University of Nebraska - Lincoln

Digital Commons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department of
8-12-2008

DUTs: Targeted Case Studies

Hui Nee Chin

University of Nebraska - Lincoln, hchin@cse.unl.edu

Sebastian Elbaum
University of Nebraska - Lincoln, selbaum2@unl.edu

Matthew B. Dwyer
University of Nebraska - Lincoln, mdwyer2@unl.edu

Matthew Jorde

University of Nebraska - Lincoln, majorde@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csetechreports

b Part of the Computer Sciences Commons

Chin, Hui Nee; Elbaum, Sebastian; Dwyer, Matthew B.; and Jorde, Matthew, "DUTs: Targeted Case Studies" (2008). CSE Technical
reports. Paper 24.
http://digitalcommons.unl.edu/csetechreports/24

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at Digital Commons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an authorized administrator of Digital Commons@University of

Nebraska - Lincoln.

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports/24?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages

University of Nebraska—Lincoln, Computer Science and Engineering 1
Technical Report TR-UNL-CSE-2008-0005
Issued August 12, 2008

DUTs: Targeted Case Studies

Hui Nee Chin, Sebastian Elbaum, Matthew B. Dwyer, Matthevaddo
Dept. of Computer Science and Engineering, University obridska
Lincoln, NE, USA
{elbaum,hchin,dwyer,majord@-cse.unl.edu

Carvin Metric Reduction
|. INTRODUCTION i Corotostal
Our previous studies of DUTs addressed research questions _ 1 [5 | oo [touched
of effectiveness, efficiency, and robustness with respeatrie V0 M't;“‘tes / 1 1 17 25
soft\{va_re artif_act, Sien_a, and we believe thg findings _gdaizera 5UTs M 1?)20 5’11710 547911 1235
to similar artifacts. Still, we realize that existing steslisuffer Percentage of DUTY 83% | 87% . 36%
from threats to validity. Specifically, the selected adifprovided with sentinels
limited exposure to CR in the presence of deeper heap stasgtu
extensive software changes, and high number of methods invo TABLE I
cations. We start to address those threats to the validityuof CARVING TIMES AND SIZES TO GENERATE THEINITIAL DUT SUITES FOR
NANOXML.

findings by investigating the performance of CR in the presen
of such settings.

The findings in this report reveal that the performance of the
dlfferent carving strategies can vary significantly in pengs drivers. We utilize four versions of NanoXML that had faults
with complex heap structures, that tiReplayAnomalyHandler .

. . exposed by its system tests.
can enhance DUTs reuse and potential for fault detectioh WI? o .
. o Similar to the study on Siena, the assessment was performed
affordable replay costs, and that tbeistering projection can be - . .
through the comparison of system tests and their correspgnd

very effective to reduce the number of DUTs on hlgh'frequenccarved unit test cases. We consider three types of regressio

methods. testing techniquesSretest-all, C-retest-all-k*, and C-retest-all-
touched (we decided not to employ regression test selection
[I. DUTS ROBUSTNESS IN THEPRESENCE OFPROGRAM techniques because there are enough changed methodsgenver
CHANGES to cause the selection of the majority of the system tesis:) F
We are interested in answering the following questions: ~ the robustness assessment, we want to know to what degree the

. . DUTs from the initial carved test suites can be used to test th
o what is the impact of deeper and more complex hea . .
anged methods. We measure the fault detection effeetgen
structures on the performance of CR? nd the time to generate the carved DUTs and the time to repla
o how robust are DUTs under extensive software modn‘lc%I 9 . piay
e DUTs for the changed methods, as performed in the previou

tions? stud
« what is the cost of utilizing th&eplayAnomalyHandler y-

o what is the fault detection effectiveness of DUTs replayed
using theReplayAnomalyHandler ? A. Results.

We selected NanoXML, a command-line XML parser imple- a6 || summarizes the time (in minutes) and the size re-
mented in Java, as the artifact of study. NanoXML has tWQirements (in Mb) to carve the four initiaC-retest-all test
attributes that make it valuable for study. First, it has @@a g ites as well as the number of DUTs generated for all method
number of changes across versions Wh'ch makes it ap_prepr'ékecuted in each suite. Constraining the carving depthtlgrea
to answer the robustness to change questions. Tablle. Iraitlast reducesboth carving time and storage space for NanoXML, which
the degree of change ‘h“"_’gh the number of mOd'f'Ca_t'OnS il something we did not observed in Siena. This difference is
class structures (e.g. changing the data structure of a ﬁlalxlal caused by the longer reference chains of NanoXML as evidence
fromjava. util.Properties tojava.util.Vector).* . the nercentage of sentinels in — 5 which indicate that
Second, the heap structure of NanoXML is much deeper thg{y e are plenty of references longer than length five. Agroth
Sle.na,.whlch may expose further dlﬁerenqes across the fsetirﬂeresting difference with Siena is that applying the twmd:
projections we have |mplem.en.ted. We obtained NanoXML frorE‘arving projection resulted in carving execution timest thee
the SIR rep_03|tory [1], _and |_t includes the source code,es_yst over 30% greater on average than the carving time<fostest-
level test suites containing slightly over 120 test cased,raulti- all-koo, caused by the higher level of bookkeeping required by
ple versions corresponding to product releases. Since X¥ho ¢, 1 references
Is a component library, for the purposes of this analys.is, W€ T assess CR robustness in the presence of change, we ahalyze
only consider the core components of NanoXML and not its 5 detail only the seven faulty methods of the artifact. Wal fin

