, the notion of testing being fundamentally differential has long
been understood [37], since thepseudo-oraclesagainst which sys-
tems are judged correct are themselves subject to error. Thus, the
question we aimed to answer is not whether our CR method judges
a system correct or incorrect, but rather whether it is capable of
cost-effectively detecting differences between encodings of system
behavior that developers can easily mine to judge whether the dif-
ference reflects an error.

6. CONCLUSION
We have presented a general framework for automatically carving
and replaying DUTs. The framework incorporates sophisticated
projection and differencing strategies that can be instantiated in
various ways to accommodate distinct trade-offs. We have im-
plemented a state-based instance of the framework that mitigates
testing costs through two types of reachability-based projections,
and that can adjust the DUTs sensitivity through two differencing
functions. Our evaluation of this implementation has revealed that
DUTs can be automatically generated from system tests, reduce
average test suite execution time to a tenth of our best system se-
lection technique1, and still retain most of the fault detection power
of system tests.

The experiences gained while instantiating and assessing the frame-
work suggest several directions for future work. First, we will
perform further studies not only to confirm our findings on other
subjects under similar settings, but also to compare DUTs with tra-
ditional unit tests developed by software engineers. We conjecture
that software engineers develop rather shallow unit tests and that
we can effectively complement those with DUTs that expose the
target units to more complex execution settings.

Second, we will extend our implementation with additional features
to reduce the cost of CR testing while preserving test effectiveness.
We will store the results of applying differencing functions to post-
states rather than storing post-states themselves. We willprovide
mechanisms for testers to define differencing functions besides the
ones provided by the framework. We expect that experience apply-
ing these techniques to a broad collection of examples will expose
additional opportunities for cost-reduction. For example, when col-
lecting the data for Siena we realized that applying some “lossy”
projections to filter DUTs may yield more interesting tradeoffs be-
tween scalability and fault detection effectiveness.

Third, we believe that it is possible to combine multiple DUTs
to create acompoundDUT for a larger program unit, for exam-
ple a class. This can be achieved by correlating multiple DUTs

1See the Filtered-C-selection-k5 and Filtered-C-selection-mayref
results in Figure 5

based on the identity of the receiver object. For a sequence of
method calls,ci, . . . , cj , on an object in a system test, the set of
DUTs for those calls is replaced by a single DUT that captures
(sprei, (sposti, . . . , spostj)). In this test, the sequence of calls are
replayed for each method as(spostk, spostk+1) wherek > i; for
k = i the replay is for(sprei, sposti). This effectively transfers the
effects of methods on the receiver object throughout the sequence
achieving a kind of interaction testing between calls. We plan to im-
plement this approach and assess it relative to other class-oriented
testing techniques.

Last, we will develop a supporting infrastructure to increase the use
of DUTs in practice. We will leverage some of the static analysis
techniques already at our disposal to determine, for example, when
changes in a method may suggest a re-carving operation targeted
at that specific method. We would also like to extend the analysis
performed after a DUTs detects a behavioral difference on a unit
that is later deemed correct. In this situation, we would like to
know what other DUTs might be obsolete and require re-carving.

Acknowledgments
This work was supported in part by the National Science Foun-
dation through CAREER award 0347518, and awards 0429149,
0444167, 045203, and 0411043, and by the Army Research Of-
fice through DURIP award W911NF-04-1-0104. We would like to
thank B. Weide for inspiring this effort and S. Reddy for the feasi-
bility exploration she provided through her thesis. We would also
like to thank V. Ranganath for supporting our use of Indus andO.
Tkachuk for implementing preliminary versions of the static anal-
ysis.

7. REFERENCES
[1] J. Bach. Useful features of a test automation system (part iii).

Testing Techniques Newsletter, October 1996.

[2] Kent Beck.Extreme Programming Explained : Embrace
Change. Addison-Wesley Professional, first edition, 1999.

[3] Kent Beck.Test Driven Development: By Example.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

[4] Robert Binder.Testing Object-Oriented Systems: Models,
Patterns, and Tools, chapter 18, pages 943–951. Object
Technologies. Addison Wesley, Reading, Massachusetts,
USA, first edition, 1999.

[5] D. Binkley, R. Capellini, L. Raszewski, and C. Smith. An
implementation of and experiment with semantic
differencing. In Proceedings of the International Conference
on Software Maintenance, pages 82–91, November 2001.

[6] David Binkley. Semantics guided regression test cost
reduction.IEEE Transactions on Software Engineering,
23(8):498–516, August 1997.

[7] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko
Marinov. Korat: automated testing based on java predicates.
In International Symposium on Software Testing and
Analysis, pages 123–133, 2002.

[8] Lionel C. Briand, Massimiliano Di Penta, and Yvan Labiche.
Assessing and improving state-based class testing: A series
of experiments.IEEE Trans. Softw. Eng., 30(11):770–793,
2004.

[9] Antonio Carzaniga, David Rosenblum, and Alex Wolf.
Achieving scalability and expressiveness in an internet-scale
event notification service. InACM Symposium Principles of
Distributed Computing,, pages 219–227, July 2000.

[10] Y.F. Chen, D.S. Rosenblum, and K.P. Vo. TestTube: A
system for selective regression testing. InProc. of the 16th
Int’l. Conf. on Softw. Eng., pages 211–220, May 1994.

