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The purpose of mosquito-borne disease surveillance is to assess the risk of 

pathogen transmission by assessing mosquito populations and the prevalence of disease 

pathogens in those populations. West Nile virus (WNV) is an important mosquito-borne 

virus in Nebraska, and can be transmitted by several mosquito species found in Lancaster 

County, Nebraska, including Culex pipiens L., Culex salinarius Coquillett, Culex 

restuans Theobald, Culex tarsalis Coquillett, Culex territans Walker, and Culex erraticus 

Dyar & Knab. These species are ornithophilic, yet many studies indicate a shift in host 

feeding to mammalian in late summer months. One-octen-3-ol (octenol) can be isolated 

from bovine breath and mammalian sweat, mimicking a mammalian host.  Here we 

present findings of a two year study.  A chemoattractant study using CDC light traps 

baited with either dry ice, 1 octenol gel pack, 6 octenol gel packs, 10 ml of liquid octenol, 

20 ml of liquid octenol, or no attractant.  Our results demonstrated that traps with CO2 

collected more mosquitoes than traps with octenol or no attractant. In the bloodmeal 

analysis, humans were the primary host.  We were not able to detect a host shift in host 

use from avian to mammalian utilizing octenol as a chemoattractant as the majority of 

bloodmeals were human.  
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Mosquitoes 

Biology 

 

Mosquitoes are in the Order Diptera, Suborder Nematocera, Family Culicidae, 

and includes two subfamilies, Anophelinae and Culicinae (Harbach 2011).  Anophelinae 

has three genera: Anopheles, Bironella, and Chagasia, whereas Culicinae consists of 11 

Tribes, and 41 genera containing over 2,800 species (Harbach 2011).  Mosquitoes are 

found worldwide and occupy all habitats except for places that are permanently frozen 

(Clements 1992, Harbach 2011).  Mosquitoes display holometabolous or complete 

metamorphosis, with four stages of development: egg, larva, pupa, and adult.  Compared 

to adults, juvenile stages are anatomically distinct and occupy different habitats, and 

larvae feed on different food sources (Clements 1992, Harbach 2011).  A mosquito’s rate 

of development and behavior is influenced primarily by environmental factors including 

temperature, humidity, wind speed, and biotic factors including human related activities 

such as irrigation, urbanization, dam construction, and waste removal (or lack of) 

(Clements 1992, Hayes et al. 2005, Poncon et al. 2007, Alcaide et al. 2009, Blair 2009, 

Godsey et al. 2010, Kilpatrick et al. 2010).   

 

Egg/Oviposition:  

Although some mosquito species can oviposit on dry substrates, a water source is 

required for all mosquito eggs to hatch and for larvae to develop.  Multivoltine aedine 

mosquiotes (Aedes vexans Meigen, Ochlerotatus sollicitans Walker, Oc. trivitattus 
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Coquillett, Psophora ciliata Fabricius, and Oc. dorsalis Meigen) are adapted to lay 

desiccation-resistant eggs in ground depressions (Crans 2004).  These species are 

commonly known as floodwater mosquitoes.  Others of this group (Oc. triseriatus Say 

and Oc. japonicas Theobald) lay desiccation-resistant eggs, yet primarily do so in 

containers that regularly receive rainwater (tree holes, plant axils, rock pools, and 

artificial containers such as tires).  Multivoltine Culex (C. salinarius and C. pipiens) and 

Anopheles spp. of mosquitoes have non-desiccation-resistant eggs laid directly on 

standing water (either fresh, high organic/polluted, and or brackish).  Members of this 

group also lay eggs in artificial containers.  Anopheles eggs are laid singularly on the 

surface of the water; whereas Culex, Culiseta, and Unanotaenia lay eggs that stick 

together creating egg rafts (Crans 2004). 

 

Larva 

Mosquito larvae are legless, breathe using spiracles, and require an aquatic habitat 

for development (Clements 1992).  Spiracles differ morphologically among mosquito 

subfamilies.  Anopheline larvae lack a siphon and therefore lay along their dorsal side 

horizontally below the water surface (Clements 1992, Harbach 2011).  Culicine larvae 

have a tube or siphon at the posterior end, allowing larvae to hang downwards from the 

water surface.   

Culicinae larvae are commonly called “wigglers” because of the motion they 

make when alternating between feeding on particulate matter suspended in the water 

(e.g., aquatic microorganisms, bacteria, diatoms, algae, and detritus from decayed plant 
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tissue) and breathing at the surface (Clements 1992).  Anopheline species feed near the 

water’s surface on the particulate-rich layer (Clements 1992).  Toxorhynchites species are 

predatory on small invertebrates (Clements 1992, Harbach 2011), including other 

mosquito larvae. Larvae develop from first to fourth instar and into a pupa within seven 

to fourteen days, when ambient temperatures are conducive to egg hatch and larval 

development (Clements 1992, Blair 2009).    

 

Pupa 

Once a larva is fully developed, it forms a pupa.  A pupa floats with its thorax in 

contact with the water surface for respiration and does not eat.  The final stages of 

metamorphosis are completed during the pupal stage, resulting in the development of the 

adult stage.  Depending on conducive ambient temperatures, adults emerge between one 

and fourteen days (Clements 1992).    

 

Adult 

Adult mosquitoes have elongate bodies with three pairs of long legs, one pair of 

wings, a pair of modified hind wings called halteres, and an elongated proboscis.  Most 

mosquitoes, except for Toxorhynchites spp. and Malaya spp. (which have modified 

mouth parts), have piercing sucking mouthparts (Clements 1992).   All mosquitoes feed 

on plant juices as an energy source within 24 hours post-emergence (Clements 1992, 

Robich and Denlinger 2005, Harbach 2011, Grant and O’Connell 2007).  After a sugar 

meal, anautogenous females obtain a blood meal with the required protein for yolk 

synthesis and egg development (e.g., C. pipiens, Culiseta inornanta Felt, Ae. aegypti 
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Linnaeus in Hasselquist, Ae. vexans, Ae. albopictus Skuse, Anopheles gambiae Giles, An. 

quadrimaculatus Say) (Clements 1992, Grant and O’Connell 2007). Digestion of the 

blood meal may require two to four days, depending on species, reproductive status and 

environmental conditions.   If autogenous, the female does not require a blood meal to 

complete egg development (e.g., Culex pipiens f. molestus Forskål, Aedes atropalpus 

Coquillett, some forms of C. tarsalis, Toxorhynchites, and Malaya) (Clements 1992, 

Grant and O’Connell 2007, Harbach 2011).  Factors that determine if a female is 

autogenous or anautogenous include the quality and quantity of nutrition that larva 

obtain, the mosquito’s environment, blood meal host availability, and blood feeding 

patterns and rates of mosquito species (O’Meara and Edman 1975).   

Mosquitoes display relative attraction to certain host species depending on their 

intrinsic response to specific host cues, which are in turn directly linked to host 

availability.  Host availability varies with geographic location, therefore host preference 

also varies, and the presence of the host must coincide at the same time as the vector. 

Along with intrinsic responses to hosts, female mosquitoes are dependent on the 

surrounding environmental factors that not only impact host availability, but also 

mosquito behavior.  Environmental factors such as ambient temperature, wind speed, and 

humidity impact mosquito behaviors (i.e., flight patterns, host detection, and embryo 

development) which in turn influences how soon a female will blood feed or take a sugar 

meal in preparation for diapause (Robich and Denlinger 2005).  Environment also 

impacts host availability (migration patterns) and abundance (Blair 2009). 



6 

 

 

 

 

Mosquito Physiology and Host Seeking Behaviors 

Female mosquitoes are activated, attracted, and oriented to a potential blood meal 

host via response to various cues (Clements 1999).  Host seeking behaviors are complex, 

involving multiple systems that respond to two major cues, physical and chemical 

(Bowen 1991, Day 2005). 

 

Physical Cues 

The stimuli used by mosquitoes such as vision, hearing, and chemoreception to 

detect hosts can be categorized as short or long-range cues. Long-range cues include 

visual and olfactory signals, whereas short-range cues include visual, olfaction, 

temperature, and sound (Bowen 1991, Clements 1992, 1999; Day 2005, Grant and 

O’Connell 2007). These physical cues include visual cues of the landscape and 

vegetation, as well as contrast motion and color (Day 2005).   Physical cues also include 

heat and humidity which are detected using their thermo-receptors within sensilla on their 

antennae (Friend and Smith 1977, Bowen 1991, Hayes et al. 2005).  

 

Chemical Cues 

Host chemical cues include volatile stimuli released into the atmosphere by the 

host that mosquitoes respond to, resulting in a behavioral response.  These include but are 

not limited to carbon dioxide (CO2), 1-octen-3-ol (octenol) (Buttery and Kamm 1980), L-

lactic acid (component of sweat) (Smith et al. 1970) ammonia, and other emissions that 

hosts release through skin or respiration (Bowen 1991, Hallem et al. 2004,  Hayes et al. 
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2005, Grant and O’Connell 2007,).  Female mosquitoes pick up chemical cues using 

receptors located on sinsilla on the maxillary and labial palps, as well as on the antennae 

(and probably elsewhere) that are sensitive to CO2, 1-octen-3-ol (octenol), and lactic acid 

of varying concentrations (Bowen 1991, Grant and O’Connell 2007).   

Carbon dioxide is known to attract mosquitoes to a potential blood meal host 

(Rudolfs 1922, Washino 1983).  Carbon dioxide is emitted from all vertebrates in 

detectable amounts, and is easy to re-create in association with traps using dry ice or CO2 

tanks (Bowen 1991, Muturi et al. 2007). Female mosquitoes are sensitive to changes in 

CO2 concentrations as low as 0.01%.  When concentrations exceed 4.0%, the mosquito’s 

senses are considered saturated (Bowen 1991).  Octenol, a component of mammalian 

sweat and bovine breath, has been found to attract mosquitoes (Buttery and Kamm 1980, 

Hall et al. 1984, Takken and Kline 1989, Allan et al. 2006).  However, the role of octenol 

in mosquito orientation is unclear.  Rueda et al (2001) found octenol to significantly 

reduce trap collections while other investigators found no significant difference in 

octenol-versus non-octenol-baited traps (Kline et al. 2006).  When paired with CO2, 

octenol can have an addition effect in collection.  Possible explanations for varying 

results reported are trap-environment interaction, competing visual, chemical, and/or 

physical attractants, temporal changes (seasonal effects), dose effects, differing mosquito 

behavior to the chemical, or differing geographical regions (Russell 2004, Kline et al. 

2006).  

 

Mosquito Hosts 



8 

 

 

 

Host feeding preference indicates a pattern of feeding in nature shown by the 

frequency of host blood types found in mosquitoes at a defined place (locality or biotype) 

and period (Washino 1983).  Mosquitoes that are specialists display feeding 

characteristics of a narrow host range, whereas generalists display a wide host range.  

Specialist host feeders include anthrophilic mosquitoes (Aedes aegypti and Anopheles 

gambiae complex) (Ngo and Kramer 2003, Day 2005, Jawara et al. 2009), and 

ornithophilic mosquitoes (Culex species) (Turell et al. 2005, Kilpatrick et al., 2006; 

Molaei et al. 2006, Allan et al. 2006, Patrician et al. 2007, Blair 2009).   Generalist 

feeders include Aedes vexans and Ochloratatus dorsalis, two species that feed on the 

most abundant host (Nosal and Pellizean 2003, Turrell et al. 2005).  Host preference is 

important because of the potential for pathogen transmission by mosquitoes among hosts. 

 

Pathogens 

Mosquitoes transmit a variety of pathogens and parasites including viruses 

(arboviruses), filarial worms (helminths), and protozoa (Clements 1992, Harbach 2011). 

Pathogen transmission requires the presence of a competent vector and a competent host.  

