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Electric-dipole matrix-element formulas in hyperspherical coordinates
with applications to H™ and He

Chang-Hwan Park* and Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111

Jiang Tan and Chii-Dong Lin
Department of Physics, Kansas State University, Manhattan, Kansas 66506
(Received 10 June 1985)

Theoretical formulas for the length, velocity, and acceleration forms of the electric-dipole matrix
element within the adiabatic hyperspherical coordinate representation are presented. The length and
acceleration formulas are used to calculate the photoionization cross section for He up to 1.0 a.u.
above threshold and the photodetachment cross section for H™ up to 0.35 a.u. above threshold.
Length- and acceleration-form results for the dipole oscillator strengths for the discrete He transi-
tions, 1sns (1S¢)— Ismp('P°), where n =1, 2, and 3 and m =2, 3, and 4, are also presented. The ac-
curacy of the length- and acceleration-form adiabatic hyperspherical coordinate approximation re-

sults is discussed.

I. INTRODUCTION

The first application of the adiabatic hyperspherical ap-
proximation' to electric-dipole processes was Miller and
Starace’s calculation® of the single photoionization cross
section of He (using the length form of the electric-dipole
matrix element). It achieved agreement with the experi-
mental measurements of Samson?® to within 1% at thresh-
old and to within 4% at a photon energy of 1 Ry above
threshold. To determine whether such accuracy can be
generally expected in hyperspherical coordinate calcula-
tions of electric dipole processes, we have undertaken a
more extensive theoretical and calculational study. We
present here, firstly, theoretical expressions for the length,
velocity, and acceleration forms of the electric-dipole ma-
trix element in an adiabatic hyperspherical coordinate rep-
resentation. We then give the length-and acceleration-
form photodetachment cross section for H™ and pho-
toionization cross section for He. Finally, we present the
length- and acceleration-form dipole oscillator strengths
for the discrete He transitions, 1sns(!S¢)— 1smp('P°),
where n =1, 2, and 3 and m=2, 3, and 4. In each case
our adiabatic hyperspherical coordinate results are com-
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pared with the most accurate results using other calcula-
tional methods. Finally, the accuracy of the adiabatic hy-
perspherical coordinate approximation for electric-dipole
processes is assessed.

II. REVIEW OF THE ADIABATIC
HYPERSPHERICAL REPRESENTATION

In the hyperspherical coordinate method of Macek,!
a two-electron wave function W(r;r,) is expanded in
terms of a complete set of adiabatic eigenfunctions
®,(R,a,1,T,), which depend parametrically on the hyper-
spherical radius R =(r3+r3)!/? and are functions of the
five angular variables a=tan~!(r,/r), T, and T,. The
index p indicates a particular hyperspherical channel.
The form of W is thus

¥(R,a,t,T,)=(R > %sina cosa) ™!
X 3, Fu(R)YD,(R,a,t1,T;) . (1)
"
The angular or channel function @, is defined to satisfy

the following differential equation in atomic units
(i=e=m =1):

®,=U,(R)®, . )

Here L? is the squared orbital angular momentum operator for the ith electron, 8;,=cos~!(¥,-%,), Z is the nuclear
charge, and U,(R) is the eigenvalue, which is parametrically dependent on R. Upon substituting Eq. (1) in the two-
electron Schrédinger equation and using Eq. (2), one obtains the following set of coupled differential equations for the ra-
dial functions F,(R):

d> | UuR)+% 3, 3D, 30, | a
Wt
33 1000 ©1986 The American Physical Society
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In Eq. (3) the coupling matrix elements (®,,3"®,./0R"),
n=1,2, involve integration over the five angular variables
only and are thus parametrically dependent on R. Note
that the channel functions ®, defined in Eq. (2) are in-
dependent of energy E; the energy dependence of the
two-electron state in Eq. (1) is carried solely by the radial
functions F,(R) defined by Eq. (3).

