
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department of

1-1-2008

Efficient Selection of Observation Points for
Functional Tests
Jian Kang
University of Nebraska – Lincoln, jkang@cse.unl.edu

Sharad C. Seth
University of Nebraska – Lincoln, seth@cse.unl.edu

Yi-Shing Chang
Intel Corporation, yi-shing.chang@intel.com

Vijay Gangaram
Intel Corporation, vijay.gangaram@intel.com

Follow this and additional works at: http://digitalcommons.unl.edu/csearticles
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Kang, Jian; Seth, Sharad C.; Chang, Yi-Shing; and Gangaram, Vijay, "Efficient Selection of Observation Points for Functional Tests"
(2008). CSE Journal Articles. Paper 23.
http://digitalcommons.unl.edu/csearticles/23

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles/23?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages

Efficient Selection of Observation Points for Functional Tests

Jian Kang and Sharad C. Seth

University of Nebraska – Lincoln

jkang, seth @ cse.unl.edu

Yi-Shing Chang and Vijay Gangaram

Intel Corporation

yi-shing.chang, vijay.gangaram@intel.com

Abstract

The fault coverage of existing functional tests can be

enhanced by additional observation points. For a given

set of functional tests, this paper proposes an efficient

fault-dropping fault simulation method for selecting a

subset of observation points at a small fraction of the cost

of non-fault-dropping fault simulation. Experimental

results on industrial circuits demonstrate the effectiveness

of the method in achieving close to optimal results in the

size of the selected subset with an order of magnitude less

time, without losing achievable coverage. The technique

is particularly applicable to industrial designs where

fault-simulation times can be prohibitively expensive,

even when only a sample of faults is simulated using

distributed techniques.

1. Introduction

In high-volume manufacturing of microprocessor, a

large number of validation tests are often available. These

validation tests exercise the functionality of the design and

can be reused in testing the fabricated chips. However the

error observation at design outputs is not required during

validation hence these tests may not give sufficient fault

coverage.

DFT to improve observability is popular on designs

that require extensive at-speed functional testing [1], to

enhance the fault coverage of existing tests. Since

observation point insertion has design costs, optimal

selection of signals where observation points can be added

is very critical. If we have an efficient method that can

optimize selection of observation points to maximize fault

coverage achievable with a given validation content, it

will significantly reduce manufacturing test development

efforts, test application time and debug efforts.

Given a large database of functional tests, there are two

problems related to the tapping of it to advantage by the

test engineer: (1) selecting a small subset of the available

tests that provides a fault coverage close to the maximum

achievable by selecting all the test sequences, and (2) as

mentioned above, for the selected subset test, choosing a

small number of observation points, so as to enhance the

fault coverage close to the maximum achievable by

scanning out all internal candidates. The complexity of the

current designs in gate counts places a premium on

finding computationally efficient solutions to these

problems. In an earlier paper [2], we proposed a solution

to the first problem, demonstrating its effectiveness on

large industrial circuits. This paper focuses on the second

problem, i.e. the selection of observation points.

Our problem is obviously related to partial scan and

test-point insertion. A bibliographic search on these topics

reveals over 150 contributions to journals and

conferences. However, the bulk of this literature focuses

on testability enhancements for patterns generated and

applied in a non-functional mode, employing a diverse

range of testability assessment measures based on:

empirical or symbolic testability [3], cyclic complexity of

the circuit's s-graph [4], valid-state analysis using logic

simulation of random input patterns [5], and implicit

exploration of the machine's state space [6]. Further,

because the solutions may impact the circuit performance,

many authors have considered timing-driven approaches

to testability enhancement [7]. Solving this problem on

large industrial circuits using the aforementioned methods

causes performance degradation in coverage and the

number of selected test-points. Testability measures and

ATPG based approaches are test independent and their

runtimes are often shorter than those of the simulation

based ones. However, the number of cycles unrolled in a

sequential ATPG is usually very small, typically in the

ranges of 2 - 5 for an industrial circuit, due to memory

limitation. Therefore, only the easy-to-detect faults are

considered. Moreover, the functional constraints required

for ATPG may not be available or can be incomplete,

hence, many faults may be detected easily in the scan

mode, but not in the functional mode or vice versa. For

these reasons, ATPG based approaches provide poor

quality solutions to the test-point selection problem,

compared to simulation-based methods.