Vector competency, the ability to support survival and reproduction of the pathogen, is 

assessed by measuring the proportion of individuals in an arthropod population or species 

that become infected by, and subsequently transmit (Turell et al. 2005, Blair 2009).  In 

the transmission of viruses, there are two kinds of vectors: an amplifying vector and a 

bridge vector.  They are both competent vectors in that they are able to obtain, harbor, 

and transmit the virus to another host, yet serve different roles in transmission.  An 
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amplifying vector is a mosquito that excels in increasing the viral presence within the 

wild based on an innate feeding preference for a specific host.  A bridge vector is one that 

has a wider host range and transmits the pathogen from the mosquito-avian cycle to 

mammals or other vertebrate species (e.g. West Nile Virus, or Western Equine 

Encephalitis) (Washino 1983, Turell et al. 2005, Blair 2009).   

Host competency indicates the ability for a host to become infected, support 

survival and reproduction of the pathogen, and allow for a competent and susceptible 

vector acquire the virus (Schmidt and Ostfeld 2001, Kilpatrick et al. 2006, Pecoraro 

2007, Tiawsirisup et al. 2008, Blair, 2009).  Therefore, not all pathogens can be 

introduced into a mosquito and transferred to a host, and the competency of both the host 

and vector must be synchronized with the pathogen. 

 

West Nile Virus Epidemiology 

An arbovirus is an arthropod-borne virus that infects and replicates within the 

vector and can be transmitted to a competent susceptible host (Clements 1992). West Nile 

virus (WNV) is an arbovirus in the genus Flavivirus in the Family Flaviviridae, and is 

antigenetically related to more than 65 other pecies of viruses (Sampathkumar 2003, 

Hayes et al. 2005, Gubler, 2008, Reisen 2010, Murray et al. 2010), including Western 

Equine Encephalitis virus, Eastern Equine Encephalitis virus, Japanese Encephalitis 

virus, Dengue Virus, and Yellow Fever virus (Lee et al. 2002, Nosal and Pellizean 2003, 

Sampathkumar 2003).   West Nile virus is a zoonotic and enzootic pathogen; a disease 

prevailing among animals but communicable to humans (Turell et al. 2001, Kilpatrick et 
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al. 2006, Gubler 2008, Blair 2009).  The enzootic transmission cycle is maintained 

between avian reservoir hosts (e.g., Passeriformes) and ornithophagic mosquito vectors 

(e.g., Culex). The occurrence of WNV is seasonal in temperate climates with the majority 

of transmission occurring between June and October (Lee et al. 2002, Nosal and 

Pellizean 2003, Ngo and Kramer 2003, Day 2005, Turell et al. 2005, Hayes et al. 2005, 

Kilpatrick et al. 2006, Pecoraro 2007, Kramer et al. 2008, Blair 2009, Murray et al. 

2010).  However, seasonal changes in host-utilization patterns of competent vector 

species impact the WNV incidence in humans and other incidental hosts. 

West Nile virus was first discovered in a febrile woman in the West Nile district 

in Africa in 1937 (CDC 2013).  In 1957, during an outbreak amongst elderly patients in 

Israel, the virus was recognized as a cause of severe human meningitis or encephalitis 

(inflammation of the brain and spinal cord) (CDC 2013). Since then, the disease has 

spread throughout much of the world including Africa, Europe, the Middle East, Central 

Asia and most recently, North America.  In 1999, an individual was diagnosed with 

WNV in New York City, New York (CDC 2013).  The mode of introduction into the 

United States is not known, but WNV spread rapidly across the country from late 2001 to 

2006. It is hypothesized, that a combination of a broad range of vertebrate hosts including 

susceptible migratory birds and an abundance of competent vectors played important 

roles in the virus expansion (Turell et al. 2001, Hayes et al. 2005, Kramer et al. 2008, 

Gubler 2008, Gleiser and Zalazar 2010). 

 

Vectors-WNV 
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Amplification Vectors 

Based on vector competence data, frequency of WNV infection, blood feeding 

habits, and other criteria, the most important enzootic and/or bridge vectors of WNV in 

North America include C. pipiens complex (C. pipiens pipiens L., C. pipiens molestus, 

and C. quinqueasciatus Say), C. restuans, C. tarsalis, C. salinarius, C. erraticus, and C. 

territans (Washino 1983, Nosal and Pellizean 2003, Ngo and Kramer 2003, Hayes et al. 

2005, Turrell et al. 2005, Day 2005 , Molaei et al. 2006, Patrician et al. 2007, Blair 2009, 

Hamer et al. 2008, Godsey et al. 2010).  Culex spp. are considered primary amplifying 

vectors due to their preference for feeding on avian hosts, allowing for the virus to be 

transmitted from bird to mosquito and potentially to another bird.  Additionally, infected 

Culex females overwinter as adults and aid in early infection and amplification of the 

virus in spring months (Godsey et al. 2010). 

 

Bridge Vectors 

Other species, such as Ae. vexans, Ae. dorsalis, and Ae. melanimon Dyar, Oc. 

triseriatus and Oc. japonicus Coquillettidia perturbans Walker, Oc. sollicitans, Oc. 

trivittatus, Cu. inornata (Washino 1983, Lee et al. 2002, Hayes et al. 2005, Tiawsirisup et 

al. 2008, Hamer et al. 2008, Kramer et al. 2008, Kent et al. 2009, Blair 2009), are 

considered bridge vectors because of their generalistic feeding patterns and have the 

ability to transfer the virus outside of the transmission cycle of avian species to other 

vertebrates including reptiles, rodents, and mammals.  However, they are less likely to be 

infected with the virus because of their random feeding on avian reservoir hosts (Nosal 
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and Pellizean 2003, Turrell et al. 2005, Tiawsirisup et al. 2008, Blair 2009, Godsey et al. 

2010).  These species also do not overwinter as infected adults.   Aedes species are not as 

competent as Culex species in the wild, primarily due to the differences in their feeding 

patterns and preferences, yet when infected with the virus, Aedes species are just as likely 

as Culex to become infected and transmit WNV to another host. 

 

Host Shift 

Several Culex species serve as amplification and bridge vectors in Nebraska, 

including C. tarsalis and C. salinarius (Tempelis et al. 1965, Kilpatrick et al. 2006).  

These species fall into the category of bridge vector, primarily due to their impact of a 

combination of innate host preferences and host availability.  Certain Culex species, 

although considered ornithophilic, will feed on mammalian species.  This shift in host 

feeding behavior varies with geography as well as on host availability and abundance.  

One argument for host shift is availability of avian species.  During spring and summer 

months, young birds are hatching, developing, and are defenseless to the feeding of 

mosquitoes in that they do not move and their feathers are not developed and thin.  As the 

birds mature, their defense habits increase and their feathers thicken, discouraging 

mosquito feeding, and female mosquitoes are encouraged to find other bloodmeal 

sources. Eventually, juveniles disperse and in temperate regions, several avian species 

leave and migrate to winter habitats.   

 

Infection Cycle in a Mosquito 
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A mosquito may acquire an arbovirus by horizontal transmission during blood 

feeding or by vertical transmission during egg development (transovarial transmission) or 

fertilization.   The most common transmission route for WNV is the blood feeding on 

viremic vertebrates.  An infected host is estimated to require approximately 10 
5.5

-10 
7
 

PFU
-1

/ml of virus in order to infect a mosquito, depending on the species (Hayes et al. 

2005, Blair 2009).  For an adult female to become infected, the virus must escape the 

bloodmeal, traverse the midgut to enter the hemocoele, infect the salivary glands, and be 

expelled in the saliva during blood feeding in sufficient quantities to initiate an infection 

in a naive vertebrate host.  There are four broad physiological barriers which may inhibit 

this process: (i) the peritrophic membrane barrier, (ii) the midgut barrier, (iii) the 

hemolyph barrier, and (iv) the salivary gland barrier (Clements 1999). The influence of 

these barriers on vector competence for WNV varies among different mosquito species 

and viral strains, on the titer of WNV ingested (Chamberlain and Sudia 1961, McLintock 

1978), and other factors such as environmental temperature, mosquito age, and larval 

rearing conditions (Turell et al. 2001, Kramer et al. 2008, Wimberly et al. 2008). 

When a Culex mosquito ingests a meal, the food enters the midgut where sensory 

organs within the buccal cavity respond to the meal content (Chamberlain and Sudia 

1961).  If blood cells are present, the meal is moved to the posterior end of the midgut by 

the sphincter muscles of the dorsal diverticula (Chamberlain and Sudia 1961).  This 

portion of the midgut is unique due to the lack of cuticular lining in the endodermal tissue 

and is the primary location where viral infection occurs.  At this point, the virus extrinsic 
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incubation period (EI) begins.  The EI is the time it takes for the virus to multiply and 

distribute from one tissue to another including the midgut-associated muscles, fat body, 

the central nervous system, and the salivary glands (Girard et al. 2005, Styer et al. 2007, 

Blair 2009).  The EI period is influenced by mosquito species competency, the virus titer 

within the bloodmeal, and the mosquito’s environment, particularly the ambient 

temperature (Sampathkumar 2003, Reisen et al. 2006, Blair 2009,  Kilpatrick et al. 2010). 

The virus is thought to first infect the mesenteron and undergo relocation, then 

traverse the basal lamina of the midgut, possibly through tracheal or muscle tissue 

conduits (Romoser et al. 2004).  Once the virus has entered the hemocoel, the infection 

may disseminate to other tissues.  In C. quinquefasciatus, viral replication is first seen in 

the muscles associated with the midgut and fat body tissue, including fat body 

immediately adjacent to the salivary glands (Girard et al. 2005).  As the infection 

progresses, the virus may infect the CNS, particularly the first optic neuropile, and 

transverse the basal lamina of the salivary glands.  Once replication has occurred in the 

salivary glands, virus particles accumulate in the salivary ducts and are expelled during 

salivation.  Once infected with WNV, a mosquito is infected for the remainder of its life, 

able to transmit the virus during future blood feeding (Chamberlain and Sudia 1961, 

Clements 1992, Day 2005, Reisen et al. 2006, Girard et al. 2007, Blair 2009,). 

 

Host-West Nile Virus 
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 The primary hosts for WNV are avian species, with passeriform, columbiform, 

galliform, and galconiform birds, and several birds from the family corvidae, being 

particularly susceptible to infection and serve as amplifying hosts (Nosal and Pellizean 

2003, Ngo and Kramer 2003, Pecoraro et al. 2007, Gubler 2008, O’Brien et al. 2010).  

Sylvatic mammals such as eastern cottontail rabbits (Sylvilagus floridanus J. A. Allen), 

chipmunks, fox squirrels (Sciurus niger L.), and alligators can also develop and sustain a 

viremia of sufficient titer to infect a susceptible mosquito (Tiawsirisup et al. 2008, 

Kramer et al. 2008, Blair 2009, Godsey et al. 2010).  Other vertebrates can also be 

infected with WNV, yet lack competency to serve as amplifying hosts and are considered 

“dead end” hosts.   

It is hypothesized that an abundance of mammalian hosts diverts vectors from 

feeding on competent vertebrate hosts; this is called the dilution effect.  The dilution 

effect is influenced by transmission of a virus between a competent vector to a competent 

host.  Transmission is diluted depending on the accessibility, availability, and abundance 

of the vector and host, therefore as biodiversity increases, the risk of disease transmission 

decreases (Hayes et al. 2005, Kent, 2009, Johnson and Theiltges 2010).     