To solve Eq. (2) we have expanded the channel function
®, in terms of coupled spherical harmonics as follows:

(D”E 12, AI‘:IZLM(R;a)@hIzLM(?l’?Z) ’ (4a)
1°2

where
Y 1,1,m(®1,T)
=3 Y,I,,,l(’f,)Y,z,,,z(’fz)(l,mllzmz |LM) . (4b)
mym,
In Eq. (4a) antisymmetry of the wave function is ensured

by boundary conditions! on the coefficients A,’: 1, Substi-

tuting Eq. (4) in Eq. (2) gives the following differential
equation for the expansion coefficients:

dd; _ l‘i:‘s::) _ IZZ:I;;U —U,(R) |4l (R ;0)
=—R Clllz,l'lli Al’fl,,zLM(R;a) , (5a)
L)
where
Cpirn, = [ da [ dvde @} i@ 2)C @,000)
XY g Ba) (5b)

J
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III. ELECTRIC-DIPOLE MATRIX ELEMENT
IN THE ADIABATIC HYPERSPHERICAL
REPRESENTATION

Given initial and final two-electron wave functions, ¥,
and Vg, of the form of Eq. (1) and using the expansion of
the channel functions, ®,, in Eq. (4), one may carry out
matrix element angular integrations analytically. We
present here our results for the electric-dipole matrix ele-
ment in the length and acceleration forms* in turn. The
velocity form,* which is not used in our calculations, is
presented in the Appendix.

A. Dipole matrix element in the length form

The dipole matrix element for incident light linearly
polarized along the z axis in the length form is defined by

2
DL=<‘1’E &2 ‘I’o> (6a)
i=1
=(Wg | R(cosa cosf; +sina cosb,) | ¥y) (6b)
=2 fow dR F,g(R)RF,(R) 5, (R) . (6¢)
wp

Here I ,’;,,( R) denotes the angular integral, given by

L _ /2 ' M
uR)=3 [ daal,cosadly, 3 [d0Y} . cosd Y, [d0Y) . Vi,

g ’ ’
nn mym;
hi mim,

w/2 .o, m
+3 fo dadf, sinad;, 3 fdQlY,'.lm

r gt ’ ’
i mim,
hi mym,

X(lllmlll’zm’z |L'M'>(llmllzm2 1LM>

*
 Yim, f dQ,Y}, . cos6,Y,m,

X {(Iimilymy |L'M')Y{lymlym, | LM ) . (7

Using the orthonormality of spherical harmonics, the following integral over three spherical harmonics,

11
0 00O

o1

—m' 0 m ’ ®

J dQ Yy (Q)c088 Yy (Q)=(— 1™ ([1'][1]'? l

where [x]=2x + 1, and eliminating the sums over m in Eq. (7) by using the summation and transformation formulas for
3-j coefficients, we obtain the following result for 1 ,’;:,,(R ):
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For the special case of the transition 'S—!P (i.e.,
L =0, M =0, and L’'=1), Eq. (9) reduces to

I, (R)=33712[1,17 12, || cM) 1)
1112

n/2 '
X [fo da Af; cosa Af,

/2 .o
+f0 daAft,zsmaAf:,l] , (10a)
where
) 12 1 11
(L)) =(—1)2[1 121,112 00 0 (10b)

B. Dipole matrix element in acceleration form

The dipole matrix element for incident light linearly
polarized along the z axis in the acceleration form is de-
fined by

Zr;
DA=<‘I’E 2, 2 d \yo> (11a)
i=1 ’.'
Z | cosB; cosB, >
=(Vg |— v 11b
< FIR? |cos’a ' sin’a 0 (11b)
=23 [ dRF,RFuelf, , (110)
Hp
where for the special case of 'S—!P transitions
L= 3371117,y
1112
/2 ,
X [fo da Af,) cos~*a Al
w/2 '
+ [, daafsinaaf, (11d)

IV. RESULTS

In this section we present a number of results for
electric-dipole transitions from 'S states of H~ and He.
In calculating our wave functions we make an adiabatic
approximation! in which we keep only a single term g in
the summation in Eq. (1). For the ground state ¥, this
term corresponds to the dominant 1s%('S) configuration;
for the final state Wi this term corresponds to the dom-
inant 1sep('P) configuration. However, this adiabatic ap-
proximation is not an independent-particle approxima-

tion; much correlation is included. For example, in calcu-
latmg ®, for the initial state, using Eq (2), an expansion
is made in the angular momentum pairs ss, pp, dd, and
ff; in calculating @, for the final state, an expansion is
made in the angular momentum pairs sp, ps, pd, dp, df,
and fd. Note that in all our calculations we include the
diagonal coupling term when solving Eq. (3) for the radial
functions.