IThe actual number of changed methods may be slightly highevei that only one of the seven could be replayed without invoking
include changed methods in classes that did not underge cacture the ReplayAnomalyHandler, whereas post-states for t_he other
changes. six faulty methods could be recorded only by traversing up th

Version | Physical| Classes| Change-| Number of methods| System test Faults

SLOC covered | In affected| In total | suites size
classes| classes

vO 3708 10 - - 106 120 -

vl 4334 12 7 71 120 123 1

v3 7185 15 3 73 213 128 1

V5 7646 19 4 34 232 128 5

TABLE |
NANOXML' SCOMPONENTSATTRIBUTES.
Fault instance| Reachedrai n | Average # methods Average traversal DUTs Replay Times (seconds)
visited length replayed || kI [k5 | koo [touched
vl Yes 4 3 86 6 | 15| 26 20
v3 Yes 1 48 12116 | 21 13
v5:f1 Yes 6 6 70 10| 18| 25 11
v5:f2 Yes 6 6 70 10 | 17 | 22 11
v5:f3 Yes 4 9 12 8 | 13| 18 13
v5:f4 Yes 4 3 86 7 |16 | 22 21
v5:f5 No 1 0 1 5| 5 5 6
TABLE Il
REPLAYING TIMES AND FRONTIER FORNANOXML.
PP FF
C-retest-all C-retest-all
k1 [k5 [koo | touched]| kI | k5 | koo | touched
vl 100 | 50 | 54 54 0 | 100 | 100 100

v3 100 | 100 | 100 100 100 | 100 | 100 100
v5:fl || 35 | 50 50 46 100 | 100 | 100 100
vbif2 || 62 | 62 62 51 100 | 100 | 100 100

v5:f3 || 100 | 100 | 42 47 0 0 100 100

v5:f4 || 100 | 55 | 55 55 0 | 100 | 100 100

v5:f5 || 100 | 10 10 10 0 | 100 | 100 100
TABLE IV

FAULT DETECTIONEFFECTIVENESS FORNANOXML.

call graph and replaying their caller(s) method(s). Colan2a koo detected a difference in the faulty methods. Furthermore,
5 of Table IIl provide more details on the size of the frontiemany PP values are not 100, indicating that many DUTs have
explored, while columns 6-9 show the required replay timeteN higher difference detecting power than their correspandiystem
that exercising the faulty methods in the first six rows reggii test cases. For example, only 50% of the passing systemitests
to replay all methods up tonain. Interestingly, utilizing the the Sretest-all test suite forv5 : f1 had all their corresponding
ReplayAnomalyHandler to identify the replayable frontier implied DUTs passing in th€-retest-all-koo suite, while 46 DUTSs failed
replaying an average of 62 DUTSs but increased replay time byegen though they were carved from passing system tests. More
factor of 5 at most. The general tendencies about the repiegst importantly, we observed that limiting the carving deptts e
across the different carving suites is similar to what waseobed profound impact on the FF proxy measure of fault detection
for Siena. Touched replay times were usually between thbseaffectiveness. Restricting the depth = 1 led to lower fault
k =1 and k = oo, however in some cases the replay time wadetection effectiveness/1, v5 : f3, v5 : f4, andv5 : f5). Even
closer to that ofk = 1 and in other cases the replay time wadimiting the depth tok = 5 caused the fault in5 : f3 to go
closer to that oft = co. This variation is caused by the differentundetected by th€-retest-all-k5 suite. Despite the relatively low
dereference chain lengths used in the various methodsiteste number of DUTs carved, applying the touched-carving ptaec
yielded fault detection results similar to those of depth occ.

To assess the fault detection effectiveness of these DUTs we
compute: 1) PP, the percentage of passing selected sys#tsn te
(selected utilizingS-Selection) that have all corresponding DUTs
passing, and 2) FF, the percentage of failing system tests th Reducing the number of DUTs is crucial to make the CR
have at least one corresponding failing DUT. Table IV préserapproach scalable, and the projections we studied weréuh@ip
the PP and FF values for the different carving projectiondeun that regard. However, during our investigation, we alseddhat
all version instances. All DUTs generated throughretest-all- some systems performed a large number of method invocations