Only a few authors have considered enhancing the

testability of a given test sequence [8-12]. Among these,

Rudnick et al. [11] address the problem that most closely

resembles the one considered here. They improve the

testability of at-speed tests by adding probe (observation)

points that are further condensed to one or two outputs via

XOR trees. However, their method requires non-fault-

dropping fault simulation (hereafter abbreviated to non-

dropping fault simulation) to build the covering table.

Other contributions limit themselves to combinational or

full-scan designs. Most of these works follow a common

9th International Symposium on Quality Electronic Design

0-7695-3117-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ISQED.2008.113

236

9th International Symposium on Quality Electronic Design

0-7695-3117-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ISQED.2008.113

236

approach in the selection of observation points, which can

be summarized in the following procedure:

Procedure 1 (Select observation points):

1. Identify hard-to-detect (HTD) faults

2. Trace the HTD faults while performing fault

simulation of the test, identify candidate

observation points that each fault propagates to,

and build a covering table of faults vs. points.

3. Solve the set covering problem for the table to

find the set of observation points.

The first step can be carried out by the relatively

efficient fault-dropping fault simulation and the third step

has a greedy, polynomial-time approximation that

produces not too much larger than an optimal set cover

[13]. Therefore, it is the second step, which involves the

expensive non-dropping fault simulation for large

industrial circuits that we target in this paper. We show

that, by limiting the number of observation points a fault

can propagate to, we can achieve close to optimal results

at a much smaller computational effort. We limit our

candidate observation points to sequential elements (flip-

flop, latch) only, and the problem of bringing the selected

observation points to primary outputs without causing

excessive number of pins can be solved by existing DFT

techniques, such as scanout [1] which uses on-chip

hardware to compresses the responses to a signature, or

XOR tree [11].

The rest of the paper is organized as follows. Section 2

formulates the observation point selection problem and

points out the shortcomings of the existing techniques.

Section 3 introduces our approach to solve the problem.

Section 4 describes experimental results in support of our

method, and Section 5 concludes the paper with pointers

to future work.

2. Problem formulation

Fault-Simulation Model: Because the cost of fault

simulation is our primary concern here, we start by

assuming a general model for fault simulation that covers

a range of techniques involving a combination of serial

and distributed fault simulation to reduce the cost. An

easy and practical way to exploit available independent

computing resources is as follows:

1. Partition the set of independent tests across

distributed machines.

2. Perform independent fault simulation of the

assigned tests on each machine serially using

identical initial fault lists.

3. Merge the results after all the machines have

completed their work.

As the outer steps do not involve significant

computational effort, the middle step will be assumed to

determine the timing performance. The model is general

in that depending upon the number of available machines

it can cover the full range of purely serial fault simulation

on one machine, to purely distributed fault simulation in

which every machine is assigned one test. In all cases, we

can assume the cost to be the maximum time it takes to

perform step 2 over all the machines.

The fault simulation model is agnostic to the strategy

used for dropping faults as they are simulated. For fault-

coverage analysis, it is enough to drop a fault as soon as it

is detected at any observation point. This is the well

known fault dropping fault simulation, which we will also

refer to as 1-detect fault simulation. For observation point

selection using Procedure 1, however, 1-detect fault

simulation would build a covering table with a lot of

missing information, since after a fault is dropped we

would not know whether it will get detected at additional

test points later on. In order to build a covering table

without any missing information, we can use the other

extreme, where we never drop a fault during fault

simulation. Figure 1 compares the costs of 1-detect vs.

non-dropping fault simulation for an industrial-circuit

block with 370K gates, simulated on a random sample of

5% faults. The figure shows the run times for four

randomly picked functional tests. In all cases, the cost of

non-dropping fault simulation is well over an order of

magnitude larger. Given that the fault-simulation time

rises super-linearly with the number of faults [14], the

ratio will be even larger for the complete fault list.