The continuum oscillator strength® is defined in terms
of the length, velocity, and acceleration forms of the
electric-dipole matrix element in Egs. (6), (13), and (15) as

follows:
L
‘fle —20|D, |2, (12a)
dry 2
—dff=z|py|2, (12b)
dft 2 5
4 __ < p,|?, (12¢)
til; a)3 ' A |

where ® is the photon energy in atomic units (1
a.u.=27.2108 eV). Note that when discrete final states
(denoted by n) are employed in the electric-dipole matrix
elements D, Eq. (12 defmes the corresponding discrete os-
cillator strengths X, £ and f2.

The photoionization or photodetachment cross section,
finally, is defined in terms of the continuum oscillator
strength as follows:

o(w)=(27*/c)df /dE . (13)

Both Eq. (12) and Eq. (13) assume that the continuum
final-state wave function is normalized per unit energy in
a.u. Note also that in our calculations for continuum pro-
cesses we employ Perkeris’s values® for the binding ener-
gies: I(H™)=0.027751 and I(He)=0.903 72 a.u.

A. Behavior of I, (R) and I/%,(R)

As noted in Sec. II, the channel functions ®, are in-
dependent of the final-state energy. Hence the angular in-
tegrals 7,,,(R) in Sec. III are the same for any photon en-
ergy o or final-state energy E and are characteristic of the
initial and final channel functions. In Fig. 1 we show the
length- and acceleration-form angular integrals, 7 ,’;'M(R)
[cf. Egs. (6d) and (10)] and I ) [cf. Egs. (11d) and
(11e)], for 1S 1P transitions m H and He. Note that
these are plotted in Fig. 1 as functions of the scaled radius
ZR so that results for both He and H™ could be com-
pared on the same figure. Now asymptotically as
R cosa(=r;)— o, the channel functions for the lowest 'S
and !P channels have the following behavior:'
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FIG. 1. Length- and acceleration-form angular integrals,
I ,I;',,(R) and 1 ,fr,_,(R), for He and H™ plotted vs the scaled radial
coordinate ZR.

Dy(R;a,21,8)) ~r1Piy(r) Yoo )Yy m (RD,  (14)

where 1, =m, =0 for the 'S channel and I, =1 for the 'P
channel. From Eq. (14), and the relation of the spherical
coordinate and hy?erspherical coordinate volume ele-
ments (i.e., r3dr,ridr,=R°cos’asin’adR da) one may
show that I ,’;',‘(R) approaches a constant as R becomes
infinite. This R independence for large R is shown in
Fig. 1. Only near the origin is I ,’;:,‘(R) slightly R depen-
dent as a result of electron correlations. In contrast
I ,’},‘(R) is quite R dependent for small R.

B. Discrete energies and dipole oscillator strengths for He

We present adiabatic hyperspherical approximation di-
pole oscillator strengths for the helium transitions
1sns 1S(n=1,2,3)—1smp 'P(m=2,3,4) in Table I. Both
our length and acceleration results are presented. The ac-
celeration results, however, are expected to be very unreli-
able for discrete transitions, particularly for the case
An =0, due to the w3 dependence of f [cf. Eq. (12¢)
and the following text]. For this reason we limit our fur-
ther discussion to our length-form results. They are to be

1003

compared in Table I with the accurate variational results
of Schiff and Pekeris’ as well as with some relativistic
random-phase-approximation (RRPA) results.?

