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Domain-wall curvature and coercivity in pinning type Sm–Co magnets
Ralph Skomski
Max-Planck-Institut fu¨r Mikrostrukturphysik Weinberg 2, 06120 Halle, Germany

The origin of coercivity in precipitation hardened Sm–Co magnets is investigated. By considering
domain-wall pinning at boundary phase and Z phase inhomogenities, it is found that the hexagonal
Z phase has no direct influence on the coercivity. The intuitive assumption of plane domain walls
made in a recent calculation is unrealistic but has no direct effect on the coercivity. However, due
to the comparatively large size of the 12:17 cells, the calculated three dimensional domain-wall
curvature is sufficiently large to assure a nearly ideal nestling of the domain walls to the 1:5 cell
boundary. This nestling yields a coercivity increase from about 0.1 to about 1 T and is therefore
responsible for the high coercivity of 2:17 based Sm–Co magnets. ©1997 American Institute of
Physics.@S0021-8979~97!43708-8#

I. INTRODUCTION

The samarium–cobalt intermetallics SmCo5 and
Sm2Co17 are appreciated for their high Curie temperatures,
1003 and 1190 K, respectively, which are much higher than
those of rare-earth iron permanent magnets.1–4 SmCo5 is
characterized by a very high magnetocrystalline anisotropy,
K1'17 MJ/m3, which makes it possible to produce nucle-
ation controlled SmCo5 magnets.

3 A disadvantage of SmCo5
is the comparatively low spontaneous magnetization,
m0Ms51.07 T, since the energy product, a key figure of
merit in permanent magnetism, increases quadratically with
Ms . By comparison, the room temperature saturation mag-
netizations of Nd2Fe14B and Sm2Co17 are 1.61 and 1.17 T,
respectively. Thus, from the point of view of saturation mag-
netization, Sm2Co17 is superior to SmCo5, but the compara-
tively low magnetocrystalline anisotropy of Sm2Co17,
K153.3 MJ/m3, makes it difficult to create coercivity in pure
Sm2Co17 magnets.

3

The outcome of the technological development of
Sm–Co 2:17 magnets have been pinning, type hybrids where
Sm2Co17 crystallites are surrounded by a SmCo5 boundary
phase~Fig. 1!.1,2 The Sm2Co17 cells, whose size is of order
100 nm, are responsible for the saturation magnetization and
consist of hexagonal Th2Ni17-type platelets in a rhombohe-
dral Th2Zn17-type matrix. Since the wall energyg
5 4AK1A is largest in the boundary phase, the CaCu5 type
1:5 regions enhance the coercivity by acting as pinning cen-
ters for the domain walls.2 In practice, the volume fractions
of the 1:5 boundary and hexagonal 2:17 platelet phases are
about 10% each. Here the fraction of the boundary phase is
tuned by the samarium content, because the precipitation of
the 1:5 phase requires some excess samarium.2

The nominal composition of optimum pinning type
Sm–Co magnets, about Sm12Co58Fe24Cu4Zr2,

5 indicates the
importance of nonmagnetic additions such as Cu and Zr.
Experiments show that the addition of zirconium yields an
increase of the coercivity of typical materials from less than
0.4 to more than 0.8 T.5 Microstructurally, the zirconium
atoms enter the hexagonal platelet or Z phase.

The question arises, whether the addition of Z phase
merely modifies the phase-ordering kinetics2 or essentially
contributes to the magnetic behavior of the material.6 On the
one hand, it has been found that the hexagonal platelets are

necessary for the formation of the 1:5 boundary phase, very
likely by acting as easy diffusion pathways.2,4 On the other
hand, it has been argued that there might be an additional
pinning of plane domain walls where the zirconium rich hex-
agonal platelet phase intersects the boundary phase.6 In this
article we will calculate the domain-wall curvature and show
how the coercivity is affected by deviations from the planar
wall shape.