 

Humans  

Humans are incompetent reservoir hosts for WNV.  However, humans are still 

impacted by the virus by developing a viremia and possibly severe disease.  When a 

susceptible human is bitten by an infected mosquito, the incubation period (the amount of 
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time the virus is typically active within the human system) begins and ranges between 2-

15 days (Sampathkumar 2003).  Most individuals who become infected with WNV are 

asymptomatic and around 20% of infected people, symptoms begin 3-6 days post 

infection and include fever, headache, backache, and/or a rash (Sampathkumar 2003, 

Nosal and Pellizean 2003).  Once the virus enters the circulatory system and infects the 

visceral organs, the central nervous system (CNS) may be infected. Most symptomatic 

individuals develop West Nile fever (WNF), a self-limiting, mild febrile illness which 

may last several days to several months (Hayes et al. 2005).  One in 150 exposed 

individuals may develop neuroinvasive disease, whose symptoms range from mild 

disorientation to coma and death (Hayes et al. 2005).  Acute flaccid paralysis has been 

observed in approximately 13% of patients with neuroinvasive disease (Hayes et al. 2005, 

CDC 2013).  Long term neurological sequelae have been observed in a significant 

proportion of patients with severe neuroinvasive illness.  Individuals over the age of 50 

and young children may have weak or immature immune systems and are more at risk to 

develop a more severe illness and die as a result of a WNV infection (Turell et al. 2001, 

Sampathkumar 2003, Nosal and Pellizean 2003).  Currently there is no vaccine or WNV-

specific treatment in humans (Sampathkumar 2003, Blair 2009, White et al. 2009) except 

for supportive care. 

 

Mosquito Surveillance 
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Several methods exist to determine the presence of WNV within an area. These 

methods vary depending on the objectives of the surveillance program as these 

approaches will sample certain species, groups, or life-stage specific mosquitoes (e.g., 

host-seeking females vs. post-feeding females vs. ovipositing females) (Brust 1990).   

The most commonly utilized method is the attraction and collection of host-seeking 

female mosquitoes using Center for Disease Control (CDC) miniature light traps (John 

Hock Company, Gainesville, FL) baited with CO2 (Clements 1992, Muturi et al. 2007, 

Xue et al. 2008, Brown et al. 2008, Godsey et al. 2010).  Other forms of collection 

include gravid traps (collecting egg-laying females, their eggs, and developing larva) 

(Brust 1990), dipping (collecting eggs and larva) (Qualls and Mullen 2006), resting boxes 

(collecting engorged females or resting mosquitoes), or aspiration (collection of host-

seeking females).  Trapping, as a means to monitor mosquito populations is an integral 

component of surveillance efforts, yet standard techniques for interpreting the results are 

lacking (Brown et al. 2008).  Trap design or type, placement, location, use of attractants 

(e.g., CO2), weather, and presence of hosts can influence mosquito abundance and can 

introduce biases toward specific species (Washino 1983, Bowen 1991, Pecoraro et al. 

2007, Brown et al. 2008).  Recognition of these biases and others including mosquito 

behavior and ecology of the target mosquito species is especially important when 

sampling species distributions, population sizes and designing mosquito-borne disease 

surveillance programs.  
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Once collected, mosquitos can be processed- counted, identified, separated out 

(i.e. by site or date) and tested using an array of tests to obtain a variety of data including 

virus exposure and host feeding information.  Several tests are used to assess WNV 

presence including the rapid analyte measurement platform (RAMP), an immunoassay 

test, and polymerase chain reaction (PCR). 

 

Bloodmeal Analysis  

Components of blood present in the midgut of hematophagous arthropods can be 

used to identify the source of the meal by immunology or molecular based methods.  

Analyzing the bloodmeal of a Culex mosquito is a multi-step process that involves proper 

preservation, extraction, amplification, and sequencing.  The resulting information can be 

used to determine blood feeding patterns of groups and species, as is necessary due to the 

full range of hosts utilized by Culex mosquitoes is variable depending on geographical 

location.  Therefore BMA is critical in order to better understand the transmission cycle 

and dispersal of WNV (Washino 1983, Lee et al. 2002, Apperson et al. 2002, Ngo and 

Kramer 2003, Meece et al. 2005, Townzen et al. 2008, Alcaide et al. 2009, Hamer et al. 

2008, Kent 2009). 

 

Extraction 

Extracting a bloodmeal from an engorged mosquito can be performed by a wide 

variety of methods and kits.  In general, a sample is homogenized with red blood cell 

(RBC) lysis solution in a 1.5 ml microcentrifuge tube, centrifuged, and then cell lysis 
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solution is added then treated with RNase.  To remove the proteins, protein precipitation 

solution is added, centrifuged, and supernatant is pipetted into a clean 1.5 ml 

microcentrifuge tube.  To precipitate the DNA, isopropanol is added, centrifuged, and 

supernatant discarded.  The DNA pellet is washed with 70% ethanol and air dried to 

remove any trace of ethanol. Finally, the DNA pellet is dissolved at room temperature 

using DNA hydration solution, then stored -20
o
 C freezer until used.  

Positive controls are necessary to demonstrate that the PCR is working 

appropriately.  Negative controls consist of all reagents but lack template DNA, allowing 

for the detection of contamination (false positives) (Hoy 2003). 

 

Amplification  

Amplification of the mosquito DNA or template DNA is performed using primers 

and polymerase chain reaction (PCR) methods.  A primer is a specific set of single-

stranded (ss) RNA oligonucleotide that bind sequences to the target DNA region to form 

a short double-strand (Kocher et al. 1989, Hoy 2003).  Primers vary according to 

template DNA. DNA polymerase adds nucleotides to 3’ end of primer; therefore, each 

preexisting DNA strand acts as a template for the production of a new complementary 

strand (Glick and Pasternak 2003).  These primers then bind to the DNA that has been 

denatured (Kocher et al. 1989, Hoy 2003).  Longer primer base pairs (bp) are more 

sensitive and specific (Hoy 2003).   

Gene specific primers target the internal region of a gene (Meece et al. 2005).  

DNA isolated from the blood of an organism for bloodmeal analysis (BMA) is derived 
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from two locations, genomic DNA and mitochondrial DNA (mtDNA) (Kent 2009).  Of 

the two, mtDNA is preferred.  Mitochondria are self-replicating, maternally-inherited 

organelles containing independent 16.5 genomes per cell.  Mitochondrial DNA is 

relatively easy to obtain, amplifies easily by PCR, and is easier to purify than nuclear 

DNA (Kocher et al. 1989, Cicero and Johnson et al. 2001, Lee et al. 2002, Hoy 2003, 

Ngo and Kramer 2003, Meece et al. 2005, Kent and Norris, 2005; Townzen et al. 2008, 

Kent 2009,).   

Gene specific primers are ideal when the list of potential hosts is large or if the 

host range is unknown.  Therefore, it is important when conducting BMA to have primers 

that can be used over a broad range displaying sufficient genetic variation at the sequence 

level yet excluding arthropod DNA (Lee et al. 2002, Meece et al. 2005, Kent and Norris 

2005, Townzen et al. 2008, Kent 2009).  Two commonly used mitochondrial genes are 

cytochrome oxidase 1 (COI) and Cytochrome b (Cyt b) (Ngo and Kramer 2003, Kent and 

Norris 2005, Meece et al. 2005).  Cytochrome oxidase 1 is a 648-bp region at the 5’ end 

(Kent et al. 2009, Alcaide et al. 2009).  It is not as commonly used as other mitochondrial 

genes, therefore it has been severely underutilized in the BMA process and therefore is 

more incomplete, having around 50,000 barcoded species (as of August 11, 2008)  

(Townzen et al. 2008, Kent 2009).  Cytochrome b is a 358-bp DNA fragment.  The 

region is highly conserved and is used for evolutionary studies, species identification, and 

bloodmeal detection and identification (Cicero and Johnson 2001, Lee et al. 2002, Ngo 

and Kramer 2003, Meece et al. 2005, Townzen et al. 2008, Kent, 2009).  Despite the 
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many positives of cytb, including the large number of sequences (over 22,000,000), 

taxonomic gaps still exist in the published data (Townzen et al. 2008, Kent 2009).  

 Once the desired primers are chosen, a ‘master mix’ is created.  Conventional 

PCR methods require a sample master mix preparation that can be adjusted depending on 

the protocol, the sample, and results of the PCR method (Hoy 2003).  The PCR involves 

complex kinetic interactions between the template DNA, oligonucleotide primers, 

deoxynucleotide triphosphate (dNTP), buffer, and enzyme (DNA polymerase or Taq) 

(Hoy 2003).  These relationships change during the course of the reaction (Hoy 2003). 

No single protocol works for all situations and each new experiment requires 

optimization (Hoy 2003).   

PCR enables the amplification of a specific DNA sequence by replication. The 

process of PCR amplification involves three steps that are repeated multiple times: 

denaturation, renaturation, and synthesis.  Denaturation (heating) separates the DNA 

strand and subsequent product molecules, allowing for binding on each side or strand to 

occur (Glick and Pasternak 2003).  Renaturation (cooling) binds the complementary 

single strand of DNA template to the primers and synthesis or extension of 

complementary sequence DNA strand (Glick and Pasternak 2003, Hoy 2003).  This 

heating and cooling process that is repeated several times until the template DNA is 

amplified to the desired amount (Glick and Pasternak 2003, Hoy 2003).  Heating and 

cooling can be performed by hand, using two separate water baths, but more commonly 

an automated temperature thermocycler is used (Hoy 2003).   
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Once the PCR cycle has completed, amplification products are checked on an 

agarose gel.  In general, a sample of one particular macromolecule (protein, DNA, or 

RNA) is placed in a well at or near the end of a gel matrix (gel) lane, an electric field is 

applied across the gel, and charged macromolecules are driven together in the direction of 

the anode though the gel.  The distance that a band moves into a gel depends on the size 

of the openings of the gel, smaller macromolecules travel further than larger ones.  The 

bands, which are aligned in a lane under each well, are visualized by staining the gel with 

a dye that is specific for protein, DNA, or RNA.  The intensity of a stained band reflects 

the frequency of occurrence of a macromolecule in a sample (Glick and Pasternak 2003).  

If amplification did occur, bands appear when visualized under a UV light box, however, 

if they did not amplify, then no bands will appear and the sample can be run through PCR 

again in case of an error, or is not considered to have a present bloodmeal. 

 

Sequencing and Profiling 

Following amplification, DNA sequencing is conducted.  Sequencing allows the 

potential identification of a host to the genus or species level.  One common method of 

sequencing is cycle sequencing.  Cycle sequencing is a method in which asymmetric PCR 

is used to generate a DNA template for sequencing by the Sanger dideoxysequencing (or 

chain termination method) (Hoy 2003).  Four separate amplification reactions are set up, 

each containing the same primer and a different chain-terminating ddNTP.  Two cycling 

programs are used- during the first, the reaction mixtures are amplified for 15 to 40 

rounds by denaturation of the template DNA, annealing of the 
32

P-labeled sequencing 
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primer to the target, and termination of the extended strand by incorporation of a ddNTP.  

The result is a hybrid molecule that is partially double-stranded and consists of the full-

length template strand and its complementary chain-terminated product.  This product is 

denatured during the first step of the complementary chain-terminated product,, resulting 

in the template strand becoming available for another round of priming, extension, and 

termination.  Cycle sequencing produces product in a linear fashion (Hoy 2003).  In the 

second program, the annealing step is omitted so that no further extension of primers is 

possible. Instead, the second segment provides an opportunity to further extend the 

reaction products that were not terminated by incorporation of a ddNTP during the initial 

rounds of the PCR.  The radio labeled products are displayed on a denaturing 

polyacrylamide gel and detected by autoradiography (Hoy 2003). 

The sequence chain is then compared to known sequences using the Basic Local 

Alignment Search Tool (BLAST).  BLAST is one of the most widely utilized tools in 

phylogenetic analysis and is used to search large databases of DNA (or amino acid) 

sequences, returning sequences that have regions of similarity to the sequence of interest 

provided by the user (query sequence). The program finds regions in sequence pairs that 

have high levels of similarity.  The results of a BLAST search orders the sequences and 

provides an e-value based on the similarities in sequence pairs.  This sequence is 

compared to a publically accessible database, GeneBank or Barcode of Life, containing 

millions of DNA sequences of organisms from around the world to identify the 
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bloodmeal source (Apperson et al. 2002, Meece et al. 2005, Townzen et al. 2008, Kent et 

al. 2009).  