On the other hand, our results show that there is a

dramatic difference in the solutions of the covering tables

obtained for the two types of simulation: the 1-detect

leads to 10,911 observation points while non-dropping

fault simulation leads to only 1,262 observation points.

Figure 1. Non-dropping fault simulation takes

much more time than dropping fault simulation

237237

3. Proposed point selection method

The above 1-detect fault simulation and non-dropping

fault simulation provides two extremes in the trade-off

between time and quality. In general, we could choose to

have finer-grain trade-offs by defining a generalization of

the 1-detect fault simulation.

K-detect Fault Simulation: The k-detect fault simulation

involves a fault-dropping strategy, in which a fault is not

dropped until it has been detected at at least k observation

points.

As the value of k is increased, less number of faults are

dropped during simulation, thus we regain more and more

of the information missing in the covering table of 1-

detect fault simulation.

Figure 2 graphically illustrates the amount of

information we would regain for our example industrial

circuit. Through non-dropping fault simulation we can

determine the number of observation points each fault can

propagate to, this is shown in the figure as solid line. The

figure shows this distribution for one test; the results for

other tests are similar. In the figure, we see that a

significant fraction (10%) of faults is detected at only one

observation point for the entire test sequence. The

percentage increases to 33% faults k = 10, and to 50%

faults for k = 20. This means the rows corresponding to

these faults already have complete information and we

will not gain additional information by k-detect fault

simulation at these rows for a higher k value. The gain in

additional information after k-detect fault simulation is

related to the area below the curve and to the right of the k

value. It can be seen that as the value of k increases, the

gain drops very sharply.

Table 1 shows the increase in simulation time for

increasing value of k, using the same test and fault sample.

The first column in the table shows increasing values of k,

and the second column shows simulation time. For this

test, a fault can reach a maximum of 382 observation

points, so any k value larger than that is equivalent to non-

drop fault simulation. In the table we use k = 383 to

denote this. From the table, it can be seen that the rise in

simulation time with the increase of k is not as sharp.

Note that there is a significant difference between our k-

detect and the well-known multiple detect (or n-detect)

technique [15]. The latter requires that a fault be detected

multiple times to any observable points so as to increase

the defect coverage. Our technique considers fault

detection to multiple points, to get a balance between fault

simulation time and the test point selection quality.

Figure 2. The number of faults detected at k

points

Point Selection Method: The above data on real circuit

suggests that as we use large values of k, the decrease in

the number of selected observation points is going to be

non-linear; it should drop faster when k is small. Adding

to the trend is the fact that the density of the covering

table (the fraction of 1's in the table) quickly approaches

the final value with a small value of k and incremental rise

in the density only yields incremental improvement in the

solutions to the covering problem.

An obvious approach to implementing and testing this

hypothesis would be to build the covering tables by

running k-detect fault simulation multiple times, each time

for a different value of k. However, there is a more

efficient way: from the results of k-detect fault simulation,

we already have the fault propagation information to

reconstruct k-detect fault simulation for all value of k' ≤ k

with only incremental effort. This leads us to propose the

following iterative procedure for selecting observation

points:

Table 1. The increase of simulation time with k

for a single test

K Fault simulation time (s)

1 611

2 1280

3 1416

4 1742

5 1469

10 2010

15 2341

20 3098

100 11785

200 22364

383 32424

238238

Procedure 2 (Select observation points using k-detect

fault simulation):

1. Select an initial value of k empirically.

2. Run k-detect fault simulation. With this run, get

the relationship of number of points vs. k', for all

k' ≤ k.

3. Analyze the curve to see whether we have

reached a point of diminishing return.

4. If so, solve the covering table for the current

value k and use the covering set as the solution.

5. Otherwise, drop these faults whose number of

detection < k (to remove redundancy), increment

k by a fixed amount (an adjustable parameter of

the algorithm) and go to step 2.

The decision in Step 2 as to when the point diminishing

return is reached is analyzed, along with experimental

results, in the next section.