For the transitions 15s%('S®)— Lsnp('P°) our length re-
sults differ from those of Schiff and Pekeris’ by 5.4% for
n=2, 2.7% for n=3, and 0.0% for n=4. By compar-
ison, for n=2 the RRPA (Ref. 8) gives an oscillator
strength which differs from that of Schiff and Pekeris by
—8.8%. For transitions from the 152s(!S°) state to the
same final states, our results differ from those of Schiff
and Pekeris by —13.3% for n=2, + 17.9% for n=3,
and 14.3% for n=4. Finally, for transitions from the
153s(1S°) state to the same final states our results differ
from those of Schiff and Pekeris by —10.3% for n=2,
0.0% for n=3, and + 23.6% for n=4. In general, then,
our limited number of length-form results indicate a ten-
dency to be larger than those of Schiff and Pekeris’ and to
converge toward their values as n of the final state in-
creases. The exceptions to this are transitions to the same
or lower n value, as in those from the excited 'S states;
here our results are lower.

Since the calculated discrete energies are a significant
factor in the value of the calculated oscillator strength,
especially for the acceleration-form results, we present our
adiabatic hyperspherical values for the states involved in
Table II. Also shown are experimental® values for the lev-
el energies. We see that our calculated transition energies
differ from the experimental values by less than 2% for
transitions from the ground 'S® state. Calculated transi-
tion energies from the two excited 'S¢ states, however, are
much less reliable because w itself is smaller, i.e., the ini-
tial and final states have much closer energies.

C. Photoionization of He

The length- and acceleration-form results for the pho-
toionization cross section of He are presented in Fig. 2.
The velocity-form results were not calculated because of
the complexity of the equations in the Appendix. The
length results, which are identical to those of Miller and
Starace,” are 1.2% higher than the experimental measure-
ments of Samson® at threshold. The measurements have

TABLE 1. Dipole oscillator strengths in helium.

Present adiabatic
hyperspherical results

using length Variational
Transition (acceleration) form results® RRPA®
1s21S°— 1s2p 'P° 0.291 (0.342) 0.2762 0.252
1s3p 'P° 0.075 (0.086) 0.073
1s4p 'P° 0.030 (0.035) 0.030
1s2s 'S¢— 1s2p 'P° 0.326 (0.926) 0.376 0.392
1s3p 'p° 0.178 (0.540) 0.151
1sdp 'P° 0.056 (0.154) 0.049 0
1s3s 1S*—1s2p 'P° —0.130 (—0.579) —0.145
1s3p 'P° 0.539 (21.764) 0.626
1s4p 'P° 0.178 (0.376) 0.144

2Schiff and Pekeris, Ref. 7.
®Lin, Johnson, and Dalgarno, Ref. 8.
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TABLE II. Energies for He 'S¢ and 'P° states.

Present adiabatic

hyperspherical results Experiment®
State (a.u.) (a.u.)

1s(1s°) —2.889125 —2.903925
1s2s('S®) —2.139455 —2.175212
1s3s(1S*) —2.059050 —2.061265
1s2p('P°) —2.121460 —2.123820
1s3p('P°) —2.054055 —2.055135
1s4p(1P°) —2.030575 —2.031065

#Reference 9.

error bars of +39%. This agreement is thus consistent
with that for the discrete !S and !P oscillator strengths
from the ground 'S state presented in Sec. IVB above.
The length results equal experiment at 0.1 a.u. above
threshold and lie increasingly lower than experiment for
higher energies, lying 11.4% lower at 0.9 a.u. above
threshold. The acceleration results lie 15.6% higher at
threshold and 15.2% lower at 0.9 a.u. above threshold.

Of the many other theoretical calculations, the one with
the best overall agreement with the experiment of Sam-
son’ is also plotted in Fig. 2: the four-channel (1s-25-2p)
close-coupling calculation of Jacobs.!® In comparison
with the four-channel close-coupling results,'® the single-
channel hyperspherical results in the length form are in
better agreement with experiment® below E=0.2 a.u. and
are systematically lower above E=0.2 a.u.