I1l. DUT S SCALABILITY THROUGH CLUSTERING

within the same calling context, which lead to the developmeto 368865). Note that, as observed before, not all test cases
of the clustering projection. This projection is unique in that itbenefited the same way at each clustering threshold leveénwWh
defines at run-time when to stop generating DUTs for a methtmbking at particular JTopas methods, we found that 24 ofBthe
once a threshold is met. The smaller number of DUTs may alseethods invoked by the test suite had DUTs that were clustere
result in less replay time. Through this study we aim to eslowith ¢ = 10, whereas 16 different methods had DUTs that were
the degree to whichluster-based filtering can reduce the numberclustered withc = 100. Only one method had DUTs clustered
of DUTs. at higher thresholds. Program methods invoked by each asst ¢
Since neither Siena nor NanoXML exhibited this attribute, wwere affected differently; for example, DUTs from 9% of the
searched for an additional artifact. The artifact we chaselfis methods invoked in3 could be clustered while DUTs from 26%
analysis is JTopas, a Java library for tokenizing and pgrsiich of the methods invoked ir5 could be clustered.
is available for download from the SIR repository [1]. Onage, These data suggest that some analysis of individual tesscas
a JTopas system tests executes over 450,000 methods, dnd eauald be helpful in determining the suitable clusteringesitrold.
method is invoked an average of over 6,000 times, making@ne way to analyze the tests could be to measure the average
appropriate for this study. number of times a method is invoked by each system test case.
Since the focus of this study is on the effectiveness of th&or example, the average number of times a method is invoked
clustering projection, instead of providing a wide testteuiin ¢3 is 199 while each method is invoked an average of 5322
characterization, we decided to focus in more depth on justtifnes int5. This could serve as an indication that a threshold of
randomly selected JTopas tests. From these 5 tests we daroed100 might be suitable for3 while it might be too low fort5.
DUT suites:C-random, which is the carved test suite generated
from the 5 randomly selected system tests, &dandom-c*, REFERENCES

which corresponds to the carved test suites generated frem El] Gregg Rothermel, Sebastian Elbaum, and Hyunsook Daw@cé infras-

same system test cases utilizing ttlestering filter with four tructure repository. http:/cse.unl.edu/ galileo/phyifslex.php, January
different clustering thresholds;, of 10, 100, 1000, and 2000. 2006.

All carved test suites were subjected to the interface galeh
projection as well. We assess the performance of the sujtes b
measuring the carving time, and the number of DUTs carved,
which serves as a proxy for replay time.

A. Results

Figure 1(a) illustrates the carving time for the test suitéal
shows that not all clustering threshold levels providedvicar
time savings; specifically, using the threshold of 10 resuin a
52% increase in carving time. On further examination, haxev
we noticed that this was not the case for every test caseir@arv
two of the test cases1(and¢2) did not result in any clustered
methods, hence their carving times remained approximatedy
same regardless of the threshold values. One test tgsalays
benefited from clustering, while when carving the other test t
cases#4 andt5) the performance varied depending on the chosen
clustering threshold.

This performance variation is illustrated in Figure 1(b)dan
corresponds to the different test execution patterns @rkilinder
the different thresholds for1—5 individually. The variation in
performance across the thresholds is caused by severaidasis
the clustering threshold is lowered, more DUTs can be dedte
However, lowering the threshold also means that more mé&thod
DUTs must be rearranged (DUTs are replaced with markers
pointing to the caller DUTs so that the target method can be
selected for replay by the user without noticing the undegy
clustering). As a result, for a given test, some thresholiisnat
benefit carving when there are not enough DUTs to offset the
cost of removal and marking. Figure 2 presents the conversio
(removal and marking) effort required faB3 and ¢5 at each
threshold level to further illustrate this tradeoff. Fostance, for
¢ = 10, t3 performed 43 conversions and performed 1104
conversions, while for = 100 t5 performed 340 conversions.

Next we examine the effects of clustering on replay effigjenc
Table V presents the number of DUTs carved at each threshold
level. Clustering managed to reduce the number of DUTs by an
average of 33% at the lowest clustering threshold (from B212

160

150
140
350
130
300
250 120
n 0
g 200 £ 110
=1 3
< £
§ 150 s
100
100
t5
50 90
0 80
none c=10 ¢=100 c=1000 ¢=2000
Clustering Threshold Levels §
(a) Carving Time for Test Suite 10
t3
0wtk e - - .
none c=10 c=100 c=1000 c=2000
Clustering Threshold Levels
(b) Carving Time for Tests
Fig. 1. Carving times with different clustering thresholds

Test case Number of DUTSs to replay
Before clustering After clustering

=10 | ¢=100 | ¢=1000 | ¢=2000
t1 59 59 59 59 59
12 28 28 28 28 28
t3 11404 3523 4264 6481 6481
t4 309455 222226 250480 | 304533 | 304533
t5 230256 143029 | 171281 | 225333 | 225333
Total 551202 368865 | 426112 | 536434 | 536434

TABLE V

NUMBER OFDUTS TOREPLAY AT EACH CLUSTERING THRESHOLD.

1200

1000

800

600

400

200

Number of Conversions

3

c=10

t
o —— T
c=100

L]
c=1000

Clustering Threshold Levels

Fig. 2. Conversion effort for3 and¢5 at each threshold level.

c=2000

-t
- t2
- {3
- t4
> t5

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	8-12-2008

	DUTs: Targeted Case Studies
	Hui Nee Chin
	Sebastian Elbaum
	Matthew B. Dwyer
	Matthew Jorde