II. DOMAIN-WALL CURVATURE

Micromagnetic and quantum-mechanical problems are
similar in the sense that unknown magnetization and wave
functions, respectively, have to be determined from a differ-
ential equation.7 If one knows the qualitative behavior of the
function in question, then one can use suitable, parameter
containing trial functions to describe the system. As it is well
known from quantum mechanics, the optimum parameters
are obtained by minimizing the energy whose functional de-
rivative is the differential equation of the problem.

In the present context, the magnetizationM ~r ! is given
by the position of the domain wall, and we have to consider
the ~free! energy8

E522m0MsH*↑dV1*g dS. ~1!

Here H is the magnetic field, applied along the crystallo-
graphicc axis,g 5 4AK1A is the domain-wall energy, and
the index↑ indicates that the volume integration includes all
regions where magnetization and external field are parallel.

Let us first consider a plane wall parallel to the crystal-
lographicc axis, whose position can be parametrized by a

FIG. 1. Schematic microstructure of a pinning type Sm2Co17 magnet.
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displacement parameterj. Equation ~1! then becomes
E522m0MsHL

2j1^g(j)&L2, whereL2 is the wall area,
and ^...& denotes the average over the wall area. ForH50,
the energy minimum is given by the positionj050 at which
the average wall energŷg& is lowest. If the domain wall is
curved, then the displacement depends on the position of the
wall element:j5j(u,v). Hereu andv are Cartesian coordi-
nates so thatj~0,0! indicates the center of the cell. In terms
of j(u,v), the energy is

E522m0MsH*j~u,v !du dv

1gEA11S ]j

]uD
2

1S ]j

]v D
2

du dv. ~2!

Since the wall is pinned at the boundaries of the cell, the
function j(ui ,v i) equals zero at each pointi of the cell
boundary.

To calculate the curvature of the wall, we approximate
the wall inside a given cell by a segment of a sphere of
radius R ~Fig. 2!. This implies R25A(j2l)21u21v2,
where the parameterl is necessary to match the boundary
conditionj50 atu21v25R0

2. Here the quantity 2R0 can be
interpreted as some average cell size. Puttingj(u,v;R,R0)
into Eq. ~2! and minimizingE with respect toR, we obtain
after short calculation the surprisingly simple result
R5g/m0MsH. The angleb, defined in Fig. 2, is given by

b5arc sin
m0MsHR0

g
. ~3!

Taking m0Ms51.17 T, g535 mJ/m2,6 R0540 nm, and
m0H50.8 T yieldsb556°. This means that the domain-wall
curvature inside the 2:17 cells is nonnegligible, in spite of
the comparatively high domain-wall energy of Sm2Co17.
This result agrees with experimental findings: Lorentz elec-
tron micrographs2 show that the domain walls adapt to the
cell boundary characterized by an angle of about 30°.

III. COERCIVITY

A. Influence of domain-wall curvature

To investigate how the domain-wall curvature affects the
coercivity, we have to add a pinning termDE52pR0f (j0)
to the energy Eq.~2!. The functionf ~j0! describes the depen-
dence of the wall energy on the wall position at the cell
boundary. Introducing the maximum displacementh5R
2 AR22R0

2 of the wall compared to the reference plane~Fig.
2!, we can write the total energy as

E

p
522m0MsHS h36 1

hR0
2

2
1R0

2j0D1s~R0
21h2!

12R0f ~j0!. ~4!

Fortunately, the two trial parametersh andj0 are decoupled
in this equation, so that minimizingE with respect toj0
yields after short calculation the pinning coercivity
Hc5max(] f /]j0)/m0MsR0

2. This coercivity is independent
of the curvature radiusR so long as the wall does not touch
the cell boundary.

B. The variational nature of pinning coercivity

In Ref. 6, the coercivity mechanism has been deduced by
comparing the energies of several domain-wall configura-
tions ~Fig. 3!. The main competition was assumed to be be-
tween ideal plane walls@Fig. 3~a!# and plane walls utilizing
the comparatively low domain-wall energy in the hexagonal
platelets@Fig. 3~b!#. The existence of pinning configurations
of the type Fig. 3~b! has given rise to the conclusion that the
Z phase gives a direct contribution to the coercivity.6 It is,
however, not appropriate to compare total energies, since
most domain-wall configurations of interest in permanent
magnetism are metastable. In fact, both Figs. 3~a! and 3~b!
represent local energy minima able to pin domain walls. Fur-
thermore, the consideration of a single cell in Fig. 3~b! is not
sufficient, since the position of the Z phase platelets is more
or less random. In other words, the number of cells having
theZ phase platelets at the right position is limited, and the
domain wall is likely to cross pure, energetically unfavorable
1:5 regions above and below the cutting shown in Fig. 3~b!.

