
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department of

8-12-2008

DUTs: Targeted Case Studies
Hui Nee Chin
University of Nebraska - Lincoln, hchin@cse.unl.edu

Sebastian Elbaum
University of Nebraska - Lincoln, selbaum2@unl.edu

Matthew B. Dwyer
University of Nebraska - Lincoln, mdwyer2@unl.edu

Matthew Jorde
University of Nebraska - Lincoln, majorde@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csetechreports
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Chin, Hui Nee; Elbaum, Sebastian; Dwyer, Matthew B.; and Jorde, Matthew, "DUTs: Targeted Case Studies" (2008). CSE Technical
reports. Paper 24.
http://digitalcommons.unl.edu/csetechreports/24

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports/24?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages


1

DUTs: Targeted Case Studies
Hui Nee Chin, Sebastian Elbaum, Matthew B. Dwyer, Matthew Jorde
Dept. of Computer Science and Engineering, University of Nebraska

Lincoln, NE, USA
{elbaum,hchin,dwyer,majorde}@cse.unl.edu

I. I NTRODUCTION

Our previous studies of DUTs addressed research questions
of effectiveness, efficiency, and robustness with respect to one
software artifact, Siena, and we believe the findings generalize
to similar artifacts. Still, we realize that existing studies suffer
from threats to validity. Specifically, the selected artifact provided
limited exposure to CR in the presence of deeper heap structures,
extensive software changes, and high number of methods invo-
cations. We start to address those threats to the validity ofour
findings by investigating the performance of CR in the presence
of such settings.

The findings in this report reveal that the performance of the
different carving strategies can vary significantly in programs
with complex heap structures, that theReplayAnomalyHandler
can enhance DUTs reuse and potential for fault detection with
affordable replay costs, and that theclustering projection can be
very effective to reduce the number of DUTs on high-frequency
methods.

II. DUT S ROBUSTNESS IN THEPRESENCE OFPROGRAM

CHANGES

We are interested in answering the following questions:

• what is the impact of deeper and more complex heap
structures on the performance of CR?

• how robust are DUTs under extensive software modifica-
tions?

• what is the cost of utilizing theReplayAnomalyHandler
• what is the fault detection effectiveness of DUTs replayed

using theReplayAnomalyHandler?

We selected NanoXML, a command-line XML parser imple-
mented in Java, as the artifact of study. NanoXML has two
attributes that make it valuable for study. First, it has a large
number of changes across versions which makes it appropriate
to answer the robustness to change questions. Table I illustrates
the degree of change through the number of modifications in
class structures (e.g. changing the data structure of a class field
from java.util.Properties to java.util.Vector). 1

Second, the heap structure of NanoXML is much deeper than
Siena, which may expose further differences across the set of
projections we have implemented. We obtained NanoXML from
the SIR repository [1], and it includes the source code, system
level test suites containing slightly over 120 test cases, and multi-
ple versions corresponding to product releases. Since NanoXML
is a component library, for the purposes of this analysis, we
only consider the core components of NanoXML and not its test

1The actual number of changed methods may be slightly higher if we
include changed methods in classes that did not undergo class structure
changes.

Carving Metric Reduction
versions C-retest-all

1 5 ∞ touched

v0 Minutes 7 11 17 25
Mb 56 311 671 83

DUTs 1030 6170 9491 1605
Percentage of DUTs 83% 87% - 86%
with sentinels

TABLE II

CARVING T IMES AND SIZES TO GENERATE THE INITIAL DUT SUITES FOR

NANOXML.

drivers. We utilize four versions of NanoXML that had faults
exposed by its system tests.

Similar to the study on Siena, the assessment was performed
through the comparison of system tests and their corresponding
carved unit test cases. We consider three types of regression
testing techniques,S-retest-all, C-retest-all-k*, and C-retest-all-
touched (we decided not to employ regression test selection
techniques because there are enough changed methods per version
to cause the selection of the majority of the system tests.) For
the robustness assessment, we want to know to what degree the
DUTs from the initial carved test suites can be used to test the
changed methods. We measure the fault detection effectiveness
and the time to generate the carved DUTs and the time to replay
the DUTs for the changed methods, as performed in the previous
study.

A. Results.

Table II summarizes the time (in minutes) and the size re-
quirements (in Mb) to carve the four initialC-retest-all test
suites, as well as the number of DUTs generated for all methods
executed in each suite. Constraining the carving depth greatly
reducesboth carving time and storage space for NanoXML, which
is something we did not observed in Siena. This difference is
caused by the longer reference chains of NanoXML as evidenced
by the percentage of sentinels ink = 5 which indicate that
there are plenty of references longer than length five. Another
interesting difference with Siena is that applying the touched-
carving projection resulted in carving execution times that are
over 30% greater on average than the carving times forC-retest-
all-k∞, caused by the higher level of bookkeeping required by
such references.

