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Superparamagnetic ultrathin films
R. Skomski, D. Sander, J. Shen, and J. Kirschner
Max-Planck-Institut fu¨r Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany

The finite-temperature magnetism of ultrathin films such as sesquilayer Fe/W~110! and
submonolayer Fe/Cu~111! is investigated. Based on renormalizations of Onsager’s exact solution of
the two-dimensional Ising model it is shown that superparamagnetism is a common phenomenon in
imperfect ultrathin films. The ultimate reason for this behavior is the existence of two structural
length scales: the lattice constant, usually considered in renormalization-group theory, and the
characteristic size of the film inhomogeneities. ©1997 American Institute of Physics.
@S0021-8979~97!47408-X#

I. INTRODUCTION

A key problem in the magnetism of ultrathin metallic
films is the existence of ferromagnetic order in films with
ferromagnetic interatomic coupling.1–4 From the point of
view of statistical mechanics, ferromagnetism is character-
ized by a singular Curie temperatureTc , below which there
is long-range ferromagnetic order. In a strict sense, there is
no ferromagnetism in nature, since the magnets’ finite size
inhibits ferromagnetic long-range order in a thermodynamic
sense. For example, isotropic nanocrystalline permanent
magnets are actually random-anisotropy spin glasses, in spite
of their often very high coercivity.5

In this theoretical paper we investigate the superpara-
magnetism of inhomogeneous films such as sesquilayer Fe/
W~110! consisting of second-layer islands on a monolayer
background2,3,6and submonolayer fcc iron on flat and vicinal
Cu~111! surfaces, which form triangles and stripes,
respectively.7

II. THEORETICAL BACKGROUND

A. Ferromagnetism and superparamagnetism

The equilibrium partition functionZ5( exp(2bH)
5( exp(2H/kBT) shows that ferromagnetism is restricted
to magnets extending to infinity in each of the relevant di-
mensions, since the behavior in the vicinity ofTc is deter-
mined by long-range thermodynamical correlations.8–10 By
comparison, the spontaneous magnetization of superpara-
magnets is zero, although the magnetization is more or less
homogeneous inside each superparamagnetic region.

Figure 1 shows typical ferromagnetic, paramagnetic, and
superparamagnetic equilibrium magnetization curves.11 The
numberN of atoms belonging to a superparamagnetic region
is obtained from the zero-field slope of the hysteresis loops,
N5kBT(]M /]H)/mFem0M0 , where M0 is the saturation
magnetization.N51, which is simple paramagnetism, leads
to a very flat magnetization curve whose slope is below the
resolution of Fig. 1, whereasN5` yields a step function.
Macroscopic magnets, whereN is very large, have a finite
zero-field slope but cannot be distinguished from true ferro-
magnets. Since it is difficult to resolve fields much smaller
than 0.1 mT, clusters having less than about 106 spins, or;
104 mm3 iron, are superparamagnetic. Typical inhomogene-
ities in ultrathin films, such as submonolayer triangles of fcc

iron on Cu~111!, have volumina of the order 50 nm3, which
indicate the relevance of superparamagnetic excitations.

B. Superparamagnetic blocking

In practice it is necessary to distinguish between super-
paramagnetism in a narrower sense, characterized by the ab-
sence of hysteresis,12 and frozen or blocked superparamag-
netism involving the magnetocrystalline anisotropyK1 .
Consider, for instance, small ferromagnetic particles of vol-
umeV whose zero-field magnetizationM5Mz equalsM0 at
some timet50. Due to thermal excitations involving the
energy barrierK1V this initial magnetization decays after
some blocking or relaxation time.11

The relaxation times vary between microseconds for ul-
trasmall iron particles and many millions of years for small
inclusions of iron oxides in rocks.11,13 However, the time
scale is the only difference between blocked and unblocked
superparamagnetism, whereas the spontaneous magnetiza-
tion of a ferromagnet does not decay within any finite time.14

In this sense, hysteresis is neither a necessary nor a sufficient
condition for ferromagnetism.

