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Abstract
Symmetry properties of the Green function in magnetic multilayers with 
noncollinear magnetization of the layers are investigated on the basis of 
the transfer matrix method. The Green function symmetric with respect to 
permutation of its arguments is constructed. It is shown how the boundary 
conditions can be imposed on this Green function.

1. Introduction

Magnetic multilayered structures demonstrating giant magnetoresistance (GMR) [1] and tun-
nelling magnetoresistance (TMR) [2] attract great attention due to their potential applica-
tions and interesting physics. A fairly simple free-electron-like model is a promising tool for 
investigating new phenomena in these structures [3–7]. In particular, transport properties of 
the layered structures have attracted considerable attention. One of the frequently used ap-
proaches to the calculation of transport properties is the Kubo linear response formalism, 
which requires the construction of the Green function (GF) of the multilayer.

In systems with complicated geometry, the construction of the GF is a cumbersome task. 
The one-electron GF must obey the Schrödinger equation with a delta-function source term. 
The continuity condition on the GF and its fi rst derivative at the interfaces must be fulfi lled. 
In addition, the geometry of the system implies some boundary conditions for the GF. On the 
other hand, it is convenient to build the GF in such a way that it has certain symmetry prop-
erties with respect to permutation of its arguments. The latter problem, therefore, has to be 
solved for the GF, which is continuous at the interfaces and obeys the boundary conditions  
In the one-dimensional case, the GF can be chosen symmetric with respect to permutation of
its arguments: G(z, z') = G(z' , z). However, as was noted in [8], this permutation symmetry is 
not, in general, a property of the GF. Therefore, for each particular case the problem of GF 
symmetry requires additional investigation. 
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In a multilayered system with non-collinear magnetization, the GF is a 4 × 4 matrix [9]. 
A way to construct the GF of a magnetic multilayer with non-collinear magnetization of the 
layers was proposed in [10], using the so-called k║− z representation. The k║− z representa-
tion takes the advantage of the k-space representation in the plane of the multilayer (k║ is the 
transverse wave vector), but uses a real space representation along the z-axis perpendicular 
to the plane of the layers. The k║− z representation is especially convenient for the investiga-
tion of transport properties. Special attention in [10] was paid to the matching of the GF at 
the interfaces.

In this paper, we investigate the symmetry of the GF with respect to permutation of its ar-
guments for magnetic multilayerswith non-collinear magnetization using the transfer-matrix 
method. We demonstrate how the boundary conditions can be imposed on this Green func-
tion. The proposed method is a generalization of the well-known method of constructing the 
GF for the second-order linear differential equation

y   '' (z )  + q (z )y(z )  = 0                                                                           (1)

Using two linearly independent solutions f1(z), f2(z) of this equation, the GF is given by

                    (2)

where the Wronskian W(f1, f2) ≡ f '1 (z) f2(z) − f1(z) f '2 (z) does not depend on z. The GF obeys 
the equation

 (3)

This method is different from that proposed in [11], where the problem of surface Green 
function matching was solved for an arbitrary number of interfaces.

2. Construction of the Green function

The Green function for amagnetic multilayer system with non-collinear magnetization in 
each layer satisfi es the following second-order ordinary differential equation [9]:

 
(4)

where n indexes the layer in which z lies, m indexes the layer in which z'  lies and k║ is an in-
plane wave vector. θn is the angle between the x-axis (which is perpendicular to the z-axis) 
and the magnetization within the nth layer. For non-magnetic layers, the value of θn can be 
chosen arbitrarily. E (n)

0  and E (n)
1  determine the position of the bottom of the band in the nth 

layer and the exchange splitting, respectively. For non-magnetic layers E(n)
1  = 0. In the fol-

lowing we will give the GF in units of   ħ2—2m  (i.e., put   ħ2—2m  = 1). We consider a multilayer whose 
layers are numbered 0 to N from right to left with interfaces at z = c1, c2, . . . , cN.

If we defi ne

(5)
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and
 

(6)

then we can write equation (4) as two systems of four fi rst-order ordinary differential 
equations:

(7)

and

 (8)

Here we have defi ned

(9)

Note that both equations (7) and (8) differ only on the right-hand side.
Recall that for a system of the form

 (10)

the solution can be expressed in terms of a fundamental matrix F as follows:

 (11)

where h is a column. Equations (7) and (8) constitute two 4 × 4 systems of the form (10) with

(12)

Thus, we can write the Green function solution in the form

 (13)

where we choose h(z ') so that the Green function obeys the boundary conditions and has the 
proper symmetry.
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To fi nd a fundamental matrix for equations (7) and (8), we must fi rst fi nd a solution to the
corresponding homogeneous equation