A presumed identification can be made when the sequence is between 95% and 

99% match, indicating a good quality sequence (Townzen et al. 2008, Kent et al. 2009).  

Although GeneBank and Barcode of Life contain sequences for millions of organisms, 

the database is far from complete, lacking the ability to perfectly and accurately identify 

all specimen samples (Kent et al. 2009). 

 

Considerations for Error 

Sequencing can yield useful information.  However, it is important to take into 

consideration several components of BMA that could impact the results including the 

method and accuracy of sample preservation, the source and amount of blood meal taken, 

and PCR procedures. 

 

Mosquito Biology/Sample Preservation  

Once engorged mosquitoes are obtained, time between bloodmeal ingestion and 

preservation may to impact bloodmeal amplification and identification due to protein 

reduction, DNA digestion, and degradation of the vertebrate bloodmeal (Kent and Norris 

2005, Oshaghi et al. 2006, Kent et al. 2009).  The time frame is between 24 hours and 72 

hours, depending on the species of mosquito and its environment, especially temperature 

(Washino 1983, Kent and Norris 2005, Oshaghi et al. 2006).  Ideal killing and storage 
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techniques include placing the insects into an ultralow freezer (-80° C) or into liquid 

nitrogen or dry ice.  Rapid killing reduces damage to DNA by endogenous DNases.  

Storage of insects under inappropriate conditions can have detrimental effects on the 

quality and quantity of DNA available for the PCR (Hoy 2003).  Alternative killing and 

storage methods include the use of ethanol (EtOH) at 95 or 100%.  The use of EtOh at 

less than 95% is undesirable because the water in insects dilutes the EtOH, which can 

result in degradation of DNA (Hoy 2003). 

 

Bloodmeal Type 

Mosquitoes take four different types of bloodmeals: simple meal, multiple meals, 

unmixed meals, and partial meals (Clements 1992).  A simple meal results from a single 

feeding; it can be a complete meal or a partial meal from a single host (Clements 1992).  

A multiple meal results from  partial meals from two or more hosts, where the final meal 

is completed prior to the first meal being digested and is identifiable (Washino 1983).  An 

unmixed meal contains multiple bloodmeals yet one or more cannot be identified or is 

cryptic (i.e. those completed on the same host species) (Townzen et al. 2008).   

 The majority of the bloodmeals in the wild are simple bloodmeals.  Yet digestion 

of the bloodmeal varies among host type.  Mammalian red blood cells are not nucleated 

and contain less DNA than avian red blood cells. As a result, identification is more 

difficult since there is less DNA compared to a comparable avian bloodmeals (Meece et 

al. 2005, Kent and Norris 2005). 
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 Multiple bloodmeals are more difficult to determine and define than simple 

bloodmeals, but they can be identified using an electropherogram analysis after 

sequencing. Multiple meals are represented by double peaks at positions where mixed 

bases were detected to be level during sequencing (Kent and Norris 2005, Kent et al. 

2009).  The ability to detect mixed bloodmeals depends on the DNA concentrations 

available from the bloodmeal, the more blood present in the midgut from the host, the 

more likely it is to amplify and sequence (Lee et al. 2002).  Multiple bloodmeals are not 

as easily recorded or observed due to cryptic meals (Kent and Norris 2005, Townzen et 

al. 2008). 

 

Volume 

If the mosquito has taken a full bloodmeal and is noticeably engorged, 

amplification and detection are easier than if the mosquito has only taken a small or 

partial bloodmeal.  Bloodmeal volume is also directly linked to the success of PCR, 

amplification, and ultimately identification (Kent and Norris 2005, Kent et al. 2009).  

Approximately 0.01 µl of human blood contains 50 nucleated cells, and one nucleated 

human blood cell contains approximately 6 ng DNA, it is estimated that the smallest and 

largest mosquito bloodmeals were from which human DNA successfully amplified 

contained 2 and 82 ng DNA, respectively (Oshaghi et al. 2006, Kent et al. 2009).   

 

PCR 
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 In the process of using PCR protocol, necessary components such as positive 

controls can impact amplification of samples as cross-contamination is possible (Hoy 

2003). Additional challenges to amplification of vertebrate DNA from bloodmeals 

include the presence of PCR inhibitors in blood, such as heme.  The addition of bovine 

serum albumin to the reaction mixture is known to reverse this inhibition, probably by 

binding to the heme.  Second, if animal-derived glycerin is present in the commercial 

TAQ DNA polymerase, this could result in false-positive amplification of vertebrate 

DNA.  Therefore, appropriate negative controls should always be run to avoid 

misinterpretation (Kent et al. 2009).  Another necessary component are primers, yet 

primer dimers can arise causing problems in host identification during sequencing.  

Primer dimers arise when the enzyme makes a product by reading from the 3’ end of one 

primer across to the 5’ end of the other, as each primer serves as both primer and 

template, a sequence complementary to each primer binding and extension.  The 

accumulation of a large amount of primer-dimer depletes primers and dNTPs from the 

reaction mixture and competes for enzyme with the desired target DNA. (Hoy 2003)  

Low-molecular-weight DNA artificial products may be produced and are most obvious if 

the PCR is carried out with high primer concentrations, too much TAQ in early cycles, 

small amounts of template DNA and too many cycles (Hoy 2003). 

 

 

 

 

Objectives 
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WNV negatively impacts human and animal health.  However, the host-seeking 

behavior and host preference of Culex mosquitoes in Lancaster County, Nebraska are not 

well known.  The purpose of this study is to characterize mosquito populations in 

Lancaster Co., Nebraska.  With the understanding that chemoattractants can be used to 

monitor Culex species populations, we can then learn how these different compounds 

affect mosquito collections ultimately for surveillance and control measures. 

To address these issues, my objectives for this study are: 1) describe host seeking 

Culex populations in Lancaster Co, Nebraska.  2) Determine if octenol is a suitable 

substitute for CO2 as an attractant for Culex mosquitoes.  3) To compare the efficacy of 

different formulations of octenol as an attractant for Culex species and, 4) if octenol can 

highlight a shift in Culex mosquitoes feeding from birds to mammals.  This information 

can then be used for the development of more efficient control policies (Lee et al. 2002, 

Ngo and Kramer 2003, Meece et al. 2005, Kent et al. 2009, Alcaide et al. 2009).  
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CHAPTER 2 

Evaluation of efficacy of 1-octen-3-ol and carbon dioxide as chemoattractants with 

mosquito spp. West Nile virus mosquito surveillance programs in Lancaster 

County, Nebraska   
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Introduction 

West Nile Virus (WNV) is a flavivirus that circulates between avian species and 

ornithophilic Culex mosquitoes, but can be transmitted to humans via bridge vectors 

(Sampathkumar 2003, Hayes et al. 2005, Gubler 2008, Reisen 2010, Murray et al. 2010).  

The complete range of host-utilization by Culex mosquitoes remains uncertain, 

particularly since Culex spp. diversity and host availability varies geographically and 

temporally (Kent et al. 2009).  A better understanding of attraction to chemoattractants 

and seasonal host-utilization of Culex mosquitoes will aid in creating more efficient 

surveillance and control methods for WNV. 

Since the discovery of WNV in the United States in 1999, more than 32,633 

individuals have been infected, including 3,112 cases in Nebraska since 2002 (CDC 

2013).  In 2000, the Nebraska Department of Health and Human Services (DHHSNE 

2013) began a mosquito and WNV surveillance program comprising of avian testing, 

human blood donor testing, human and equine case reporting, and the collection of host-

seeking female mosquitoes. Collection and WNV testing of host-seeking females 

provides information on virus transmission risk. To collect mosquitoes, programs 

typically use Center for Disease Control (CDC) miniature light traps (John Hock 

Company, Gainesville, FL) baited with carbon dioxide (CO2), available from gas tanks or 

in the form of dry ice.   

Carbon dioxide is a by-product of animal respiration, used by mosquitoes to 

orient to a potential host. As a general host attractant, the gas does not elicit host-specific 
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behavior due to a bias in this trapping technique (Thiemann and Reisen 2012).  This is a 

concern where Culex mosquitoes have been shown to shift feeding from avian species to 

mammals in late summer and early fall months (Ngo and Kramer 2003, Hayes et al. 

2005, Kent et al. 2009).   

Instead of a general attractant, the use of a host specific attractant may provide 

information of host feeding patterns of Culex mosquitoes and also allow for a more cost 

effective approach for Culex mosquito surveillance.  One-octen-3-ol (octenol), a 

chemoattractant mimicking mammalian sweat and bovine breath (Hall et al. 1984), could 

serve as a specific indicator of mosquito attraction to mammals (Takken and Kline 1989, 

Kline 1991a).  There are variations in the formulation of octenol, but at present two forms 

commonly used are pure liquid octenol (≥98%, FCC, FG, Sigma-Aldrich) and a 

commercially-available gel pack, Nosquito (Stinger
TM

, Kaz Inc.) containing a 

combination of chemicals. 

As a cost effective approach, liquid octenol maintains an extended shelf life 

compared to dry ice.  An unopened single gel pack can maintain chemical potency for 

years and when opened, may be operational for one month according to the manufacturer 

costs around $8/3 g (kaz.com).  Liquid octenol can be stored for several months and 

averages $140/kg (sigmaaldrich.com).  Pelleted dry ice tends to evaporate within hours 

unless contained in an air-tight freezer, and even then can melt within several days and 

averages $8/1.36 kg.  In areas where dry ice is not readily available or difficult to 

transport, octanol could be used as a substitute. Other forms of CO2 such as tanks, can be 
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stored and last longer than dry ice, yet are more expensive (5 lb. aluminum CO2 tank, 

$56.48), can be heavy, and difficult to transport. 

The objectives of this study are: A) describe host seeking Culex populations in 

Lancaster Co, Nebraska, B) determine if octenol is a suitable substitute for CO2 as an 

attractant for Culex mosquitoes, C) to compare the efficacy of different formulations of 

octenol as an attractant for Culex species, and D) if octenol can highlight a shift in Culex 

mosquitoes feeding from birds to mammals. 

Materials and Methods 

 2010 Protocol 

The study was conducted from June 24
th

 to October 5
th

 of 2010 at ten sites in 

Lancaster County, Nebraska (Table 2.1).  Each site included a tree line and a permanent 

or temporary water source within close proximity (approximately 100 m). Sites were 

visited every other week during a 14-week period.  During each sample week, 

mosquitoes were collected for three trap nights, consecutively if possible, unless weather 

was a concern (e.g. thunderstorms).  Sample weeks were used for analysis.  Site location 

set up was randomized for each three-night sampling week.  Treatments and a control 

were also randomized during each sampling week so that treatments were not in the same 

position twice.  Randomization was performed using Statistical Analysis Software (SAS 

2010, Inst. Inc., Cary, NC).   

Three CDC miniature light traps (J.W. Hock Ltd., Gainesville, FL) were set-up per 

site, 30 m apart, and 3 m above the ground within a tree line. The traps were used to 
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assess two chemoattractant treatments and one control at each site. Treatments consisted 

of CO2 in the form of pelleted dry ice (approximately 500 g released from a one liter 

thermos), one 3g octenol (indicated as ‘octenol 1’ henceforth) gel pack (Nosquito, 

Stinger
TM

, Kaz Inc., Southborough, MA), or a non-baited light only trap as the control. 

Trap Operation and Collection Preservation 

Light traps were operated from dusk to dawn (about 14 hr) each trap night.  Traps 

were baited at the beginning of each sampling night.  A single octenol gel pack was 

attached on top of one trap; another trap’s thermos was filled with dry ice, sealed, and 

allowed to evaporate at variable rate depending on heat, humidity, and wind speed, and 

the final trap served as the control.  A new octenol gel pack was used on the first evening 

of the sampling week.  It was collected during pick up and stored in a sealed plastic bag 

and re-used for the remaining two sampling nights within that sampling week.  Dry ice 

was replenished each evening.  Wind speed, temperature, humidity, dew point, heat 

index, and chill were recorded using a Kestrel 3000 pocket weather meter at each trap’s 

site during both set up and take down.  