FIG. 1. Ferromagnetic (N5`), superparamagnetic (N5400), and para-
magnetic (N51) magnetization curves atT5270 K. The dashed line refers
to an interacting Ising-spin chain.
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C. The Ising model

The Ising model is defined by the HamiltonianH
5( i.kJiksi sk2h( isi where si561 and h5NmBm0H.

10

Usually one assumes that the exchange constants obeyJik
5J for nearest neighbors andJik50, but this restriction does
not affect the qualitative behavior of the magnet so long as
the range of exchange interaction remains finite.9

A key feature of the Ising model is the absence of exci-
tations perpendicular to the anisotropy axis. The anisotropy
energy per atom reaches at most a few MJ/m3, corresponding
to excitation temperatures of the order 1 K, which speaks in
favor of a Heisenberg description. Only in the immediate
vicinity of Tc does the anisotropy yield Ising behavior by
breaking the continuous symmetry of the Heisenberg
model.1,15 However, anisotropy energies of superparamag-
nets are proportional to the cluster sizeN, so that superpara-
magnetic thin-film clusters characterized by uniaxial
anisotropies of order 1 MJ/m3 can be regarded as Ising mag-
nets at all temperatures. For Langevin-like magnetization
curves in nonuniaxial thin-film superparamagnets see Ref. 4.

The mean-field Curie temperature of the Ising model
equalszJ/kB , wherez is the number of nearest neighbors. In
reality, the Curie temperature of one-dimensional Ising spin
chains~z52! is zero.9,10As found by Onsager,16 the effect of
long-range fluctuations is less pronounced in two-
dimensional Ising magnets. For a square lattice~z54! the
spontaneous magnetization is given.

The mean-field Curie temperature of the Ising model
equalszJ/kB , wherez is the number of nearest neighbors. In
fact, critical fluctuations yieldTc50 for one-dimensional
Ising spin chains~z52!,9,10whereas the effect of fluctuations
is less pronounced in two dimensions~Onsager!.16 For a
square lattice~z54! the spontaneous magnetization is given
by

Ms5M0A8 12
1

sinh4~J/2kBT!
, ~1!

so thatkBTc /J52/ln(11A2)52.269. For triangular~z56!
and hexagonal~z53! lattices,kBTc /J equals 2/ln)53.641
and 2/ln~21)!51.519, respectively.9 If the interatomic cou-
pling is known, then the formulas for the square and trian-
gular lattices yield rough estimates for the Curie tempera-
tures of bcc~110! and fcc~111! monolayers, respectively.

III. MAGNETISM OF ULTRATHIN FILMS

A. Sesquilayer iron on W(110)

Sesquilayer Fe/W~110! films, having nominal thick-
nesses between one and two monolayers, consist of second-
layer islands on a monolayer background.3 Let us describe
the ferromagnetic coupling in the monolayer and second-
layer regions byJ154J andJ25zeffJ, respectively. To es-
timate the Curier temperature of the inhomogeneous film we
overestimateJ2 by putting zeff5`. For the square model
Fig. 2 a single renormalization step, rather than a
renormalization-group calculation, is sufficient to determine
Tc . The block-spin transformation yieldsJeff52J, so that

Tc5
4J

kBln~11A2!
. ~2!

Except the different Curie temperature, the magnetization
curve is that of the Onsager solution in this particular model
~Fig. 3!. Note~i! that the bimodal exchange yields a common
Tc rather than a superposition of two Curie temperatures and
~ii ! that the Curie temperature is only slightly enhanced by
the strong coupling inside the second-layer regions.

Above Tc the sesquilayer film issuperparamagnetic,
sincezeff5` assures a perfect spin alignment inside the is-
lands. If zeff is finite then the superparamagnetism is re-
stricted to a small temperature window betweenTc and
zeffJ/kB . Taking Tc5300 K andzeff56 this implies super-
paramagnetism up to about 450 K for Fe~110! sesquilayers.