 (14)

There are four linearly independent solutions of equation (14). We can arrange these solu-
tions as the columns of a fundamental matrix for the operator  I ∂–∂z + Ln . It can be easily seen 
by using the ansatz

 (15)

that a fundamental matrix is given by

 (16)

where

(17)

Note that these solutions are defi ned for each layer and generally do not match at the inter-
faces. Here we introduce a set of matrices F(n)(z) that do match at the interfaces. Any other 
solution can be represented as a linear combination of the columns of equation (16), i.e.
F(n)(z) =  Φ(n)(z)An. Then at the nth interface the matching of the F(n)(z) functions means

 
(18)

Thus the matrices An are related by

 (19)

Clearly the F(n)(z) constitutes a fundamental matrix for the operator in equations (7) and (8) 
provided det[A(n)] ≠ 0.

The GF of the form (13) obeys equations (7) and (8) if

(20)

and

 (21)

Here we have written Fn
−1(z'  ) for the nth column of the inverse matrix F−1 evaluated at z '.
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Now we attempt to write equation (20) in terms of the basic functions given in equation (16). 
Suppose that z is in the nth layer and that z'  is in the mth layer. Then we obtain, for z > z'  ,

 
(22)

Here we mean for (Φ (m)(z' ))−1
p the pth column of the inverse of  Φ (m)(z '). In equation (22) we 

postulated that A(m)h↑(z'  ) can be written as X(m)(Φ (m)(z' ))−1
2 , where X(m) is a matrix that is de-

termined by the boundary and symmetry conditions. Using the same considerations for both 
branches of equations (20) and (21) we can write the GF as follows:
 

(23)

and
 

(24)

In equation (24), Y plays the same role as X in equation (23).
If we defi ne two auxiliary matrices

 (25)

and

 
(26)

then it is straightforward to see that

(27)

It is then a simple exercise to show that

(28)

Here we mean for (Φ (m)(z' ))T
p the pth column of the transpose of Φ (m)(z' ). The relations (28) 

show that each fundamental matrix Φ (n)(z) differs from a symplectic matrix only by a con-
stant multiplier, namely  (1+i—

√
–
2
  ).

3. Symmetry of the Green function

We are looking for a solution of equation (4) that is symmetric with respect to permutation of 
the arguments:

(29)
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For diagonal elements of the GF this implies

G↑↑
nm(z, z') = G↑↑

mn(z' , z).                                                                          (30)

For z > z ' we have G↑↑
nm(z > z ') = G↑↑

mn(z ' < z). Since G↑↑ is the fi rst element of equation (23) 
we obtain

                                                                         
 (31)

Here we have denoted

A(n)(A(m))−1 = T(nm)                                                                                (32)

which is known as the transfer matrix. It is easily seen from equation (31) that

T(nm)(I + X(m))P2 = (T(mn)X(n)P2)T .                                                       (33)

An equivalent derivation for the symmetry of the ↓↓ component leads to

T(nm)(I + Y(m))P2 = (T(mn)Y(n)P2)T .                                                       (34)

For non-diagonal elements of the GF equation (29) forces

G↓↑
nm(z, z') = G↑↓

mn(z' , z).                                                                           (35)

This implies a symmetry relationship between the third element of equation (5) and the fi rst 
element of equation (6). That is

 
(36)

Thus we see that

T(nm)(I + X(m))P2 = (T(mn)Y(n)P2)T .                                                     (37)

Comparing equations (37) and (33), we fi nd that Y(n) = X(n).
Note that using equation (19) it can be shown that

(T(nm))T = P2T(mn)P2.                                                                           (38)

With equation (38) we can write equation (37) as

−P2(I + (X(m))T )P2T(mn)P2 = T(mn)X(n)P2 ï X(n) = −T(nm)P2(I + (X(m))T )P2T(mn).    (39)

where we have used the fact that

(T(mn))−1 = T(nm).                                                                                (40)

In particular we may take m = 0 to obtain

X(n) = −T(n0)P2(I + (X(0))T )P2T(0n) = −I − T(n0)P2(X(0))T P2T(0n).    (41)

Thus, we can express all the matrices X(n) in terms of a single matrix X(0). By setting n = 0 in 
equation (41), we fi nd that since T(00) = I, X(0) must satisfy

X(0) + P2(X(0))T P2 = −I.                                                                   (42)

From equation (42) it is easy to see that X(0) has the following form:

 
(43)

where xij , α and β are arbitrary complex numbers.
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4. Boundary conditions

The boundary conditions are determined by the geometry of the system. Here we show how 
the boundary conditions can be imposed for a multilayer, which is infi nite in the z-direction. 
A wide class of problems deal with diffusive scattering. One way to take into account the dif-
fusive scattering is to describe it via an effective complex potential, like, for instance, a co-
herent potential. As a consequence the wave vectors (17) acquire a positive imaginary part 
[3], resulting in a vanishing GF for |z − z ' | → ∞. This boundary condition implies that the GF 
can only contain exponentials of the form exp[ik(z − z ')] for z > z ' in the right outer layer and 
exp[−ik(z − z'  )] for z < z'  in the left outer layer. 