Trapped mosquitoes were collected and placed on dry ice at dawn. Mosquitoes were 

kept separate by trap, placed in a -70ºC freezer for 30 min, and transferred to a 5 ml vial 

for long-term storage at -70ºC.  Specimens were counted and identified to species (Darsie 

and Ward 2005, Thielman and Hunter 2007) on a -20ºC chill table positioned beneath a 

stereomicroscope.  Culex spp. with no apparent bloodmeals were pooled separately from 

all other species in groups of up to 50 mosquitoes according to date, location, trap, and 

attractant in microcenterfuge tubes and stored at -70ºC.  Blood fed Culex spp. were set 



41 

 

 

 

aside for another study.  Male mosquitoes were not included in this study. Culex pipiens 

L., Cx. restuans Theobald, and Cx. salinarius Coquillett are identify from one another 

and are reported as “Cx. pipiens group” 

2011 Protocol 

The 2011 study was conducted for 22 weeks using the same ten sites as in 2010 

for a total of 5 trapping weeks.  However, different formulations of octenol were 

examined.  The five treatments and one control: CO2 (as in 2010), 1 and 6 Nosquito gel 

packs (Nosquito, Stinger
TM

, Kaz Inc., Southborough, MA), 10 and 20 mL liquid 1-octen-

3-ol (≥98%, FCC, FG, Sigma-Aldrich, St. Louis, MO), and traps without a 

chemoattractant. 

An apparatus consisting of a 35 ml plastic centrifugation tube with snap-on cap 

(Beckman Coulter, Inc; Brea, CA) was built that volatilized liquid octenol at different 

rates, as described in Kline et al. (1991b). The cap consisted of a one cm hole through 

which a wick made of dental cotton roll material was inserted. Tubes were then filled 

with liquid octenol and sealed with the modified cap, ensuring that the wick touched the 

bottom of the tube and became saturated with the liquid octenol.  The low dose device 

(Octenol 10) used 10 ml of octenol and a 20 mm wick length, with 5 mm extended 

outside the lid.  The high dose device (Octenol 20) had 20 ml octenol and 25 mm wick 

length, with 10 mm extending outside the lid. Wicks were saturated with octenol prior to 

the study and stored in plastic bag to maintain saturation prior to use in the field. Volume 

of liquid octenol was measured prior to sampling and after pick up.  Sampling protocol 
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was similar to 2010 with treatment positions at a site randomized for each trap week.  

Mosquitoes were frozen, counted, sorted, and preserved as in 2010.    

Analysis 

Analysis of variance of field and attractant effects was conducted using the 

GLIMMIX procedure (SAS 2010, Inst. Inc., Cary, NC). All statements of significance 

were based on P < 0.05.  The model included the field effects of attractant, session and 

their interaction, as well as random site and attractant by site effects.   The attractant 

effect was tested over the random attractant by site effect, while session and the attractant 

by session interaction effects were tested over the residual error.  Correlation coefficients 

were conducted using r-squared values for each of the variables.   
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Results 

In 2010, during a 7 sample weeks from June 24th to October 5th, a total of 97,554 

mosquitoes and 23 species were collected. These included: Aedes vexans Meigen, 

Ochlerotatus atropalpus Harbach, Oc. dorsalis Meigen, Oc. nigromaculis Ludlow, Oc. 

sollicitans Walker, Oc. triseriatus Say, Oc. trivittatus Coquillett, Anopheles punctipennis 

Say, An. quadrimaculatus Say, An. walker Theobald, Coquillettidia perturbans Walker, 

Culex pipiens L., Culex salinarius Coquillett, Culex restuans Theobald, Culex tarsalis 

Coquillett, Culex territans Walker, and Culex erraticus Dyar & Knab, Culiseta inornata 

Williston, Orthopodomyia signifera Coquillett, Psorophora ciliate Fabricius, Ps. 

Columbiae Dyar & Knab,  Ps. Cyanescens Coquillett, Ps. Ferox Van Humboldt, and 

Uranotaenia sapphirina Osten Sacken.   The majority of the mosquitoes that were 

collected were Ae. vexans (56%), Culex species (13%), and Oc. trivittatus (9%) (Table 

2.2).   

Traps baited with CO2 collected significantly (F = 11.73; df = 2, 18.05; P < 

0.0005) more mosquitoes (83,182) than Octenol 1 (9,524).  Culex mosquito collections 

were significantly higher (F = 13.11; df = 2, 18.06; P < 0.0003) at CO2 (11,112) than 

Octenol 1 treatment (1,242) (Table 2.2).  Traps not baited with an attractant (none), 

collected fewer Culex mosquitoes than any of the other treatments, but were not 

significantly (P>0.05) different from the Octenol 1 (Figure 2.1). 

In 2011, during 5 trap weeks from May 14th to October 18th, a total of 35,583 

mosquitoes and 21 species were collected.  The same species were collected in 2011 as in 
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2010 except that Oc. atropalpus, Oc. nigromaculus, and U. saphirina were not collected 

and An. earlei was collected.  As in 2010, the majority of the mosquitoes that were 

collected were Ae. vexans (47%), Culex species (4%), and Oc. trivittatus (21%) (Table 

2.2).  

Traps baited with CO2 collected significantly (F = 3.94; df = 5, 24.38; P < 

0.0093) more mosquitoes (20,882) and significantly (F = 5.01; df = 5, 26.95; P < 0.0023) 

more Culex mosquitoes (924) than any of the forms of octenol (Octenol 10 = 4,639, 230; 

Octenol 20 =2,259, 157; Octenol 1= 1,692, 94; Octenol 6 = 4,938, 184, respectively) 

(Table 2.1).  Traps not baited with an attractant collected fewer Culex mosquitoes than 

any of the treatments, but were not significantly (P>0.05) different from the Octenol 

treatments (Figure 2.2). 

The two trap years of 2010 and 2011 differed by total number of mosquitoes 

collected and number of Culex mosquitoes collected monthly and seasonally. A major 

factor included 2010 being a wet year with flood conditions and 2011 was extremely dry. 

In 2010, most (0.8 to 0.9 proportion of mosquitoes) came to traps with CO2. Similarly in 

2011, the greatest proportions of mosquitoes (40-86%) were collected in CO2 traps 

(Table 2.3). 

To distinguish if octenol could be substituted for CO2 in attracting Culex 

mosquitoes, correlations of the numbers of mosquitoes collected by CO2 and octenol traps 

by site were made.  For 2010, there was a weak correlation for the C. pipiens group but 

no correlations for C. tarsalis or total Culex (Table 2.4). For 2011, a strong correlation 
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was detected between CO2 and Octenol 6 (0.75) for the C. pipiens group, between CO2 

and Octenol 1 (0.66) for C. tarsalis mosquitoes, and CO2 and Octenol 6 (0.75) for all 

Culex mosquito species (Table 2.4).  The remaining correlations were weak and 

insignificant as in 2010.  The majority of mosquitoes for each group was collected at 

traps baited with CO2 (40%-86%).   On average, Octenol 6, Octenol 10, and Octenol 20 

collected more mosquitoes than Octenol 1 (Table 2.3). 

We also tested for seasonal changes in feeding behaviors by comparing attraction 

of mosquito groups to CO2-baited traps (general attractant) versus octenol-baited traps 

(mammalian-specific attractant). For all mosquitoes, no discernible pattern change was 

apparent between early and late season correlations of mosquitoes coming to CO2 and to 

octenol traps. Similarly there were no discernible changes in seasonal correlations for C. 

pipiens or C. tarsalis mosquitoes. However, for Ae. vexans and Oc. trivittatus 

mosquitoes, correlations between captures coming to traps baited with CO2 and octenol 

generally decreased in late season (Table 2.5). 

We used correlation analysis to compare the feeding patterns of C. tarsalis and C. 

pipiens mosquitoes (primarily avian feeders) with Ae. vexans and Oc. trivittatus 

(generalist feeders) to determine if the two groups have similar feeding patterns.  Strong 

or moderate correlations between generalist and avian-feeding mosquito groups coming 

to CO2 baited traps were seen in 2010 but were not detected in 2011 in part due to low 

collection numbers.  Octenol 1 was also tested in both years and also yielded inconsistent 

results. Of the three octenol formulations tested only in 2011, Octenol 6 gave moderate to 
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strong correlations for all combinations of mosquito groups. Results with Octenol 10 or 

20 were variable (Table 2.6). 

Discussion 

 The standard protocol for mosquito trapping in WNV surveillance programs is to 

use CDC traps emitting CO2 as a chemoattractant (Clements 1992, Godsey et al. 2010, 

Xue et al. 2008, Muturi et al. 2007, Brown et al. 2008). However, in some locations CO2 

availability can be limited and traps with CO2 may not detect a host shift from avian 

species to mammalian species in WNV transmitting vectors. In this study, we tested 

alternatives to CO2 trapping, and compared results from CDC traps with CO2 to traps 

with octenol and traps with no chemoattractant.  

The majority of mosquitoes collected were Ae. vexans, Oc. trivittatus, or C. 

pipiens group (Table 2.2).  Regardless of chemoattractant, the CO2 baited light traps 

collected the most mosquitoes, and traps without a chemoattractant collected the fewest. 

With minor variations the same species were collected both years.  Mosquito numbers 

were considerably higher in 2010(Figure 2.1) compared to 2011 (Figure 2.2), with having 

2010 had greater precipitation during the collection period compared to 2011  

In our study, CO2 was the most effective Culex chemoattractant, which is 

consistent with other studies (Clements 1992, Muturi et al. 2007, Brown et al. 2008, Xue 

et al. 2008, Godsey et al. 2010). Biological and physical factors such as octenol 

functioning as a long distance attractant, a repellent at certain levels, or the presence of 

other more attractive cues may account for the low captures in octenol traps.  Carbon 
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dioxide is notably attractive to all host seeking mosquitoes regardless of host preference, 

whereas octenol is thought to be attractive to only mammalian host seeking mosquitoes.  

Mosquito attraction to octenol is poorly understood, and supporting conclusions vary 

(Rueda et al. 2001, Russell 2004, Kline et al. 2006).  In other studies that tested octenol-

baited traps and CO2 combined with octenol, similar results were observed, in octenol-

baited traps, CO2 traps,  collected fewer mosquitoes than CO2, but CO2 and octenol-

baited traps collected more mosquitoes than CO2 alone (Rueda et al. 2001, Kline et al. 

2006). In a separate study, we found that most mosquitoes were feeding almost 

exclusively on mammals and only a small portion on avians (Chapter 3).  

When comparing population trends, collections of Cx. pipiens group mosquitoes 

at Octenol 6 traps and Cx. tarsalis mosquitoes at Octenol 1 traps were highly correlated 

with CO2 trap captures. Thus, there is some evidence that octenol may be an effective 

attractant to monitor mosquito population trends and could serve as an alternative to CO2 

in mosquito surveillance programs. However, because of inconsistent results, octenol-

baited traps need more study before being adopted in reliable surveillance techniques and 

practices. 

The C. pipiens group mosquitoes are typically considered ornithophilic, but 

demonstrate a shift from avian to mammalian hosts in the late summer as chicks fledge 

and leave nests (Turell et al. 2005, Allan et al. 2006, Kilpatrick et al. 2006, Molaei et al. 

2006, Patrician et al. 2007, Blair 2009).  However, because we did not see changes in 

patterns of captures between early and late season of C. pipiens group mosquitoes 
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collected in CO2 and octenol traps, or any of the other Culex species, we cannot confirm 

if they shift from primary bird feeding to mammalian hosts later in the season in 

Lancaster County, Nebraska. 