To assess CR robustness in the presence of change, we analyzed
in detail only the seven faulty methods of the artifact. We find
that only one of the seven could be replayed without invoking
the ReplayAnomalyHandler, whereas post-states for the other
six faulty methods could be recorded only by traversing up the

University of Nebraska–Lincoln, Computer Science and Engineering
Technical Report TR-UNL-CSE-2008-0005
Issued August 12, 2008



2

Version Physical Classes Change- Number of methods System test Faults
SLOC covered In affected In total suites size

classes classes

v0 3708 10 - - 106 120 -
v1 4334 12 7 71 120 123 1
v3 7185 15 3 73 213 128 1
v5 7646 19 4 34 232 128 5

TABLE I

NANOXML’ S COMPONENTSATTRIBUTES.

Fault instance Reachedmain Average # methods Average traversal DUTs Replay Times (seconds)
visited length replayed k1 k5 k∞ touched

v1 Yes 4 3 86 6 15 26 20
v3 Yes 1 1 48 12 16 21 13
v5:f1 Yes 6 6 70 10 18 25 11
v5:f2 Yes 6 6 70 10 17 22 11
v5:f3 Yes 4 9 12 8 13 18 13
v5:f4 Yes 4 3 86 7 16 22 21
v5:f5 No 1 0 1 5 5 5 6

TABLE III

REPLAYING TIMES AND FRONTIER FORNANOXML.

PP FF
C-retest-all C-retest-all

k1 k5 k∞ touched k1 k5 k∞ touched
v1 100 50 54 54 0 100 100 100
v3 100 100 100 100 100 100 100 100
v5:f1 35 50 50 46 100 100 100 100
v5:f2 62 62 62 51 100 100 100 100
v5:f3 100 100 42 47 0 0 100 100
v5:f4 100 55 55 55 0 100 100 100
v5:f5 100 10 10 10 0 100 100 100

TABLE IV

FAULT DETECTIONEFFECTIVENESS FORNANOXML.

call graph and replaying their caller(s) method(s). Columns 2-
5 of Table III provide more details on the size of the frontier
explored, while columns 6-9 show the required replay time. Note
that exercising the faulty methods in the first six rows required
to replay all methods up tomain. Interestingly, utilizing the
ReplayAnomalyHandler to identify the replayable frontier implied
replaying an average of 62 DUTs but increased replay time by a
factor of 5 at most. The general tendencies about the replay times
across the different carving suites is similar to what was observed
for Siena. Touched replay times were usually between those of
k = 1 and k = ∞, however in some cases the replay time was
closer to that ofk = 1 and in other cases the replay time was
closer to that ofk =∞. This variation is caused by the different
dereference chain lengths used in the various methods tested.

To assess the fault detection effectiveness of these DUTs we
compute: 1) PP, the percentage of passing selected system tests
(selected utilizingS-Selection) that have all corresponding DUTs
passing, and 2) FF, the percentage of failing system tests that
have at least one corresponding failing DUT. Table IV presents
the PP and FF values for the different carving projections under
all version instances. All DUTs generated throughC-retest-all-

k∞ detected a difference in the faulty methods. Furthermore,
many PP values are not 100, indicating that many DUTs have
higher difference detecting power than their corresponding system
test cases. For example, only 50% of the passing system testsin
the S-retest-all test suite forv5 : f1 had all their corresponding
DUTs passing in theC-retest-all-k∞ suite, while 46 DUTs failed
even though they were carved from passing system tests. More
importantly, we observed that limiting the carving depth has a
profound impact on the FF proxy measure of fault detection
effectiveness. Restricting the depthk = 1 led to lower fault
detection effectiveness (v1, v5 : f3, v5 : f4, andv5 : f5). Even
limiting the depth tok = 5 caused the fault inv5 : f3 to go
undetected by theC-retest-all-k5 suite. Despite the relatively low
number of DUTs carved, applying the touched-carving projection
yielded fault detection results similar to those of depthk =∞.

III. DUT S SCALABILITY THROUGH CLUSTERING

Reducing the number of DUTs is crucial to make the CR
approach scalable, and the projections we studied were helpful in
that regard. However, during our investigation, we also noted that
some systems performed a large number of method invocations



3

within the same calling context, which lead to the development
of the clustering projection. This projection is unique in that it
defines at run-time when to stop generating DUTs for a method
once a threshold is met. The smaller number of DUTs may also
result in less replay time. Through this study we aim to explore
the degree to whichcluster-based filtering can reduce the number
of DUTs.