B. Submonolayer fcc iron on Cu(111)

The deposition of submonolayer iron films on flat and
vicinal Cu~111! surfaces leads to triangular iron islands and
stripes oriented along the ledges, respectively.7 The behavior
of the triangles characteristic of flat surfaces is trivial. Below
the blocking temperatureTB , the triangles are superpara-
magnetic with a nonnegligible coercivity, and just above
TB they are superparamagnets in a narrower sense.

The one-dimensional character of infinitely long stripes
means that their Curie temperature iszero. An illustrative
proof, which is not restricted to Ising magnets, relies on
overestimatingTc by dividing the stripe into square blocks

FIG. 2. Schematic structure of monolayer and sesquilayer square lattices.
The dashed area shows the second-layer regions.

FIG. 3. Temperature dependence of the spontaneous magnetization for the
models shown in Fig. 2.
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inside which the exchange coupling goes to infinity. The
coupling between the blocks in then of order~w/RFe)J,
wherew is the width of the stripe. The Curie temperature of
the stripe is therefore at mostw/RFe times the Curie tempera-
ture of a simple spin chain, that isTc50 unlessw5`. The
claim2 that the Curie temperatures of stripes is finite and
increases withw is incompatible with the findings of statis-
tical mechanics. A possible explanation is that the stripes
percolate and form two-dimensional networks in the sense of
this section.

To study the case where the stripes form a percolating
two-dimensional network we use the model Fig. 4.Tc is
determined by removing half of the degrees of freedom by
the renormalization transformation

( si561 exp~bJsi21si1bJsisi11!

5const.3exp~bJ8si21si11!, ~3!

where 2b J85ln ch~2bJ!. This transformation is well known
in the context of one-dimensional magnetism, where it yields
Tc50. Forn51 we obtain after one renormalization step

Tc5
2J

kBarcosh~11A2!
51.308J/kB . ~4!

For long chains

Tc5
2J

kB@ ln~11A2!1 ln~n11!#
. ~5!

Thus, the Curie temperature of percolating stripes is nonzero
and weakly decreases with increasing chain lengthn. For
instance, takingn5100 yields a Curie temperature reduction
by a factor 6.2 compared to an idealn50 monolayer.

C. Nonequilibrium behavior

Since the Ising model has no inherent dynamics, it is
necessary to introudce mechanisms such as Glauber
transitions14,17 defined by the transition rate

W~si→2si !5
G0

2 F12si tanhS h1Jsi211Jsi11

kBT
D G . ~6!

Here G051/t05Gm /exp(K1V/kBT), where Gm'109–11 s21

is some microscopic attempt frequency.18 Equation ~6!
yields14,17

d^si&
dt

52G0^si&1
G0

2
tanh~2bJ!~^si21&1^si11&!, ~7!

and the relationG5G0 @12tanh~2bJ!cos~ka!#. The relax-
ation of the average magnetization is given byG~k50!, and
in the limits of zero and very large couplingJ the blocking
temperatures are K1V/kB ln(Gmt0) and (K1V14J)/
kB ln(Gmt0), respectively.

7 Here t0'100 s is the time neces-
sary to conduct a typical experiment.

IV. DISCUSSION AND CONCLUSIONS

The models used in this paper have the advantage of
yielding exact results. Magnetostatic interactions and inco-
herent magnetization processes inside the superparamagnetic
units are neglected, but due to the inherent weakness of mag-
netostatic interactions in ultrathin films this assumption is
reasonable. A more subtle issue is that the exchange interac-
tion J between the superparamagnetic units and the relax-
ation rateG0 are only approximately known for real films.
This point is irrelevant to the qualitative behavior of the
magnet but makes it difficult to compare the predictions of
the theory with experimental data.7

In conclusion, we have shown that Ising superparamag-
netism is common in many ultrathin films. Examples are
sesquilayers ofa iron on W~110!, where the second-layer
islands are superparamagnetic just above the common Curie
temperature, and ultrathin stripes and triangles ofg iron on
Cu~111! below the Curie temperature of the ideal monolayer
reference film. The superparamagnetism considered here is
disregarded in the Onsager and renormalization-group theo-
ries, where there is only one structural length, namely the
lattice constant.
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