Based on our findings, we do not recommend that octenol be used as a substitute 

for CO2 without further study.  Octenol attracts fewer mosquitoes than CO2. This can by 

itself be a drawback if the numbers collected are insufficient to permit adequate testing 

for WNV. The other limitation is the inconsistent results of octenol traps in reflecting the 

population increases and decreases as measured by CO2 baited traps. However, our 

results suggest that in some situations octenol may be an effective chemoattractant and 

octenol-baited traps offer advantages in locations where CO2 is not readily available or is 

prohibitively expensive. Thus, we recommend further testing of traps baited with 

different forms and concentrations and ways to dispense octenol should be pursued to 

optimize trap capture rates.   
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Figures 

 
Figure 2.1.  Least square means of all Culex mosquito species collected each trap 

week by attractant in 2010. 
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Figure 2.2.  Least square means of all Culex species mosquitoes collected each trap 

week by attractant in 2011. 
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Tables 

Table 2.1. Description and coordinates of trapping sites in Lancaster County, NE for 

2010 and 2011.  

Site 

Number 

Site 

Description 

Trap #1  Trap #2  Trap #3  

Site #1 Agriculture N 

40.79988 

W 

096.77887 

N 

40.80014 

W. 

096.77885 

N 

40.80039 

W 

096.77881 

Site #2 Residential N 

40.76216 

W 

096.65807 

N 

40.76204 

W 

096.65845 

N 

40.76227 

W 

096.65882 

Site #3 Residential/ 

Agriculture 

N 

40.80572 

W 

096.60120 

N 

40.80551 

W 

096.60095 

N 

40.80530 

W 

096.60072 

Site #4 Residential/ 

Salt Marsh 

N 

40.87881 

W 

096.67170 

N 

40.87908 

W 

096.67163 

N 

40.87935 

W 

096.67165 

Site #5 Residential/ 

Park 

N 

40.84065 

W 

096.62625 

N 

40.84081 

W 

096.6264 

N 

40.84074 

W 

096.62700 

Site #6 Park N 

40.83351 

W 

096.65841 

N 

40.83375 

W 

096.65845 

N 

40.83398 

W 

096.65842 

Site #7 Wooded N 

40.77183 

W 

096.71697 

N 

40.77197 

W 

096.71697 

N 

40.77212 

W 

096.71663 

Site #8 Residential N 

40.43961 

W 

096.59306 

N 

40.73939 

W 

096.59320 

N 

40.73900 

W 

096.59318 

Site #9 Park N 

40.77694 

W 

096.63611 

N 

40.77671 

W 

096.63595 

N 

40.77652 

W 

096.63527 

Site #10 Residential/ 

Park 

N 

40.81936 

W 

096.66833 

N 

40.81874 

W 

096.66830 

N 

40.81826 

W 

096.66836 
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Table  2.2.  Descriptive statistics for mosquito groups collected in Lancaster County, 

Nebraska using CDC light traps with different chemoattractant treatments in 2010 and 

2011.Means averaged by sample night within sample weeks. 

  Total Mean (Standard Error) 

Group Chemoattractant
1
 2010 2011 2010 2011 

Total 

Mosquitoes 
CO2 83,182 20,882 398 (42) 302(76) 

 Octenol 1 9,524 1,692 46 (14) 28 (8) 

 Octenol 6 - 4,938 - 74 (28) 

 Octenol 10 - 4,639 - 77 (58) 

 Octenol 20 - 2,259 - 39 (14) 

 None 4,848 1,176 23 (4) 18 (4) 

All Culex 

species 
CO2 11,112 924 54 (7) 11 (3) 

 Octenol 1 1,242 94 6 (1) 1 (0.57) 

 Octenol 6 - 184 - 2 (0.87) 

 Octenol 10 - 230 - 3 (2) 

 Octenol 20 - 157 - 2 (0.08) 

 None 678 80 2 1 (0.37) 

Culex pipiens 

‘group’ 
CO2 5,467 407 27 (4) 5 (1) 

 Octenol 1 855 56 4 (1) 0.93 (0.14) 

 Octenol 6 - 152 - 2 0(.62) 

 Octenol 10 - 210 - 3 (2) 

 Octenol 20 - 124 - 2 (0.57) 

 None 327 68 1 (0.35) 1 (0.37) 

Culex tarsalis CO2 5,096 496 24 (2) 6 (1) 

 Octenol 1 327 19 2 (0.14) 0.31 (0.09) 

 Octenol 6 - 28 - 0.42 (0.1) 

 Octenol 10 - 20 - 0.38 (0.09) 

 Octenol 20 - 31 - 0.54 (0.14) 

 None 289 9 1 (0.21) 0.14 (0.04) 

Aedes vexans CO2 50,298 13,490 241 (26) 195 (52) 

 Octenol 1 2,461 593 12 (1) 9 (3) 

 Octenol 6 - 1,195 - 18 (7) 

 Octenol 10 - 518 - 8 (3) 

 Octenol 20 - 738 - 12 (5) 

 None 2,844 538 14 (3) 8 (2) 

Ochlerotatus 

trivittatus 
CO2 7,048 4,757 34 (4) 68 (21) 
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 Octenol 1 1,197 768 6 (1) 12 (5) 

 Octenol 6 - 1,006 - 15 (5) 

 Octenol 10 - 262 - 4 (1) 

 Octenol 20 - 348 - 6 (1) 

 None 564 372 3 (0.71) 5 (2) 
1
 Chemoattractant (quantity per trap per night): CO2 – 1,500 g dry ice, Octenol 1 - 1 

octenol gel pack, Octenol 6 - 6 octenol gel packs, Octenol 10 - 10 ml liquid octenol, 

Octenol 20 - 20 ml liquid octenol, and none - no chemoattractant. Cx. pipiens, Cx. 

restuans, and Cx. salinarius are reported as “Cx. pipiens group”  
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Table 2.3.  Proportion of mosquito species and groups collected in CDC light traps 

baited with either CO2, octenol, or no attractant in 2010 and 2011. 

Year and 

Attractant
1
 

Total 

Mosquitoes 

Aedes 

vexans  

Oc. 

trivittatus 

Culex 

pipiens 

group 

Culex 

tarsalis 

Total 

Culex 

2010 CO2 0.85 0.90 0.80 0.82 0.89 0.85 

 Octenol 1 0.10 0.05 0.14 0.13 0.06 0.10 

 None 0.05 0.05 0.06 0.05 0.05 0.05 

2011 CO2 0.59 0.79 0.63 0.40 0.82 0.55 

 Octenol 1 0.05 0.04 0.10 0.05 0.03 0.06 

 Octenol 6 0.14 0.07 0.13 0.15 0.05 0.11 

 Octenol 10 0.06 0.03 0.04 0.21 0.03 0.14 

 Octenol 20 0.13 0.04 0.05 0.12 0.05 0.09 

 None 0.03 0.03 0.05 0.07 0.02 0.05 
1
 Chemoattractant (quantity per trap per night): CO2 – 1,500 g dry ice, Octenol 1 - 1 

octenol gel pack, Octenol 6 - 6 octenol gel packs, Octenol 10 - 10 ml liquid 

octenol, Octenol 20 - 20 ml liquid octenol, and none - no chemoattractant. Cx. 

pipiens, Cx. restuans, and Cx. salinarius are reported as “Cx. pipiens group” 
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Table 2.4. Correlation coefficients of Culex mosquitos and groups collected at different 

combination of attractants
1
 averaged by site in 2010 and 2011.  

 Culex pipiens 

group 

Culex tarsalis Total Culex 

Correlations 2010 2011 2010 2011 2010 2011 

CO2/Octenol 1 0.33 0.28 0 0.66 0.02 0.09 

CO2/Octenol 6 - 0.75 - 0.26 - 0.75 

CO2/Octenol 10 - 0.05 - 0.40 - 0.29 

CO2/Octenol 20 - 0.38 - 0.33 - 0.27 

CO2/None 0.25 0.25 0.25 0.33 0.22 0.22 
1
 Chemoattractant (quantity per trap per night): CO2 – 1,500 g dry ice, Octenol 1 - 1 

octenol gel pack, Octenol 6 - 6 octenol gel packs, Octenol 10 - 10 ml liquid 

octenol, Octenol 20 - 20 ml liquid octenol, and none - no chemoattractant. Cx. 

pipiens, Cx. restuans, and Cx. salinarius are reported as “Cx. pipiens group” 
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Table 2.5. Early and late season correlation coefficients of mosquito groups coming to 

CO2 and octenol baited traps and patterns of changes
1
 in correlation coefficients from 

early to late season
2 

in 2010 and 2011. 

 Correlation coefficients and patterns of change from early to late 

season 

 2010 2011 

Group Octenol 1 Octenol 1 Octenol 6 Octenol 10 Octenol 20 

All 

mosquitoes 

 

0.05 – 0.36 

increasing 

.69 - .38 

decreasing 

.45 - .46 

no change 

.17 - .39 

decreasing 

.58 - .45 

no change 

Culex pipiens 

group
3 

 

.13 - .38 

increasing 

.14 – 06 

no change 

.92 - .86 

no change 

.71 - .86 

no change 

.80 - .85 

no change 

Culex 

tarsalis 

 

.06 - .38 

increasing 

.70 - .28 

decreasing 

.34 - .39 

no change 

.38 - .65 

increasing 

.78 - .62 

no change 

      
 

1
 Increasing – late season correlation coefficient greater than early season value 

 Decreasing - late season correlation coefficient smaller than early season value 

 No change – late and early season correlation coefficients approximately the same 
2
 Early season beginning in May through July, late season beginning in August, ending in 

October. 
3
  Culex pipiens group Cx. pipiens, Cx. restuans, and Cx. salinarius are reported as 

“Cx. pipiens group” 
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Table 2.6. Correlation coefficients of primarily avian feeding Culex tarsalis and C. 

pipiens mosquitoes with the generalist feeding Aedes vexans and Ochlerotatus trivittatus 

mosquitoes coming to CDC traps baited with CO2 (general attractant) or different 

formulations and concentrations of octenol (avian-mimicking attractant) during 2010 and 

2011 field seasons.  

1
 Chemoattractant (quantity per trap per night): CO2 – 1,500 g dry ice, Octenol 1 - 1 

octenol gel pack, Octenol 6 - 6 octenol gel packs, Octenol 10 - 10 ml liquid 

octenol, Octenol 20 - 20 ml liquid octenol, and none - no chemoattractant. C. 

pipiens, C. restuans, and C. salinarius are reported as “C. pipiens group” 

 

  

 
CO2 Octenol 1 Octenol 6 Octenol 10 Octenol 20 

 2010 2011 2010 2011 2010 2011 2010 2011 2010 2011 

Culex tarsalis with 

Aedes vexans 0.96 0.25 0.25 0.65 - 0.57 - 0.02 - 0.42 

Oc. trivittatus 0.98 0.23 0.07 0.20 - 0.71 - 0.21 - 0.24 

 

Culex pipiens with 

Aedes vexans 0.58 0.11 0.90 0.42 - 0.69 - 0.96 - 0.43 

Oc. trivittatus 0.56 0.04 0.47 0.36 - 0.77 - 0.55 - 0.26 
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CHAPTER 3 

Impact of Carbon Dioxide and Octenol Chemoattractants in Collection Methods for 

Bloodmeal Analysis of Culex Mosquitoes in Lancaster County, Nebraska. 
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Introduction 

Since the first cases of West Nile Virus (WNV) in Nebraska in 2002, more than 2,900 

total cases have been diagnosed and Nebraska's WNV incidence has been ranked in the 

top ten in the United States (CDC 2013). Typically, WNV is transmitted between 

susceptible avian species and ornithophilic Culex mosquitoes (Turell et al. 2001, 

Sampathkumar 2003, Hayes et al. 2005, Kilpatrick et al. 2006, Gubler 2008, Blair 2009, 

Murray et al. 2010, Reisen 2010).  The principal vector of WNV in Nebraska are Culex 

tarsalis; C. pipiens, C. restuans, C. salinarius, C. erraticus, and C. territans (DHHSNE 

2013, Washino 1983, Ngo and Kramer, 2003, Nosal and Pellizean 2003, Day 2005, 

Hayes et al. 2005, Turrell et al. 2005, Molaei et al. 2006, Patrician et al. 2007, Blair 2009, 

Hamer et al. 2008, Godsey et al. 2010).  Culex species are regarded primarily as 

ornithophilic feeders, yet some studies show a shift to feeding on mammals in late 

summer-early fall, particularly when mosquito density populations are at their peak and 

preferred avian hosts have dispersed or migrated (Tempelis et al. 1965, Kilpatrick et al. 

