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Abstract 
 

The fault coverage of existing functional tests can be 

enhanced by additional observation points. For a given 

set of functional tests, this paper proposes an efficient 

fault-dropping fault simulation method for selecting a 

subset of observation points at a small fraction of the cost 

of non-fault-dropping fault simulation. Experimental 

results on industrial circuits demonstrate the effectiveness 

of the method in achieving close to optimal results in the 

size of the selected subset with an order of magnitude less 

time, without losing achievable coverage. The technique 

is particularly applicable to industrial designs where 

fault-simulation times can be prohibitively expensive, 

even when only a sample of faults is simulated using 

distributed techniques. 

 

1. Introduction 
 

In high-volume manufacturing of microprocessor, a 

large number of validation tests are often available. These 

validation tests exercise the functionality of the design and 

can be reused in testing the fabricated chips. However the 

error observation at design outputs is not required during 

validation hence these tests may not give sufficient fault 

coverage.  

DFT to improve observability is popular on designs 

that require extensive at-speed functional testing [1], to 

enhance the fault coverage of existing tests. Since 

observation point insertion has design costs, optimal 

selection of signals where observation points can be added 

is very critical. If we have an efficient method that can 

optimize selection of observation points to maximize fault 

coverage achievable with a given validation content, it 

will significantly reduce manufacturing test development 

efforts, test application time and debug efforts. 

Given a large database of functional tests, there are two 

problems related to the tapping of it to advantage by the 

test engineer: (1) selecting a small subset of the available 

tests that provides a fault coverage close to the maximum 

achievable by selecting all the test sequences, and (2) as 

mentioned above, for the selected subset test, choosing a 

small number of observation points, so as to enhance the 

fault coverage close to the maximum achievable by 

scanning out all internal candidates. The complexity of the 

current designs in gate counts places a premium on 

finding computationally efficient solutions to these 

problems. In an earlier paper [2], we proposed a solution 

to the first problem, demonstrating its effectiveness on 

large industrial circuits. This paper focuses on the second 

problem, i.e. the selection of observation points. 

Our problem is obviously related to partial scan and 

test-point insertion. A bibliographic search on these topics 

reveals over 150 contributions to journals and 

conferences. However, the bulk of this literature focuses 

on testability enhancements for patterns generated and 

applied in a non-functional mode, employing a diverse 

range of testability assessment measures based on: 

empirical or symbolic testability [3], cyclic complexity of 

the circuit's s-graph [4], valid-state analysis using logic 

simulation of random input patterns [5], and implicit 

exploration of the machine's state space [6]. Further, 

because the solutions may impact the circuit performance, 

many authors have considered timing-driven approaches 

to testability enhancement [7]. Solving this problem on 

large industrial circuits using the aforementioned methods 

causes performance degradation in coverage and the 

number of selected test-points. Testability measures and 

ATPG based approaches are test independent and their 

runtimes are often shorter than those of the simulation 

based ones. However, the number of cycles unrolled in a 

sequential ATPG is usually very small, typically in the 

ranges of 2 - 5 for an industrial circuit, due to memory 

limitation. Therefore, only the easy-to-detect faults are 

considered. Moreover, the functional constraints required 

for ATPG may not be available or can be incomplete, 

hence, many faults may be detected easily in the scan 

mode, but not in the functional mode or vice versa. For 

these reasons, ATPG based approaches provide poor 

quality solutions to the test-point selection problem, 

compared to simulation-based methods. 

Only a few authors have considered enhancing the 

testability of a given test sequence [8-12]. Among these, 

Rudnick et al. [11] address the problem that most closely 

resembles the one considered here. They improve the 

testability of at-speed tests by adding probe (observation) 

points that are further condensed to one or two outputs via 

XOR trees. However, their method requires non-fault-

dropping fault simulation (hereafter abbreviated to non-

dropping fault simulation) to build the covering table. 

Other contributions limit themselves to combinational or 

full-scan designs. Most of these works follow a common 
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approach in the selection of observation points, which can 

be summarized in the following procedure: 

 

Procedure 1 (Select observation points): 

 

1. Identify hard-to-detect (HTD) faults 

2. Trace the HTD faults while performing fault 

simulation of the test, identify candidate 

observation points that each fault propagates to, 

and build a covering table of faults vs. points. 