In the following we will consider the solution for G↑. The derivation of G↓ is completely 
equivalent. From equation (22) we see that for

G↑(z > z ') =  Φ(n)(z)A(n)(A(0))−1(I + X(0))(Φ (0)(z' ))−1
2                                    (44)

to meet this condition (I + X(0)) must have the second and fourth columns zero, i.e. X(0) must
have the form

 (45)

where we have already accounted for the symmetry conditions set out by equation (43). 
Therefore, we have the three parameters x21, x23, x43 to impose boundary conditions on the 
right end of the multilayer.

So far we have only used the Φ basis. Now we wish to express the Green function through 
the F basis. It is easy to see that

 (46)

and thus

 (47)

Therefore, we can write

 

(48)

where we have used equation (41) and defi nition (32) in the last line.
Now we assume a special form for the fundamental matrix F(N). Note that equation (45) 

for the matrix X(0) was obtained without any assumption concerning the matrix A(0) and con-
sequently we are free in the choice of F(N). We demand that F(N) be identical to Φ(N)(z). In 
this case, as is seen from equation (48), the proper boundary conditions are justifi ed if the 
matrix

V ≡ A(0)−1L2X(0)T L2A(0)                                                                            (49)

has the following form:
 

(50)
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Solving the matrix equation (49) we fi nd that

(51)

and

(52)

The matrix A(0) ensures the correct boundary conditions for z→ ∞. This specifi c form of A(0) 

must be compatible with our choice of basic functions (16). Our choice F(N)(z) = Φ(N)(z) re-
quires that A(N) be the identity matrix. Then the relation

T(0,N)A(N) = A(0)                                                                                        (53)

gives a set of equations for the matrix elements of A(0) which we consider below.
Taking the product of T(0,N) and the fi rst and the third columns of the matrix A(N) in equa-

tion (53), we obtain

(54)

and

(55)

The fi rst and third lines in equations (54) and (55) imply that

a11 = T11,           a31 = T31,           a13 = T13,           a33 = T33.                    (56)

where a superscript of (0,N) is implied on all the Tij. The second and fourth lines in equations
(54) and (55) form a system of linear equations:

(57)

From equation (57), we can determine the unknown elements of the matrix X(0). The fi rst 
three can be solved explicitly giving

(58)
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The last equation in (57) forces a condition of compatibility for the solutions in (58):

 (59)

where we have used equations (27) and (32) to simplify the expression.
Now we need to fi nd the matrix elements of V. Taking a product of T(0,N) and the second 

and the fourth columns of A(N) in equation (53) we fi nd

 (60)

and

(61)

Using these equations we obtain

 (62)

and

(63)

Thus, we have constructed the matrices A(0), V and X(0) and thereby solved the problem.

5. Conclusion

We have proposed a constructive way to build a symmetric one-electron GF for the magnetic
multilayer with magnetization in the plane of the layers. To build this GF we solved the fol-
lowing problems: fi nding the solution of the systems of differential equations (7) and (8) of
general form; matching the solutions on the interfaces; imposing proper boundary conditions
and employing free parameters to get a symmetric function with respect to permutation of the 
variables z → z'  and σ → σ '. Our consideration is valid for complex wave vectors (17) which
allows for extending this method to systems with insulating layers. Also our consideration 
can be applied to systems with fi nite lateral dimensions like magnetic nanowires [12].

Note that the described matching procedure, as well as the procedure providing for the 
boundary conditions, can be applied for a layer potential which differs from the usual rect-
angular potential. In contrast, the possibility of imposing some symmetry condition requires 
additional investigation. For our consideration the equalities (27) and (28) were essential. 
The validity of these equalities is based upon the specifi c form of basic functions. 

The proposed GF is useful for the investigation of electronic transport properties of mag-
netic multilayers. Though our consideration was performed for specifi c boundary conditions 
which are typical for current-perpendicular-to-plane geometry, the proposed approach can be 
applied to a multilayer of fi nite transverse dimension with zero boundary conditions on the 
outer interfaces.
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