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Asymptotic decay of radius of a weakly conductive viscous jet
in an external electric field

A. F. Spivak and Y. A. Dzenisa)

Department of Engineering Mechanics, Center for Materials Research and Analysis,
University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0526

~Received 10 August 1998; accepted for publication 25 September 1998!

Motion of a weakly conductive viscous jet accelerated by an external electric field is considered.
Nonlinear rheological constitutive equation applicable for polymer fluids~Oswald–deWaele law! is
applied. A differential equation for the variation of jet radius with axial coordinate is derived.
Asymptotic variation of the jet radius at large distances from the jet origin is analyzed. It is found
that the well-known power-law asymptote for Newtonian fluids with the exponent 1/4 holds for
more general class of fluids, i.e., pseudoplastic~shear thinning! and dilatant~shear thickening! fluids
with the flow index between 0 and 2. Dilatant fluids with the flow index greater than 2 exhibit
power-law asymptotes with the exponents depending on the flow index. Results can be applied for
the analysis of viscous polymer jets in the electrospinning process. ©1998 American Institute of
Physics.@S0003-6951~98!04447-7#

The flow of liquid jets deformed and accelerated by an
external electric field is a coupled electromechanics problem
that has attracted considerable interest.1–4 Excellent reviews
on this topic can be found in Refs. 2–4. Electrostatically
driven jets are involved in a variety of applications, includ-
ing electrostatic atomization of liquids.5 A method of elec-
trostatic drawing of polymer fibers, called electrospinning,6

is another application. In the latter, a charged jet of a poly-
mer solution or melt is ejected from a capillary tube. The jet
is elongated and accelerated by an external electric field,
deposited on a substrate, and dried and/or chemically treated
to convert it into a thin fiber. Recently, electrospinning was
extensively studied experimentally by Renekeret al.6,7 Fi-
bers of over thirty synthetic and natural polymers were spun
by this method.

Behavior of electrostatically driven jets at large dis-
tances from their origin has not yet been sufficiently studied
due to the fact that low-viscosity, low-molecular weight flu-
ids, utilized in most electrostatic jet applications, break up
into droplets long before the jet reaches its asymptotic
length. This breakup is due to the longitudinal Rayleigh in-
stability, caused by surface capillary waves.8 The Rayleigh
instability is not typically observed in electrospinning of
polymer fluids.6,7 However, a transverse instability or splay-
ing of the jet into two or more smaller jets is sometimes
observed. As a rule, the transverse jet splaying occurs further
away from the jet origin. Therefore, peculiarities of jet flow
at large distances are important for jet splaying analysis. In
addition, asymptotic results can be used to evaluate diam-
eters of polymer fibers electrospun in a single-jet flow re-
gime.

A simple model of an electrostatically driven Newtonian
jet was developed in Ref. 9. Asymptotic behavior of the
model was evaluated under the assumption that the effects of
the viscous forces are negligible~ideal liquid approxima-

tion!. The power-law asymptote with the exponent 1/4 was
obtained for the jet radius

R;z21/4. ~1!

The result was experimentally confirmed for several fluids.9

However, the polymer fluids are highly viscous and the ef-
fects of the viscous forces cannot be neglected. In addition,
the polymer fluids often exhibit nonlinear rheologic
behavior.10 In the present letter, a broader class of fluids
described by the nonlinear power-law rheologic constitutive
equation is considered. A model of the jet motion is formu-
lated taking into account inertial, hydrostatic, viscous, elec-
tric, and surface tension forces. Asymptotic behavior of the
jet at large distances is analyzed.

Consider an infinite viscous jet pulled from the capillary
orifice and accelerated by a constant external electric field.
Neglecting the magnetic effects, the general three-
dimensional linear momentum balance equation for the jet
element is

r~n¢•¹!n¢1¹p5¹t̂c1¹t̂e, ~2!

wherer is fluid density,n¢ is velocity, p is hydrostatic pres-
sure,t̂c is viscous stress tensor, andt̂e is electric stress ten-
sor. Rheologic behavior of many fluids, including the poly-
mer fluids, can be described by the power-law constitutive
equation, known as the Oswald–deWaele law8,10

t̂c5m@ tr ~ ġ̂2!#~m21!/2ġ̂. ~3!

Here, m is a constant,ġ̂ is rate of strain tensor,m is flow
index. Viscous Newtownian fluids are described by a special
case of Eq.~3! with the flow index m51. Pseudoplastic
~shear thinning! fluids are described by the flow indices 0
<m,1.11 Dilatant ~shear thickening! fluids are described by
the flow indicesm.1.11 The differential equation of mo-
mentum balance@Eq. ~2!# is complemented by the equations
of mass balance, electric charge balance, and the electrostatic
field equation.11,12a!Electronic mail: ydzenis@unl.edu
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Assume that the jet flow is an extensional axisymmetric
flow in the direction of the external electric field. Denotez as
the axial coordinate. Consider a weakly conductive jet. In
such a jet, electrical current due to electronic or ionic con-
ductivity of the fluid is small compared to the current pro-
vided by the convective charge transfer with moving jet par-
ticles. However, the conductivity is sufficient for the electric
charges to migrate the short distance to the jet surface. The
bulk electric charge can then be assumed zero, in the
asymptotic limit. The surface charge will interact with the
external electric field creating the pulling force responsible
for jet acceleration. In addition, the surface charge will cause
transverse electric repulsion that will lower the hydrostatic
pressure. The overall electric potential,f, can be obtained as
a sum of the potential of the surface charge,fs , and the
potential of the external field,fext52E0z, whereE0 is the
electric field.