3. Solve the set covering problem for the table to 

find the set of observation points. 

 

The first step can be carried out by the relatively 

efficient fault-dropping fault simulation and the third step 

has a greedy, polynomial-time approximation that 

produces not too much larger than an optimal set cover 

[13]. Therefore, it is the second step, which involves the 

expensive non-dropping fault simulation for large 

industrial circuits that we target in this paper. We show 

that, by limiting the number of observation points a fault 

can propagate to, we can achieve close to optimal results 

at a much smaller computational effort. We limit our 

candidate observation points to sequential elements (flip-

flop, latch) only, and the problem of bringing the selected 

observation points to primary outputs without causing 

excessive number of pins can be solved by existing DFT 

techniques, such as scanout [1] which uses on-chip 

hardware to compresses the responses to a signature, or 

XOR tree [11]. 

The rest of the paper is organized as follows. Section 2 

formulates the observation point selection problem and 

points out the shortcomings of the existing techniques. 

Section 3 introduces our approach to solve the problem. 

Section 4 describes experimental results in support of our 

method, and Section 5 concludes the paper with pointers 

to future work. 

  

2. Problem formulation 
 

Fault-Simulation Model: Because the cost of fault 

simulation is our primary concern here, we start by 

assuming a general model for fault simulation that covers 

a range of techniques involving a combination of serial 

and distributed fault simulation to reduce the cost. An 

easy and practical way to exploit available independent 

computing resources is as follows: 

1. Partition the set of independent tests across 

distributed machines. 

2. Perform independent fault simulation of the 

assigned tests on each machine serially using 

identical initial fault lists.  

3. Merge the results after all the machines have 

completed their work. 

As the outer steps do not involve significant 

computational effort, the middle step will be assumed to 

determine the timing performance. The model is general 

in that depending upon the number of available machines 

it can cover the full range of purely serial fault simulation 

on one machine, to purely distributed fault simulation in 

which every machine is assigned one test. In all cases, we 

can assume the cost to be the maximum time it takes to 

perform step 2 over all the machines.  

The fault simulation model is agnostic to the strategy 

used for dropping faults as they are simulated. For fault-

coverage analysis, it is enough to drop a fault as soon as it 

is detected at any observation point. This is the well 

known fault dropping fault simulation, which we will also 

refer to as 1-detect fault simulation. For observation point 

selection using Procedure 1, however, 1-detect fault 

simulation would build a covering table with a lot of 

missing information, since after a fault is dropped we 

would not know whether it will get detected at additional 

test points later on. In order to build a covering table 

without any missing information, we can use the other 

extreme, where we never drop a fault during fault 

simulation. Figure 1 compares the costs of 1-detect vs. 

non-dropping fault simulation for an industrial-circuit 

block with 370K gates, simulated on a random sample of 

5% faults. The figure shows the run times for four 

randomly picked functional tests. In all cases, the cost of 

non-dropping fault simulation is well over an order of 

magnitude larger. Given that the fault-simulation time 

rises super-linearly with the number of faults [14], the 

ratio will be even larger for the complete fault list.  

On the other hand, our results show that there is a 

dramatic difference in the solutions of the covering tables 

obtained for the two types of simulation: the 1-detect 

leads to 10,911 observation points while non-dropping 

fault simulation leads to only 1,262 observation points. 

 

 

 

 
  

 

Figure 1. Non-dropping fault simulation takes 

much more time than dropping fault simulation 
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3. Proposed point selection method 
 

The above 1-detect fault simulation and non-dropping 

fault simulation provides two extremes in the trade-off 

between time and quality. In general, we could choose to 

have finer-grain trade-offs by defining a generalization of 

the 1-detect fault simulation. 

 

K-detect Fault Simulation: The k-detect fault simulation 

involves a fault-dropping strategy, in which a fault is not 

dropped until it has been detected at at least k observation 

points.  