2006).  The seasonal host range of Culex mosquitoes in most locations is poorly 

understood as both the vector and host diversity vary according to geographical location 

(Washino 1983, Kent et al. 2009). 

Carbon dioxide (CO2) mimics the presence of a wide range of potential hosts 

(Rudolfs 1922, Buttery and Kamm 1980, Washino 1983, Bowen, 1991; Hallem et al. 

2004, Hayes et al. 2005 Grant and O’Connell, 2007) and is a key mosquito attractant. 

However, traps baited with CO2 do not discriminate between hosts and provide no 
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information related to patterns of feeding on mammal or avian hosts.  The use of a host 

specific attractant may allow assessments of Culex host preference, as well as provide a 

cost effective approach for surveillance. 

One-octen-3-ol (octenol) is a chemical found in mammalian sweat and exhaled 

gas (Bowen 1991, Grant and O’Connell 2007). The compound has been used as a 

mosquito chemoattractant in previous laboratory and field studies, although it is not a 

universal attractant(Buttery and Kamm 1980, Hall et al. 1984, Takken and Kline 1989, 

Allan et al. 2006). However, it may reveal a behaviorally-based shift in Culex feeding 

patterns from avian to mammals.  Additionally, different formulations of octenol (e.g. 

liquid octenol, gel packs) may have different effects on mosquito attraction. 

Changes in the frequency of host blood types found in mosquitoes at a defined place 

(locality) and period may reveal important information about mosquito feeding patterns 

(Ngo and Kramer 2003, Hayes, et al. 2005, Hamer et al. 2008 Kent et al. 2009).  These 

patterns and their host range can be identified using molecular-based assays that indicate 

the source of a mosquito’s bloodmeal by using sequence polymorphisms of the 

cytochrome b (cytb) gene.  The host range of Culex mosquitoes in Lancaster County, 

Nebraska is not known. 

Our specific aims were to: 1) characterize the host range of Culex species in 

Lancaster County, Nebraska, and 2) examine if host range varies by chemoattractant 

Octenol 1, Octenol 6, Octenol 10, Octenol 20. 3) and to examine if a behaviorally-based 

shift in Culex feeding patterns from avian to mammals is observed. 
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Materials and Methods 

 Collection Protocol: 

The study was conducted from June 24
th

 to October 5
th

 of 2010 at ten sites in 

Lancaster County, Nebraska.  Sites were visited every other week during a 14 week 

period.  Mosquitoes were collected for three trap nights consecutively in a week unless 

interrupted by weather. Three CDC miniature light traps (J.W. Hock Ltd., Gainesville, 

FL) were set-up per site, 30 m apart, and 3 m above the ground within tree line. The traps 

operated using rechargeable 12-V battery and mosquitoes were trapped within vented 

plastic collection jars with removable lids. The traps were used to assess two 

chemoattractant treatments and one control at each site. Treatments consisted of CO2 in 

the form of pelleted dry ice (approximately 500 g) being released from a one liter 

thermos, one three-gram octenol (indicated as ‘Octenol 1’ henceforth) gel pack 

(Nosquito, Stinger
TM

, Kaz Inc., Southborough, MA), or a non-baited light only trap as the 

control.  Light traps were operated from dusk to dawn (about 14 hr) each trap night.  At 

dawn, mosquito collections were removed and placed on dry ice. 

Mosquitoes were kept separate by trap, transported to the laboratory in a cooler 

containing dry ice, transferred to a 5 mL vial and stored at -80ºC until processed.  

Specimens were counted and identified to species (Darsie and Ward 2005, Thielman and 

Hunter 2007) on a -20ºC chill table under stereomicroscope. Male mosquitoes were 

discarded, non-blood fed Culex females were pooled and stored in a 50 mL at -70
o
C and 

bloodfed Culex species (C. erraticus, C. tarsalis, C. pipiens, C. restuans, C. salinarius, 

and C. territans) were pooled in groups of up to 50 individuals, each in sterile 1.5 ml 
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microcentrifuge tube, labeled by species, date, location, and saved in -70
o
C for DNA 

extraction.  Culex pipiens, C. restuans, and C. salinarius are difficult to morphologically 

identify from one another and are reported as “C. pipiens group”. 

A similar study was conducted for 22 weeks in 2011, using the same ten sites as in 

2010.  A total of 5 trapping weeks that consisted of 3 trap nights within a trap week, the 

same as in 2010, however, different formulations of octenol were added.  The treatments 

were: 1) CO2 (as in 2010), 2) 1 and 3) 6 Nosquito gel packs (Nosquito, Stinger
TM

, Kaz 

Inc., Southborough, MA), 4) 10 ml and 5) 20 ml liquid 1-octen-3-ol (≥98%, FCC, FG, 

Sigma-Aldrich, St. Louis, MO), and 6) traps without a chemoattractant.  The sampling 

protocol was similar to 2010 with treatment positions at a site randomized for each trap 

week.  Mosquitoes were frozen, counted, sorted, and preserved as in 2010. 

Isolation of DNA: 

DNA from blood-fed mosquitoes was extracted using Puregene Blood Core Kit 

(Cat No. 158467, Quiagen, Valencia, CA) according to the manufacturer’s instructions 

with slight modifications.  Briefly, a single mosquito was homogenized with 90 µl of 

RBC lysis solution and a copper BB in a 1.5 ml microcentrifuge tube by vortexing for 5 

minutes.  The copper BB then was removed followed by centrifugation for 20 s at 13,000 

x g. Then, 300 µl of cell lysis solution was added and vortexed for 3-5 s, then treated with 

1.5 µl of RNase for 15 min at 37
o
C in a water bath and 1 minute on ice.  To remove the 

proteins, 100 µl of Protein Precipitation Solution was added into each tube and the 

sample was mixed well by vortexing again for 15 s, centrifuged for one minute at 13,000 

x g and the supernatant was pipetted into a clean 1.5 ml microcentrifuge tube.  To 
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precipitate the DNA, 300 µl of isopropanol was added into each tube and mixed well by 

inverting  several times at room temperature (RT), then followed by centrifugation for 1 

min at 13,000 x g and the supernatant was discarded.  The DNA pellet was washed with 

300 µl of 70% ethanol two times and air dried for 5-10 min to remove any trace of 

ethanol. Finally, 25 µl of DNA hydration solution was added into each tube to dissolve 

the DNA pellet at RT. 

Human (Bioreclamation LLC,Westbury, NY), bovine (Bos primigenius taurus 

Bojanus), chicken (Gallus gallus domesticus L.), and turkey (Meleagris gallopavo L.) 

blood (Hemostat Labs, Dixon, CA) were obtained for positive controls in the bloodmeal 

analysis.  DNA from control samples, human, turkey chicken, and cow were prepared 

with the QIAamp DNA Mini Kit (Cat. No. 51304, Quiagen, Valencia, CA) according to 

the manufacturers’ instructions for “Blood and Body Fluid Spin Protocol”.  Breif, 20  µl 

of Qiagen Protease, 200 µl of sample blood, and 200 µl Buffer AL were mixed into a 1.5 

ml microcentrifuge tube by pulse-vortexing for 15 s, and then incubated in a water bath at 

56
o
C for 10 min.  To remove drops on the lid, vials were spun down on centrifuge, 200 µl 

ethanol (96-100%) was added and the tubes vortexed for 15 s.  Samples were transferred 

to a QIAamp spin column (a 2 ml collection tube) and centrifuged at 6000 x g for 1 min.  

The spin column was removed and inserted into a clean 2 ml collection tube, 500 µl of 

Buffer AW1 was added, and the tube centrifuged at 20,000 x g for 3 min.  The spin 

column was removed and inserted into a new 1.5 ml microcentrifuge tube, 200 µl buffer 

AE was added, the samples were incubated at room temperature for 1 min, and 
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centrifuged for a final time at 6000 x g for 1 min.  The samples were evaluated on 1% 

agrose gel under UV light and NanoDrop (Nano 2000), respectively before being stored 

in -20
o
C freezer for PCR. 

 

Polymerase Chain Reaction Analysis (PCR): 

The three sets of universal primer, derived from cytochrome B (cytb) gene, used 

in this study have been tested and widely used to identify the bloodmeal host in blood-

feeding insects (Meece et al. 2005, Kent et al. 2009).  The mammalian specific primer 

set, a 772 bp mammalian primer set (Ngo and Kramer 2003), amplifies a portion of any 

mammalian cytb gene in a bloodmeal. The avian primer set of 508 bp (Kent et al. 2009 

derived from Cicero and Johnson 2001), amplifies partial cytb of both mammalian and 

avian in blood source. The primer set BM1 (L14841) and BM2 (H15149) (Kent et al. 

2009) is universal and amplifies 358 bp cytb of vertebrates.  The combination of these 

three primer sets provides a general profile of the potential bloodmeal host.  All samples 

were run through an avian forward and reverse primer and a mammalian primer set.  If 

neither of these primers amplified desired PCR products from a bloodmeal DNA, a third 

primer set, BM1 and BM2 of 358 bp was then used on remaining samples (Kent et al. 

2009 derived from Kocher et al. 1989). 

The PCR amplifications were conducted using a reaction volume of 10 µl in 200 

µl PCR reaction tubes with the JumpStart Accu Taq LA DNA Polymerase Mix (Cat. No. 

D5809, Sigma, St. Louis, MO).   Each 10 µl reaction contains 1 µl buffer (10x), 0.25 µl 

dNTP, 0.25 µl Taq polymerase (enzyme), 1 µl (>20-487 ng/µl concentration) of DNA 



68 

 

 

 

template 0.25 µl of forward primer, 0.25 µl of reverse primer, and 7µl of double distilled 

water (ddH2O).  The DNA amplifications were carried out on a DNA Engine PTC-200 

thermal cycler (Bio-Rad MJ Research PTC-200 Peltier Thermal Cycler).  Amplification 

cycles for these primers consisted of an initial denaturation at 95
o
C for 2 min, followed 

by 5 cycles of 94
o
C for 30 s, 55

o
C for 30 s, and 72

o
C for 30 s, followed by 30 cycles of 

94
o
C 30 s, 60

o
C 30 s, 72

o
C 30 s.  The reaction was completed by extension at 72

o
C for 10 

min. DNA prepared from human, chicken, turkey, and cow blood (Bioreclamation 

LLC,Westbury, NY) and ddH2O were used as positive  and negative controls, 

respectively in PCR.   For the PCRs with dimers in  BM1/BM2 primer set, we adjusted 

PCR protocol as following:  1 µl x10 buffer (Sigma, P-2192), 0.25 µl dNTP, 0.25 µl 

enzyme, 0.5 µl DNA template, 0.25 µl forward primer, 0.25 µl reverse primer, and 7.5 µl 

ddH2O.  Run on amplification program: 95
o
C for 2 min, 94

o
C for 30s, 55

o
C for 30s, 72

o
C 

for 30s, 94
o
C for 30s, 60

o
C for 30s, 72

o
C for 30s, 72

o
C for 10 min. 