4. Experiments and results

To analyze how the threshold k affects the fault

simulation time and number of selected points, we adapted

an existing industrial concurrent sequential circuit fault

simulator in accordance with the point selection method

described in the last section and tested it on an industrial

design with functional tests. The modifications do not add

significantly to the runtime of the fault simulator.

The design is a data path circuit block from an Intel

graphics chip, with 370k gates and 675,970 collapsed

stuck-at faults. Since this block is buried deep inside the

circuit, we assume all faults are hard-to-detect. The 54

functional tests available for the circuit were targeted for

increased coverage through additional observation points.

These tests have length ranging from 1K to 10K (average

4K) clock cycles. A random 5% fault sample was chosen

for fault coverage analysis. However, the results should

apply to any larger fault list. The 54 tests give fault

coverage of 88% when all observation points are used.

After the observation points are selected for existing tests,

additional tests could be used to further boost the fault

coverage.

4.1. The effect of k on selection quality

In this section, we demonstrate how the chosen value of k

affects the number of selected points. This is

accomplished by carrying out non-dropping fault

simulation for each test, merging the results, then building

and solving the covering table for every value of k up to

the total number of observation points, which is the largest

possible value (this value plus one, which can never be

reached for any fault, is equivalent to non- dropping fault

Table 2. As threshold k increases, the number of

selected points drops non-linearly

K # points

1 10911

2 5109

3 3214

4 2447

5 2078

10 1493

15 1333

20 1297

100 1260

200 1259

MAX 1262

simulation; it is denoted here as MAX). The result is

shown in Table 2.

In the table, the first column shows the k value from 1

to 20, then 100, 200, and MAX. The y-axis shows the

number of selected observation points for each k. As can

be seen, the result using dropping fault simulation (k=1) is

far from optimal, resulting in the selection of nine times

more points than at k=MAX. On the other hand, a very

sharp drop is evident in the range when the value of k is

small. This confirms our analysis in the last section. The

non-monotonic decrease at high K values is believed to be

caused by the randomness in the greedy algorithm.

For this example, a k value of 10 already provides

close to the best possible result: k=MAX leads to 1,262

points, and k=10 leads to 1,493, only an 18% increase.

In practice, the non-dropping fault simulation, assumed

in plotting Table 2, would not be practical. Instead, the

test engineer might start Procedure 2 with an initial value

of, say, k=20 and use the first derivative of the number of

points vs. k plot (Figure 3), as an aid to decide if the point

of diminishing return is reached. This is indeed the case

Figure 3. The point of diminishing return is

reached very quickly for small values of k

239239

here therefore the engineer will likely decide to forgo

running another iteration of the steps of the procedure

with a higher value of k.

In the next section we will show that even 20-detect

fault simulation affords significant savings in time

compared with non-dropping fault simulation.

4.2. The effect of k on simulation time

It is known that dropping (1-detect) fault simulation

takes the shortest simulation time, but as we have shown

in last section, the point selection provides sub-optimal

results. With delayed fault dropping in k-detect fault

simulation, for k > 1, the simulation time will increase. In

this section we examine the effect of k on simulation time.

Table 3 lists fault simulation times for different values

of k. This experiment takes a significant amount of time,

especially for large values of k, hence we present the

results for only selected values of k.

Table 3. Fault simulation time for all tests

K Maximum Time (s)

1 3531

2 3851

3 5018

4 5108

5 6546

10 7015

15 7497

20 8417

100 24070

200 42999

MAX 114514

In the table, we report the maximum time over all tests

in column 2, assuming distributed simulation of individual

tests. It can be seen that there is a significant difference in

the fault simulation time between small k values and big

ones. Specifically, for k=20, which gave us close to

optimal results, it takes less than an order of magnitude

smaller amount of time compared with k=MAX. A

detailed analysis shows that, with smaller values of k,

more faults is dropped in earlier cycles, thus leading to

reduced simulation time.