 

As the value of k is increased, less number of faults are 

dropped during simulation, thus we regain more and more 

of the information missing in the covering table of 1-

detect fault simulation.  

Figure 2 graphically illustrates the amount of 

information we would regain for our example industrial 

circuit. Through non-dropping fault simulation we can 

determine the number of observation points each fault can 

propagate to, this is shown in the figure as solid line. The 

figure shows this distribution for one test; the results for 

other tests are similar. In the figure, we see that a 

significant fraction (10%) of faults is detected at only one 

observation point for the entire test sequence. The 

percentage increases to 33% faults k = 10, and to 50% 

faults for k = 20. This means the rows corresponding to 

these faults already have complete information and we 

will not gain additional information by k-detect fault 

simulation at these rows for a higher k value. The gain in 

additional information after k-detect fault simulation is 

related to the area below the curve and to the right of the k 

value. It can be seen that as the value of k increases, the 

gain drops very sharply.  

Table 1 shows the increase in simulation time for 

increasing value of k, using the same test and fault sample. 

The first column in the table shows increasing values of k, 

and the second column shows simulation time. For this 

test, a fault can reach a maximum of 382 observation 

points, so any k value larger than that is equivalent to non-

drop fault simulation. In the table we use k = 383 to 

denote this. From the table, it can be seen that the rise in 

simulation time with the increase of k is not as sharp. 

Note that there is a significant difference between our k-

detect and the well-known multiple detect (or n-detect) 

technique [15]. The latter requires that a fault be detected 

multiple times to any observable points so as to increase 

the defect coverage. Our technique considers fault 

detection to multiple points, to get a balance between fault 

simulation time and the test point selection quality. 

 

 
 

Figure 2. The number of faults detected at k 

points 
 

Point Selection Method: The above data on real circuit 

suggests that as we use large values of k, the decrease in 

the number of selected observation points is going to be 

non-linear; it should drop faster when k is small. Adding 

to the trend is the fact that the density of the covering 

table (the fraction of 1's in the table) quickly approaches 

the final value with a small value of k and incremental rise 

in the density only yields incremental improvement in the 

solutions to the covering problem.  

An obvious approach to implementing and testing this 

hypothesis would be to build the covering tables by 

running k-detect fault simulation multiple times, each time 

for a different value of k. However, there is a more 

efficient way: from the results of k-detect fault simulation, 

we already have the fault propagation information to 

reconstruct k-detect fault simulation for all value of k' ≤ k 

with only incremental effort. This leads us to propose the 

following iterative procedure for selecting observation 

points:  

 

Table 1. The increase of simulation time with k 

for a single test 

K Fault simulation time (s) 

1 611 

2 1280 

3 1416 

4 1742 

5 1469 

10 2010 

15 2341 

20 3098 

100 11785 

200 22364 

383 32424 
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Procedure 2 (Select observation points using k-detect 

fault simulation): 

 

1. Select an initial value of k empirically. 

2. Run k-detect fault simulation. With this run, get 

the relationship of number of points vs. k', for all 

k' ≤ k. 

3. Analyze the curve to see whether we have 

reached a point of diminishing return. 

4. If so, solve the covering table for the current 

value k and use the covering set as the solution.  

5. Otherwise, drop these faults whose number of 

detection < k (to remove redundancy), increment 

k by a fixed amount (an adjustable parameter of 

the algorithm) and go to step 2.  

 
The decision in Step 2 as to when the point diminishing 

return is reached is analyzed, along with experimental 

results, in the next section. 

 

4. Experiments and results 
 

To analyze how the threshold k affects the fault 

simulation time and number of selected points, we adapted 

an existing industrial concurrent sequential circuit fault 

simulator in accordance with the point selection method 

described in the last section and tested it on an industrial 

design with functional tests. The modifications do not add 

significantly to the runtime of the fault simulator. 

The design is a data path circuit block from an Intel 

graphics chip, with 370k gates and 675,970 collapsed 

stuck-at faults. Since this block is buried deep inside the 

circuit, we assume all faults are hard-to-detect. The 54 

functional tests available for the circuit were targeted for 

increased coverage through additional observation points. 