D. Photodetachment of H™

Our length- and acceleration-form adiabatic hyper-
spherical results for the photodetachment cross section of
H™ are presented in Fig. 3. They are compared with the
length- and acceleration-form perturbation-variation re-
sults of Stewart.!! Near the peak in the cross section, at

N W o N O

T
1

PHOTOIONIZATION CROSS SECTION (Mb)

o]

o

02 04 06 08 10
PHOTOELECTRON ENERGY (a.u)

FIG. 2. Photoionization cross section for He, i.e., for
He('S®)+y—He*(15)(2S)+e~. Present adiabatic hyperspheri-
cal coordinate results: solid curve (length form) and dashed
curve (acceleration form). Four-channel 1s5-25-2p close-coupling
calculation of Jacobs (Ref. 10): dashed-dotted curve. Experi-
mental measurements of Samson (Ref. 3): solid circles.
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FIG. 3. Photodetachment cross section for H™, i.e., for
H~('S)+y—H(1s5)(3S)+e~. Present adiabatic hyperspherical
coordinate results: solid curve (length form) and dashed curve
(acceleration form). Perturbation-variation results of Stewart
(Ref. 11): dash-dotted (length form) and dash—double-dotted
(acceleration form).

0.03 a.u. above threshold, our length and acceleration re-
sults are, respectively, 12% and 71% higher than the
length-form results of Stewart.!! Above the peak our ac-
celeration results eventually become equal to our length
results near 0.275 a.u. They are about 20% lower than
the length results of Stewart at this energy. In contrast to
our acceleration-form results, Stewart’s are lower than his
length-form results. As in our calculations, however,
Stewart’s length and acceleration results tend to converge
at higher photon energies.

During the preparation of this manuscript, one of us
(A.F.S.) learned that Fink and Zoller'? have recently also
calculated the adiabatic hyperspherical approximation
photodetachment cross section for H™ in the length form.
Their results agree with ours to within numerical accura-
cy.

V. DISCUSSION

The high accuracy obtained by Miller and Starace? for
the photoionization cross section of He using the length
form of the electric-dipole matrix element has been found
to occur also in the discrete region for electric-dipole tran-
sitions from the 'S ground state. Length-form results for
discrete transitions from excited states or for the photode-
tachment cross section of H™ have not, however, been
found to have comparable accuracy, perhaps due to the
greater diffuseness of the initial states and hence the lower
reliability of the hyperspherical adiabatic approximation.

In both the photoionization cross section of He and the
photodetachment cross section of H™, the length-form
adiabatic hyperspherical approximation results become
consistently lower than either experiment or the best alter-
native theoretical results as the photon energy increases.
This has been attributed by Christensen-Dalsgaard'>!* to
inaccuracy of the adiabatic approximation in hyperspheri-
cal coordinates at distances far from the nucleus. The ac-
celeration form of the electric-dipole matrix element
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weights the region near the nucleus most heavily and thus
its use promised to overcome the inadequacy of the adia-
batic approximation at large distances. Furthermore, on
qualitative grounds the acceleration formula is expected!®
to be accurate at high photon energies, i.e., precisely
where the length-form adiabatic hyperspherical results are
too low. As shown here, however, the acceleration form
gives worse results than the length form near the thresh-
old and gives results approximately equal to those of the
length form at high photon energies.

This may be understood from Eq. (11b), which shows
that both small R and small a are weighted by the ac-
celeration form. In these regions, in the “valley” of the
potential —C [cf. Eq. (5¢)], both the 'S and the 'P wave
functions are relatively inaccurate due to their small am-
plitudes. In this region the configuration of the system is
one in which one electron is near the nucleus and the oth-
er one is far away. The correlation effect is thus essential-
ly zero, so that the advantage of hyperspherical wave
functions is lost. On the other hand, the small-a and
small-R regions are not very important for the length
form. Thus we conclude that the results obtained from

the acceleration form are less reliable than those of the
length form.