[11] Yoonsik Cheon and Gary T. Leavens. A simple and practical
approach to unit testing: The jml and junit. InEuropean
Conference on Object-Oriented Programming, pages
231–255, June 2002.

[12] Christoph Csallner and Yannis Smaragdakis. Jcrasher:an
automatic robustness tester for java.Softw. Pract. Exper.,
34(11):1025–1050, 2004.

[13] M. Dahm and J. Van Zyl. Byte code engineering library.
http://jakarta.apache.org/bcel/, June 2002.

[14] Sylvia Dieckmann and Urs Holzle. A study of the allocation
behavior of the specjvm98 java benchmark. InProceedings
of the 13th European Conference on Object-Oriented
Programming, pages 92–115, London, UK, 1999.
Springer-Verlag.

[15] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel.
Supporting controlled experimentation with testing
techniques: An infrastructure and its potential impact.
Empirical Software Engineering: An International Journal,
10(4):405–435, 2005.

[16] Sebastian Elbaum, Praveen Kallakuri, Alexey G.
Malishevsky, Gregg Rothermel, and Satya Kanduri.
Understanding the effects of changes on the
cost-effectiveness of regression testing techniques.Journal
of Software Testing, Verification, and Reliability,
13(2):65–83, June 2003.

[17] Erich Gamma and Kent Beck. Junit.
http://sourceforge.net/projects/junit, December 2005.

[18] Ralf Hildebrandt and Andreas Zeller. Simplifying
failure-inducing input. InInternational Symposium on
Software Testing and Analysis, pages 135–145, 2000.

[19] Clara Jaramillo, Rajiv Gupta, and Mary Lou Soffa.
Comparison checking: An approach to avoid debugging of
optimized code. InESEC / SIGSOFT FSE, pages 268–284,
1999.

[20] JTest. Jtest product overview.
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest,
October 2005.

[21] H.K.N. Leung and L. White. Insights Into Regression
Testing. InProc. of the Conf. on Softw. Maint., pages 60–69,
October 1989.

[22] H.K.N. Leung and L.J. White. A study of integration testing
and software regression at the integration level. InProc. of
the Conf. on Softw. Maint., pages 290–300, November 1990.

[23] K. Onoma, W-T. Tsai, M. Poonawala, and H. Suganuma.
Regression testing in an industrial environment.Comm.
ACM, 41(5):81–86, May 1998.

[24] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and M.J.
Harrold. An Empirical Comparison of Dynamic Impact
Analysis Algorithms. InProceedings of the International
Conference on Software Engineering, pages 491–500, 2004.

[25] Alex Orso and Brian Kennedy. Selective capture and replay
of program executions. InWorkshop on Dynamic Analysis,
May 2005.

[26] Carlos Pacheco and Michael D. Ernst. Eclat: Automatic
generation and classification of test inputs. InEuropean
Conference on Object-Oriented Programming, pages
504–527, July 2005.

[27] Venkatesh Prasad Ranganath and John Hatcliff. Pruning
interference and ready dependence for slicing concurrent
java programs. InProceedings of the International
Conference on Compiler Construction, April 2004.

[28] Sameera Kolan Reddy. Carving module test cases from
system test cases: an application to regression testing.
Master’s thesis, University of Nebraska - Lincoln, Computer
Science and Engineering Department, July 2004.

[29] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus.
The use of program profiling for software maintenance with
applications to the year 2000 problem. In M. Jazayeri and
H. Schauer, editors,European Software Engineering
Conference (ESEC/FSE 97), pages 432–449.
Springer–Verlag, 1997.

[30] G. Rothermel and M.J. Harrold. Analyzing regression test
selection techniques.IEEE Trans. on Softw. Eng.,
22(8):529–551, August 1996.

[31] Gregg Rothermel, Sebastian Elbaum, and Hyunsook Do.
Software infrastructure repository.
http://cse.unl.edu/ galileo/php/sir/index.php, January 2006.

[32] Gregg Rothermel, Sebastian Elbaum, Alexey G.
Malishevsky, Praveen Kallakuri, and Xuemei Qiu. On test
suite composition and cost-effective regression testing.ACM
Transactions of Software Engineering and Methodologies,
13(3):277–331, July 2004.

[33] David Saff, Shay Artzi, Jeff Perkins, and Michael Ernst.
Automated test factoring for java. InProceedings of the
Conference of Automated Software Engineering, pages
114–123, November 2005.

[34] David Saff and Michael Ernst. Automatic mock object
creation for test factoring. InWorkshop on Program Analysis
for Software Tools and Engineering, pages 49–51, June 2004.

[35] David Saff and Michael D. Ernst. An experimental
evaluation of continuous testing during development. In
Proceedings of the ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 76–85, 2004.

[36] Bruce Weide. Modular regression testing”: Connections to
component-based software. InWorkshop on
Component-based Software Engineering, pages 82–91, May
2001.

[37] E. J. Weyuker. On testing non-testable programs.The
Computer Journal, 15(4):465–470, 1982.

[38] Tao Xie and David Notkin. Tool-assisted unit-test generation
and selection based on operational abstractions.Automated
Software Engineering Journal, 2006.

[39] XStream. Xstream - 1.1.2. http://xstream.codehaus.org,
August 2005.

	Carving Differential Unit Test Cases from System Test Cases
	

	paper.dvi