These tests have length ranging from 1K to 10K   (average 

4K) clock cycles. A random 5% fault sample was chosen 

for fault coverage analysis. However, the results should 

apply to any larger fault list. The 54 tests give fault 

coverage of 88% when all observation points are used. 

After the observation points are selected for existing tests, 

additional tests could be used to further boost the fault 

coverage. 

 

4.1. The effect of k on selection quality 
 

In this section, we demonstrate how the chosen value of k 

affects the number of selected points. This is 

accomplished by carrying out non-dropping fault 

simulation for each test, merging the results, then building 

and solving the covering table for every value of k up to 

the total number of observation points, which is the largest 

possible value (this value plus one, which can never be 

reached for any fault, is equivalent to non- dropping fault 

Table 2. As threshold k increases, the number of 

selected points drops non-linearly 
 

K # points 

1 10911

2 5109

3 3214

4 2447

5 2078

10 1493

15 1333

20 1297

100 1260

200 1259

MAX 1262

 

simulation; it is denoted here as MAX). The result is 

shown in Table 2. 

In the table, the first column shows the k value from 1 

to 20, then 100, 200, and MAX. The y-axis shows the 

number of selected observation points for each k. As can 

be seen, the result using dropping fault simulation (k=1) is 

far from optimal, resulting in the selection of nine times 

more points than at k=MAX. On the other hand, a very 

sharp drop is evident in the range when the value of k is 

small. This confirms our analysis in the last section. The 

non-monotonic decrease at high K values is believed to be 

caused by the randomness in the greedy algorithm. 

For this example, a k value of 10 already provides 

close to the best possible result: k=MAX leads to 1,262 

points, and k=10 leads to 1,493, only an 18% increase. 

In practice, the non-dropping fault simulation, assumed 

in plotting Table 2, would not be practical. Instead, the 

test engineer might start Procedure 2 with an initial value 

of, say, k=20 and use the first derivative of the number of 

points vs. k plot (Figure 3), as an aid to decide if the point 

of diminishing return is reached. This is indeed the case  

 

 

  
Figure 3. The point of diminishing return is 

reached very quickly for small values of k 
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here therefore the engineer will likely decide to forgo 

running another iteration of the steps of the procedure 

with a higher value of k.  

In the next section we will show that even 20-detect 

fault simulation affords significant savings in time 

compared with non-dropping fault simulation. 

 

4.2. The effect of k on simulation time 

 
It is known that dropping (1-detect) fault simulation 

takes the shortest simulation time, but as we have shown 

in last section, the point selection provides sub-optimal 

results. With delayed fault dropping in k-detect fault 

simulation, for k > 1, the simulation time will increase. In 

this section we examine the effect of k on simulation time. 

Table 3 lists fault simulation times for different values 

of k. This experiment takes a significant amount of time, 

especially for large values of k, hence we present the 

results for only selected values of k. 

 

Table 3. Fault simulation time for all tests 
 

K Maximum Time (s) 

1 3531 

2 3851 

3 5018 

4 5108 

5 6546 

10 7015 

15 7497 

20 8417 

100 24070 

200 42999 

MAX 114514 

 

In the table, we report the maximum time over all tests 

in column 2, assuming distributed simulation of individual 

tests. It can be seen that there is a significant difference in 

the fault simulation time between small k values and big 

ones. Specifically, for k=20, which gave us close to 

optimal results, it takes less than an order of magnitude 

smaller amount of time compared with k=MAX. A 

detailed analysis shows that, with smaller values of k, 

more faults is dropped in earlier cycles, thus leading to 

reduced simulation time. 

It is worth noting that the simulation times reported in 

Table 3 correspond to the best-case scenario for 

distributed fault simulation in which every test is 

simulated on a dedicated processor. Any other scenario 

that involved a combination of serial and distributed fault 

simulation would show even more dramatic differences in 

the maximum simulation times for k-detect fault 

simulation vs. non-dropping (k=MAX) fault simulation. 