To estimate the plain-wall coercivity caused by the con-
figuration of Fig. 3~a!, we have to determine the pinning
energyf ~j0! or, alternatively,̂ g~j0!&5^g~j!&. Since only dif-
ferences in the domain-wall energies are of importance, the
wall-energy difference between the 1:5 and 2:17 regions,
Dg'23 mJ/m3,6 is the key parameter. Now we make the fair
assumption that the area of the intersected 1:5 phase doubles

FIG. 2. A domain wall having the curvature of a sphere of radiusR. The
dashed line shows the position of thej050 plane.

FIG. 3. Schematic wall configurations:~a! plane wall,~b! wall intersecting a
Z phase platelet,~c! curved wall, and~d! imperfect wall.
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on moving the wall byj05b, whereb is the thickness of the
separating boundary phase. This yields, after short calcula-
tion,

Hc5
DgF

2m0Msb
, ~5!

whereF is the volume fraction of the boundary phase. Tak-
ing b510 nm andF510%, we obtainm0Hc'0.1 T, which is
one order of magnitude smaller than the experimental coer-
civity. Up to a numerical prefactor of order one, the same
result is obtained for the configuration of Fig. 3~b!.

In practice, the pronounced domain-wall curvature leads
to configurations, such as that shown in Fig. 3~c!. Here, the
area contributing to the pinning is not restricted to a small
fractionF of the wall, so that we can putF51 in Eq. ~5!.
This yields coercivities of order 1 T, in agreement with ex-
periment.

It is important to note that this estimate remains true if
the 1:5 boundary phase is defective. Consider, for example
the case where the 1:5 boundary region contains a hole of
radius R05Rh @Fig. 3~d!#. Taking m0Ms51.17 T, g535
mJ/m7,6 m0H50.8 T, andR0510 nm, we obtain from Eq.~3!
the angleb512°. This means that the wall remains largely
uncurved in the hole, the wall cannot expand like a bubble
gum into the neighboring cell, and the coercivity is only
slightly reduced by the defect.

IV. DISCUSSION

From the point of view of mathematical physics, where
magnetization states and coercivities are analoges to
quantum-mechanical wave functions and energy values, re-
spectively, the assumption of a domain-wall curvature
amounts to the choice of a particular trial wave function. To
model three dimensional domain walls, we have assumed
that the curvature of the wall is constant everywhere, so that
the wall represents a section of a sphere. This is, of course,
an approximation, since the true shape of the wall depends

on detail of the cell boundaries and cannot be calculated in a
closed form. However, variational ground-state energies are
generally more exact than ground-state eigenfunctions, so
that the details of the wall shape are of minor importance in
the present context.

Note the general rule that the size of the inhomogene-
ities, that is the thickness of the 1:5 regions, has to be com-
parable to the domain-wall thicknessdW'5 nm.8,9 Much
thinner boundary regions lead to a ‘‘tunneling’’ of the wall
through the boundary phase.

V. CONCLUSIONS

In conclusion, we have calculated the domain-wall cur-
vature in the 2:17 cells of pinning type Sm–Co magnets,
which turns out to be very large. Although the coercivity is
not affected by this curvature in lowest order, there is an
indirect coercivity enhancement due to the fact that the
curved domain walls touch the 1:5 boundary regions. The
hexagonal Z phase platelets contribute to the formation of
the cell boundaries and may act as pinning centers but are
unlikely to yield a dominating contribution to the coercivity.
In fact, even in the absence of Z phase platelets, the presence
of a well developed 1:5 boundary phase would assure a high
coercivity.
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