Bloodmeal Identification: 

A 1.5 µl sample of each PCR product was visualized on 1.5 % agarose gels (110 

v, 18 min at RT with 0.5x TBE ruffing buffer) under a UV light box.  All gels were run 

with a 100-bp molecular marker (Sigma-Aldrich, St. Louis, MO).  If bands were present, 

samples were purified with a USB ExoSAP-IT PCR Product Cleanup (Affymetrix Inc., 

Santa Clara, CA) according to the manufacturer’s instructions.  Briefly, the purification 

kit required 30 µl at 40 ng/µl concentration per sample.  Samples were measured on the 

nanodrop and, based on the required formula, for every 5 µl of PCR product, 2 µl of 

purification product was required.  Once calculations were finalized, all samples were run 
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in the thermal cycler at 37
 o

C for 20 minutes, then 80
 o

C for 15 minutes, and completed 

by 10
 o
C.  Samples were combined with adjusted amounts of ddH2O to equal the required 

30 µl at 40 ng/µl and submitted to Europhrin (http://www.operon.com/) with both 

forward and reverse primer per sample for sequencing. 

Sequence Data Analysis: 

The sequence results were analyzed with BioEdit 

(http://www.mbio.ncsu.edu/bioedit/bioedit.html; Copyright 1997-2012, Tom Hall, Ibis 

Biosciences Carlsband, CA 92008). The consensus sequence of each sample was 

submitted through a BLAST search in GeneBank database entries 

(http://blast.ncbi.nlm.nih.gov/) for potential host identification. 

Results 

Between May and October in 2010 and 2011, 1,035 traps were set over 36 trap 

nights.  Of the 133,859 mosquitoes collected, almost 11% (14,721) were Culex species 

and 422 of them had a visible bloodmeal; species included Culex pipiens group (n=286, 

68%), C. tarsalis L. (n = 123, 29%) and C. erraticus L. (n = 12, 3%).  

Specific vertebrate hosts were identified from 147 or 36% of the blood samples, 

and included 10 mammal, 7 avian, and 1 reptile species (Table 3.1).  Humans were the 

most common host and no other host comprised more than 4% of the samples.   

Mosquitoes in the C. pipiens group took bloodmeals from 6 mammalian (human, white-

tailed deer, common vole, cow, raccoon, skunk) and 5 avian species (Canadian goose, 

chicken, eastern screech-owl, European starling, common grackle).  Culex tarsalis fed 

http://www.operon.com/
http://www.mbio.ncsu.edu/bioedit/bioedit.html
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from 5 mammalian (human, white-tailed deer, cow, domestic sheep, Virginia opossum) 

and 2 avian species (American robin, chicken).  Bloodmeals were identified from only 

three C. erraticus specimens and they had fed on a mammal (human), an avian (blue 

heron) and a reptile (turtle).  Less than 1% of the bloodmeals were from multiple hosts, 

therefore resolving host identification of mixed-species bloodmeals was not pursued 

(Table 3.1). 

To evaluate the host range of Culex species by chemoattractant, we took 

proportions of all Culex mosquitoes at each attractant.  The majority of the bloodmeal 

hosts were humans, and these mosquitoes were collected at CO2 baited traps (Table 3.2).  

Because most bloodmeals were from humans, an analysis of host range by 

chemoattractant type, formulation and concentration could not be performed.  

Discussion 

In this study, we examined the host-utilization patterns of Culex species common 

in Lancaster County, Nebraska using chemoattractant-baited CDC light traps.  

Determining the blood-feeding patterns of Culex is critical for understanding the 

maintenance and transmission of WNV.  This is the first study to document blood-

feeding patterns of Culex mosquitoes in Lancaster Co., Nebraska.    

In host selection experiments, Culex species tend to exhibit strong specificity for 

avian species (Turell et al. 2005, Allan et al. 2006, Kilpatrick et al. 2006; Molaei et al. 

2006, Patrician et al. 2007, Blair 2009).  However in this study, the majority of 

bloodmeals were from mammalian hosts, primarily humans.  In agreement with 
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published reports (Ngo and Kramer 2003, Nosal and Pellizean 2003, Pecoraro et al. 2007, 

Gubler 2008, O’Brien et al. 2010) the predominant avian hosts in our study were 

Galliform and Passeriform species. However, the preponderance of mammalian feeding 

we saw contradicts the common understanding of Culex feeding patterns. 

Culex pipiens and C. restuans are considered to be primarily ornithophilic 

feeders, whereas Cx. salinarius are considered to be more opportunistic feeders without 

the strong host specificity of other Culex species (Day 2005, Godsey et al. 2010).     

Culex tarsalis is primarily ornithophilic but relative to other Culex species such as C. 

pipiens, it is a more generalist feeder (Thiemann and Reisen 2012).  However because we 

collected very few specimens of C. tarsalis with bloodmeals, we are not able to comment 

on its range of host use.  Despite the previously documented preference for avian hosts, 

the results of this study indicate that the most bloodmeals from Culex mosquito species in 

Lancaster County, Nebraska are derived from humans.  One reason for these results could 

be due the physiological state in that they are searching for a bloodmeal. Female 

mosquitoes that are not fully engorged or have no bloodmeal at all are physiologically 

tuned into host cues, whereas engorged and gravid females are not tuned onto these same 

cues, and therefore would not be attracted to the chemoattractants mimicking host cues 

(Thiemann and Reisen 2012).  Thiemann and Reisen (2012) indicated that traps baited 

with CO2 collected disproportionally more mammalian hosts than other traps tested. Our 

results could have been skewed, because of this potential trapping bias; it may also have 

been because Culex mosquitoes in Lancaster County, Nebraska are adapted to human 
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feeding or have sufficient plasticity in their host seeking behaviors to take advantage of 

the readily available human population.   

Another possible reason is that there are two biologically different, yet 

physiologically similar sub-species of C. pipiens mosquito, C. pipiens pipiens L. and C. 

pipiens f. molestus Forskål distinguished by molecular diagnostics.  C. pipiens pipiens 

has been observed to feed primarily on avian species, whereas C. pipiens f. molestus has 

been shown to primarily feed on mammals (Fonseca et al. 2004).  It could be that the 

majority of the C. pipiens within our C. pipiens group is composed of C. pipiens f. 

molestus. 

These results impact how we view transmission of arboviruses to humans by 

Culex mosquitoes in Lancaster County, Nebraska.  The trap placement within this study 

allowed us to sample blood fed mosquitoes from rural and suburban habitats. However, 

only a small number of non-mammalian bloodmeals were found in the samples from the 

sites chosen and we were not able to distinguish any differences between sites. Therefore, 

future studies for this area could include traps that are located in more rural sites to 

observe blood-feeding patterns Culex mosquitoes and the presence of WNV within those 

populations.  Molecular techniques (bloodmeal source and species identification) and 

tools are critical to determine a host usage and preference of mosquitoes along with 

arboviral transmission.  Without these tools it is much more difficult and uncertain how 

and in what way the host and vectors are interacting. 
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In contrast to published literature on bloodmeal analysis conducted in Nebraska 

(Meece et al. 2005, Kent et al. 2009), our study found that humans were the most 

common blood source for mosquitoes in Lancaster County, Nebraska. Studies comparing 

different trap types throughout the active seasons for Culex mosquitoes could help 

discern the range of Culex host use behaviors and the use of molecular diagnostics to 

separate mosquito species would bring greater refinement to the results. 
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Tables  

Table 3.1. Vertebrate-derived bloodmeals identified from mosquitoes in the genus Culex 

collected in Lancaster Co. (Nebraska) in 2010-2011. 

 

Culex pipiens 

group 

Culex 

tarsalis 

Culex 

erraticus 
Total 

 
2010 2011 2010 2011 2010 2011 

 
Human (Homo sapiens) 50 29 3 1 6 28 117 

White Tailed Deer 

(Odocoileus virginianus) 
3 1 0 0 2 0 6 

Common Vole 
1 0 0 0 0 0 1 

(Microtus arvalis) 

Cow (Bos taurus) 4 0 0 0 0 1 5 

Domestic Sheep 
0 0 0 0 1 0 1 

(Ovis aries) 

Common Raccoon 

(Procyon lotor) 
3 0 0 0 0 0 3 

Skunk (Mephitis genus) 1 0 0 0 0 0 1 

Virginia Opossum 

(Didelphis virginiana) 
0 0 0 0 0 1 1 

American Robin 
0 0 0 0 1 0 1 

(Turdus migratorius) 

Blue Heron 
0 0 1 0 0 0 1 

(Ardea herodias) 

Canadian Goose 
2 0 0 0 0 0 2 

(Branta canadensis) 

Chicken (Gallus gallus) 2 1 0 0 0 1 4 

Common Grackle 

(Quiscalus quiscula) 
0 1 0 0 0 0 1 

Eastern Screech Owl 

(Megascops asio) 
1 0 0 0 0 0 1 

European Starling 
1 0 0 0 0 0 1 

(Sturnus vulgaris) 

Turtle (Chrysemys picta) 0 0 1 0 0 0 1 

Total 68 32 5 1 10 31 147 
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Table 3.2. Vertebrate bloodmeal host for all Culex mosquito species per year for each chemoattractant treatment for the trapping year.  

 

 
 Carbon Dioxide Octenol 1 

 

Octenol 6 Octenol Low Octenol 

High 

Light 

 

Total 

 

 2010 2011 2010 2011 2010 2011 2010 2011 2010 2011 2010 2011 2010 2011 

Human (Homo 

sapiens) 

46 

(77%) 

37 

(63%) 

6 (10%) 5 

(8%) 

- 4 

(6%) 

- 3   (5%) - 2 

(3%) 

7 

(11%) 

7 

(12%) 

59 58 

White Tailed 

Deer (Odocoileus 

virginianus) 

5 

(100%) 

0 0 0 - 0 - 1 

(100%) 

- 0 0 0 5 1 

Common Vole 

(Microtus 

arvalis) 

1 

(100%) 

0 0 0 - 0 - 0 - 0 0 0 1 0 

Cow (Bos taurus) 1  

(25%) 

0 3 (75%) 0 - 0 - 1 

(100%) 

- 0 0 0 4 1 

Domestic Sheep 

(Ovis aries) 

1 

(100%) 

0 0 0 - 0 - 0 - 0 0 0 1 0 

Common 

Raccoon 

(Procyon lotor) 

3 

(100%) 

0 0 0 - 0 - 0 - 0 0 0 3 0 

Skunk 

(Mephitis genus) 

1 

(100%) 

0 0 0 - 0 - 0 - 0 0 0 1 0 

VirginiaOpossum 

(Didelphis 

virginiana) 

0 1 

(100%) 

0 0 - 0 - 0 - 0 0 0 0 1 

American Robin 

(Turdus 

0 0 1 

(100%) 

0 - 0 - 0 - 0 0 0 1 0 
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migratorius) 

Blue Heron 

(Ardea herodias) 

1 

(100%) 

0 0 0 - 0 - 0 - 0 0 0 1 0 

Canadian Goose 

(Branta 

canadensis) 

2 

(100%) 

0 0 0 - 0 - 0 - 0 0 0 2 0 

Chicken (Gallus 

gallus) 

1 (50%) 0 0 0 - 1 

(50%) 

- 0 - 0 1 

(50%) 

1 

(50%) 

2 2 

Common 

Grackle 

(Quiscalus 

quiscula) 

0 1 

(100%) 

0 0 - 0 - 0 - 0 0 0 0 1 

Eastern Screech 

Owl (Megascops 

asio) 

1 

(100%) 

0 0 0 - 0 - 0 - 0 0 0 1 0 

European 

Starling 

(Sturnus 

vulgaris) 

1 

(100%) 

0 0 0 - 0 - 0 - 0 0 0 1 0 

Turtle 

(Chrysemys 

picta) 

1 

(100%) 

0 0 0 - 0 - 0 - 0 0 0 1 0 

Total 65 

(78%) 

39 

(58%) 

10 

(12%) 

5 

(7%) 

- 5 

(7%) 

- 5 (7%) - 2 

(2%) 

8 

(9%) 

8 

(11%) 

83 67 
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