 

5. Conclusions and future work 
 

In high volume manufacturing designs, both circuit and 

functional tests are of significant size. Exact method to 

select the smallest number of observation points requires 

non-fault-dropping simulation, which is computationally 

prohibitive. In this paper we have demonstrated that 

controlling the number of observation points per fault 

provides a good trade-off between simulation time and 

result quality: a small threshold value for the control 

parameter provides close to optimal results with an order 

of magnitude saving in simulation time. This is very 

important for real designs where time-to-market is a 

crucial issue.  

While we have indicated the reasons behind the 

experimental results, future work could build on our 

preliminary analysis to provide a firm theoretical basis for 

the method. In particular, it would be helpful to develop 

accurate models (even if they are circuit-dependent) to 

predict the timing performance of k-detect fault simulation 

and the number of points selected by the set-cover 

algorithm for different values of k. Observation point 

selection based on k-detect fault simulation may also be 

combined with testability based techniques for further 

speed up. We are conducting additional experiments on 

different designs, to gain insights in furtherance of these 

goals. 

 

Reference 
 

[1] A. Carbine and D. Feltham, "Pentium(R) Pro 

processor design for test and debug," in International Test 

Conference, 1997, pp. 294-303. 

[2] J. Kang, S. C. Seth, and V. Gangaram, "Efficient RTL 

Coverage Metric for Functional Test Selection," in VLSI 

Test Symposium, 2007. 25th IEEE, 2007, pp. 318-324. 

[3] V. Chickermane and J. H. Patel, "An optimization 

based approach to the partial scan design problem," in 

International Test Conference, 1990, pp. 377-386. 

[4] S. T. Chakradhar, A. Balakrishnan, and V. D. 

Agrawal, "An exact algorithm for selecting partial scan 

flip-flops," in Design Automation Conference, 1994, pp. 

81-86. 

[5] G. S. Saund, M. S. Hsiao, and J. H. Patel, "Partial scan 

beyond cycle cutting," in International Symposium on 

Fault-Tolerant Computing, 1997, pp. 320-328. 

[6] M. J. Geuzebroek, J. T. van der Linden, and A. J. van 

de Goor, "Test point insertion that facilitates ATPG in 

reducing test time and data volume," in International Test 

Conference, 2002, pp. 138-147. 

[7] J. Y. Jou and K. T. Cheng, "Timing-driven partial 

scan," in International Conference on Computer-Aided 

Design, 1991, pp. 404-407. 

240240



[8] A. J. Briers and K. A. E. Totton, "Random pattern 

testability by fast fault simulation," in International Test 

Conference, 1986. 

[9] V. S. Iyengar and D. Brand, "Synthesis of pseudo-

random pattern testable designs," in International Test 

Conference, 1989, pp. 501-508. 

[10] Y. Savaria, M. Youssef, B. Kaminska, and M. 

Koudil, "Automatic test point insertion for pseudo-random 

testing," in International Symposium on Circuits and 

Systems, 1991, pp. 1960-1963 vol.4. 

[11] E. M. Rudnick, V. Chickermane, and J. H. Patel, "An 

observability enhancement approach for improved 

testability and at-speed test," IEEE Transactions on 

Computer-Aided Design of Integrated Circuits and 

Systems, vol. 13, pp. 1051-1056, August 1994. 

[12] N. A. Touba and E. J. McCluskey, "Test point 

insertion based on path tracing," in VLSI Test 

Symposium, 1996, pp. 2-8. 

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, 

Introduction to Algorithms: MIT Press, Cambridge, MA., 

1990. 

[14] P. Agrawal, V. D. Agrawal, K. T. Cheng, and R. 

Tutundjian, "Fault simulation in a pipelined 

multiprocessor system," in International Test Conference, 

1989, pp. 727-734. 

[15] S. C. Ma, P. Franco, and E. J. McCluskey, "An 

experimental chip to evaluate test techniques experiment 

results," in International Test Conference, 1995, pp. 663-

672. 

241241


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1-1-2008

	Efficient Selection of Observation Points for Functional Tests
	Jian Kang
	Sharad C. Seth
	Yi-Shing Chang
	Vijay Gangaram