Assume that the slope of the jet surface in the direction
of the flow is small,dR/dz!1, whereR is the jet radius.
Further, assume that the effect of the surface charge on the
axial component of the electric field is negligible. The linear
momentum balance@Eq. ~2!# can then be averaged over the
jet cross-section. Detailed description of the averaging pro-
cedure can be found in Ref. 8. The resulting equation in the
axial direction is

d

dzFr2 pR2n21pR2p2mpR2S Udv
dzU D

m21 dv
dzG52pRVE0 ,

~4!

wherev is average jet velocity in the cross section andV is
the surface charge density. The average hydrostatic pressure
in the cross section is determined by the surface tension and
transverse electric repulsion. For a slender jet, it is approxi-
mated by

p5
ss

R
2

V2

2e0

, ~5!

where ss is the surface tension coefficient ande0 is the
dielectric permeability of vacuum. Equation~5! can be ob-
tained by averaging Eq.~2! in the radial direction.

Averaging the mass balance equation yieldspR2n5Q,
whereQ is the constant volumetric flow rate. Similarly, the
electric charge balance equation reduces to 2QV/R
2psR2df/dz5I , wheres is the electrical conductivity of
the fluid andI is the constant total electric current. In the
weakly conductive jet, the electric current is defined prima-
rily by the convective charge transfer. Therefore in the
asymptotic limit, the electric current can be approximated by
I 52QV/R and the ratio of the surface charge density and jet
radius is constantV/R5I /2Q. The flow rate,Q, and the
electric current,I, are considered external parameters of the
problem.

Let us introduce the dimensionless jet radiusR̃5R/R0

and axial coordinatez̃5z/z0 , where z05rQ3/2p2R0
4E0I .

The characteristic jet radius,R0 , is sometimes taken equal to
the radius of the capillary orifice.3,10 Equations~4! and ~5!
reduce to the following dimensionless equation for the jet
radius:

d

dz̃
H R̃241WeR̃212YR̃22

1

ReS 1

2

d

dz̃
~R̃22!D mJ 51. ~6!

The dimensionless parameters in Eq.~6! are defined as
follows. The Weber number,We5(2p2R0

3ss )/(rQ2),
describes the ratio of the surface tension forces to the
inertia forces. The parameterY5p2I 2R0

6)/(4e0rQ4)
describes the ratio of the electric forces to the inertia
forces. The effective Reynolds number for the fluid charac-
terized by the power-law constitutive Eq.~3!, Re
5(Q2r)/(2p2R0

4m)@(4pE0IR0
2)/(Q2r)#2m, describes the

ratio of the inertia forces to the viscous forces.
The Bernoulli integral obtained from Eq.~6! is

R̃241WeR̃212YR22
1

ReS 1

2

d

dz̃
R̃22D m

5 z̃1C, ~7!

where the integration constant,C, is determined by the
boundary condition. A general closed-form solution of Eq.
~7! is not available.

By analogy with Ref. 9, let us consider the power-law
asymptotic approximation of the jet radius

R̃; z̃2a, ~8!

where the exponent,a, is a positive constant. Substituting
Eq. ~8! into Eq. ~7! gives

z̃4a1Wez̃a2Y z̃22a2
am

Re
z̃~2a21!m2 z̃5O~1!. ~9!

The power balance atz̃→1` yields

4a5max@1,~2a21!m#. ~10!

For pseudoplastic and dilatant fluids with the flow indexm in
the range from zero to two, the solution of Eq.~10! is a51/4.
That coincides with the asymptotic solution for Newtonian
fluids obtained in Ref. 9. For dilatant fluids with the flow
index greater than 2, the solution isa5 1

2m/(m22). These
two solutions describe two asymptotic regimes of jet motion.
In the first regime, the influence of viscosity at large dis-
tances is small and the electric field work is fully trans-
formed into the kinetic energy of the jet. In the second re-
gime, the viscous stresses prevail at large distances and
asymptotic flow behavior depends on the parameter of the
constitutive equation of the fluid.

FIG. 1. Results of numerical integration of Eq.~6! for the flow indicesm
50.5, 1.5, 2.5, 3, 5, 7.
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The analytic solutions presented by Eqs.~8! and~10! are
verified by the numerical integration of Eq.~6!. The follow-
ing dimensionless constants are chosen based on typical
electrospinning parameters:7 Re50.10,We510,Y510. The
boundary condition isR̃u z̃5051. Results of the numerical
integration for several flow indicesm are shown in Fig. 1. It
is seen that at large distances, the ratio log (1/R̃)/ log z̃5

2 log R̃/ log z̃ tends to a constant. For the flow indicesm
,2, the asymptote is independent ofm and equalsa51/4.
For the flow indicesm.2, the asymptote depends onm. As
m increases, the asymptotic exponent decreases, approaching
the valuea51/2. Overall, the results of numerical simulation
corroborate with the analytic expressions.

The analysis presented here extends the limit of applica-
bility of the power-law asymptote,9 Eq. ~1!, to pseudoplastic
and dilatant fluids with the flow indexm between 0 and 2.
More complicated asymptotic behavior of the dilatant fluids
with the flow indexm.2 is discovered. The obtained results
can be used as a basis for stability analysis of viscous poly-
mer jets.

The support of this work by the National Science Foun-
dation is gratefully acknowledged.
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