Since neither Siena nor NanoXML exhibited this attribute, we
searched for an additional artifact. The artifact we chose for this
analysis is JTopas, a Java library for tokenizing and parsing, which
is available for download from the SIR repository [1]. On average,
a JTopas system tests executes over 450,000 methods, and each
method is invoked an average of over 6,000 times, making it
appropriate for this study.

Since the focus of this study is on the effectiveness of the
clustering projection, instead of providing a wide test suite
characterization, we decided to focus in more depth on just 5
randomly selected JTopas tests. From these 5 tests we carvedtwo
DUT suites:C-random, which is the carved test suite generated
from the 5 randomly selected system tests, andC-random-c*,
which corresponds to the carved test suites generated from the
same system test cases utilizing theclustering filter with four
different clustering thresholds,c, of 10, 100, 1000, and 2000.
All carved test suites were subjected to the interface reachable
projection as well. We assess the performance of the suites by
measuring the carving time, and the number of DUTs carved,
which serves as a proxy for replay time.

A. Results

Figure 1(a) illustrates the carving time for the test suite which
shows that not all clustering threshold levels provided carving
time savings; specifically, using the threshold of 10 resulted in a
52% increase in carving time. On further examination, however,
we noticed that this was not the case for every test case. Carving
two of the test cases (t1 and t2) did not result in any clustered
methods, hence their carving times remained approximatelythe
same regardless of the threshold values. One test case (t3) always
benefited from clustering, while when carving the other two test
cases (t4 andt5) the performance varied depending on the chosen
clustering threshold.

This performance variation is illustrated in Figure 1(b) and
corresponds to the different test execution patterns exhibited under
the different thresholds fort1–t5 individually. The variation in
performance across the thresholds is caused by several factors. As
the clustering threshold is lowered, more DUTs can be clustered.
However, lowering the threshold also means that more method’s
DUTs must be rearranged (DUTs are replaced with markers
pointing to the caller DUTs so that the target method can be
selected for replay by the user without noticing the underlying
clustering). As a result, for a given test, some thresholds will not
benefit carving when there are not enough DUTs to offset the
cost of removal and marking. Figure 2 presents the conversion
(removal and marking) effort required fort3 and t5 at each
threshold level to further illustrate this tradeoff. For instance, for
c = 10, t3 performed 43 conversions andt5 performed 1104
conversions, while forc = 100 t5 performed 340 conversions.

Next we examine the effects of clustering on replay efficiency.
Table V presents the number of DUTs carved at each threshold
level. Clustering managed to reduce the number of DUTs by an
average of 33% at the lowest clustering threshold (from 551202

to 368865). Note that, as observed before, not all test cases
benefited the same way at each clustering threshold level. When
looking at particular JTopas methods, we found that 24 of the86
methods invoked by the test suite had DUTs that were clustered
with c = 10, whereas 16 different methods had DUTs that were
clustered withc = 100. Only one method had DUTs clustered
at higher thresholds. Program methods invoked by each test case
were affected differently; for example, DUTs from 9% of the
methods invoked int3 could be clustered while DUTs from 26%
of the methods invoked int5 could be clustered.

These data suggest that some analysis of individual test cases
could be helpful in determining the suitable clustering threshold.
One way to analyze the tests could be to measure the average
number of times a method is invoked by each system test case.
For example, the average number of times a method is invoked
in t3 is 199 while each method is invoked an average of 5322
times in t5. This could serve as an indication that a threshold of
100 might be suitable fort3 while it might be too low fort5.

REFERENCES

[1] Gregg Rothermel, Sebastian Elbaum, and Hyunsook Do. Software infras-
tructure repository. http://cse.unl.edu/ galileo/php/sir/index.php, January
2006.



4

Fig. 1. Carving times with different clustering thresholds.

Test case Number of DUTs to replay
Before clustering After clustering

c=10 c=100 c=1000 c=2000

t1 59 59 59 59 59
t2 28 28 28 28 28
t3 11404 3523 4264 6481 6481
t4 309455 222226 250480 304533 304533
t5 230256 143029 171281 225333 225333
Total 551202 368865 426112 536434 536434

TABLE V

NUMBER OF DUTS TO REPLAY AT EACH CLUSTERINGTHRESHOLD.

Fig. 2. Conversion effort fort3 and t5 at each threshold level.


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	8-12-2008

	DUTs: Targeted Case Studies
	Hui Nee Chin
	Sebastian Elbaum
	Matthew B. Dwyer
	Matthew Jorde