It is worth noting that the simulation times reported in

Table 3 correspond to the best-case scenario for

distributed fault simulation in which every test is

simulated on a dedicated processor. Any other scenario

that involved a combination of serial and distributed fault

simulation would show even more dramatic differences in

the maximum simulation times for k-detect fault

simulation vs. non-dropping (k=MAX) fault simulation.

5. Conclusions and future work

In high volume manufacturing designs, both circuit and

functional tests are of significant size. Exact method to

select the smallest number of observation points requires

non-fault-dropping simulation, which is computationally

prohibitive. In this paper we have demonstrated that

controlling the number of observation points per fault

provides a good trade-off between simulation time and

result quality: a small threshold value for the control

parameter provides close to optimal results with an order

of magnitude saving in simulation time. This is very

important for real designs where time-to-market is a

crucial issue.

While we have indicated the reasons behind the

experimental results, future work could build on our

preliminary analysis to provide a firm theoretical basis for

the method. In particular, it would be helpful to develop

accurate models (even if they are circuit-dependent) to

predict the timing performance of k-detect fault simulation

and the number of points selected by the set-cover

algorithm for different values of k. Observation point

selection based on k-detect fault simulation may also be

combined with testability based techniques for further

speed up. We are conducting additional experiments on

different designs, to gain insights in furtherance of these

goals.

Reference

[1] A. Carbine and D. Feltham, "Pentium(R) Pro

processor design for test and debug," in International Test

Conference, 1997, pp. 294-303.

[2] J. Kang, S. C. Seth, and V. Gangaram, "Efficient RTL

Coverage Metric for Functional Test Selection," in VLSI

Test Symposium, 2007. 25th IEEE, 2007, pp. 318-324.

[3] V. Chickermane and J. H. Patel, "An optimization

based approach to the partial scan design problem," in

International Test Conference, 1990, pp. 377-386.

[4] S. T. Chakradhar, A. Balakrishnan, and V. D.

Agrawal, "An exact algorithm for selecting partial scan

flip-flops," in Design Automation Conference, 1994, pp.

81-86.

[5] G. S. Saund, M. S. Hsiao, and J. H. Patel, "Partial scan

beyond cycle cutting," in International Symposium on

Fault-Tolerant Computing, 1997, pp. 320-328.

[6] M. J. Geuzebroek, J. T. van der Linden, and A. J. van

de Goor, "Test point insertion that facilitates ATPG in

reducing test time and data volume," in International Test

Conference, 2002, pp. 138-147.

[7] J. Y. Jou and K. T. Cheng, "Timing-driven partial

scan," in International Conference on Computer-Aided

Design, 1991, pp. 404-407.

240240

[8] A. J. Briers and K. A. E. Totton, "Random pattern

testability by fast fault simulation," in International Test

Conference, 1986.

[9] V. S. Iyengar and D. Brand, "Synthesis of pseudo-

random pattern testable designs," in International Test

Conference, 1989, pp. 501-508.

[10] Y. Savaria, M. Youssef, B. Kaminska, and M.

Koudil, "Automatic test point insertion for pseudo-random

testing," in International Symposium on Circuits and

Systems, 1991, pp. 1960-1963 vol.4.

[11] E. M. Rudnick, V. Chickermane, and J. H. Patel, "An

observability enhancement approach for improved

testability and at-speed test," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, vol. 13, pp. 1051-1056, August 1994.

[12] N. A. Touba and E. J. McCluskey, "Test point

insertion based on path tracing," in VLSI Test

Symposium, 1996, pp. 2-8.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,

Introduction to Algorithms: MIT Press, Cambridge, MA.,

1990.

[14] P. Agrawal, V. D. Agrawal, K. T. Cheng, and R.

Tutundjian, "Fault simulation in a pipelined

multiprocessor system," in International Test Conference,

1989, pp. 727-734.

[15] S. C. Ma, P. Franco, and E. J. McCluskey, "An

experimental chip to evaluate test techniques experiment

results," in International Test Conference, 1995, pp. 663-

672.

241241

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1-1-2008

	Efficient Selection of Observation Points for Functional Tests
	Jian Kang
	Sharad C. Seth
	Yi-Shing Chang
	Vijay Gangaram