It remains of interest, in order to test the accuracy of
the adiabatic approximation at large distances, to investi-
gate the velocity-form electric-dipole matrix element,
complicated though it may be in hyperspherical coordi-
nates, due to its weighting of intermediate regions of
space, where hyperspherical wave functions are well deter-
mined. If the velocity-form results give better agreement
with experiment than the length-form results this would
be added confirmation that the adiabatic approximation
breaks down at large radial distances R, the more so as
the system energy increases.
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APPENDIX A: DIPOLE MATRIX ELEMENT IN THE VELOCITY FORM

The dipole matrix element for incident light linearly polarized along the z axis in the velocity form is defined by

23V,

i=1

or={ve -

sin201 i)

(cosa cosf, +sina cost)iR + (sin%a cos@, — cosa sina cos@,) —

Sil’l292

1_ 9
R 9(cosa)

ad

R cosa d(cosf,)

The four derivative terms in Eq. (A1) act on ¥, as follows:

R sina 9(cosb,)

wo> . (A1)

—a%\llo — 2R ""*(sina cosa)~ 1F (R) ZA, 1, (R; a)¥, IZLM(rl,rz)
1 2
3411, . 1aF (R)
+R ~3/(sina cosa) T'F,(R) 3, 3R ~ Y, 1,.m(1,82) + R > X(sina cosar)~ 2 L& 1L, M ELT)
1,1 i
" (A2a)
1_98 _y_p-12|J L (RS AL (R0, (B
R 3(cosa) ° sinffe  sinacosla | # 112’2 1L, (R;a)¥ 14, 1M (T1,T)
~7/2( _ cin2 1 aA;:Iz N
+R ™ —sin‘acosa)” F#(R)Iz T‘@IIIZLM(?bfz) , (A2b)
112
i 2
sin“6, d an .
R cosar a(cose,)% =R (cos®a sina)~ F,(R)
zA, LR 3 [y +m )2 —m)VH2L 4+ DA 21, — 1)1
mym,
X Yll_1,,,,](91)—IICOSOIYII,,,](Q])]Y12m2(02)<llm112m2 ]LM) s (A2¢c)

and similarly,
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sin262 a3

—=2 2% __y,=R""*(cosasin’a)”'F,(R)
R sina 3(cos6,) #

X3 Al (R;a) 3, Yy (QDIUa+my) 2 —my) 22+ 1220, — 1)1

L, mym,
X le_l,mz(ﬂz)—12C0892Y12m2(02)](llmllzmz }LM) . (A2d)

Substituting Eq. (A2) into Eq. (A1), we obtain

2
=<WE ?1'2 V,- Wo}
i=1
1 1 2 ° oF, v,3
_zf dR R FygF,I ,,+2f dR FygF I+ 3 [ dR Fup =21
I

+3 [ AR REysFu 15+ 3 [ aRRODFysFul i+ 3 [ dRR P L]
re s W

+3 [ dR(RDF,gF, I} (A3)
My

where the angular integrals for each of the seven terms above are defined for the special case of 'S —!P transitions as fol-
lows:

Vl_ V3 _ L

Ipp—I —Ipp ’ (A4a)

_ _ w/2 ' ad
IL/,:=IEI3 1201, 1/2(12||C['1H1,)‘f0 daAl’;IlcosaaR A} ’1+f daA, IzsmaaR Al ol (A4b)

1%2
IV4 33 V201,172, ||t 1)

112
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x | [ da 4t [cos2a) fcosalat, — [ da 4f,[cos(2a) sinalfy, |, (Adc)
V5 1/217.1-172 (1] d /2 9
I, —12,3 [ 1774, |1CHHY ) f daA,“smaa A” f dazA,,zcosaa Al | (A4d)

12

12 -1/ [1] 1 4B /2 PSRN iy
e 12’23 NI REAle ||11)[f da Afy (cosa)~'afy + [T da Al (sina) =4l | (Ade)
and
v,7 mia1/2 12 172 172 h=1 L 1
—m, _

I, _—-% VAL 4+m ) —my) 2L —1) my —m; O

l 1

T/2 ' /2 g
x | [ dadli,_u, (cosa)~afy + [, dec A,y (sina)~'afy, | (A4D

Note that I V,f stems from the second terms in Eqgs. (A2c) and (A2d) while ,',/,Z stems from the first terms of Egs. (A2c)
and (A2d).
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