2004

Endocrine-Disrupting Effects of Cattle Feedlot Effluent on an Aquatic Sentinel Species, the Fathead Minnow

Edward Orlando
University of Florida, Gainesville, Florida

Alan Kolok
University of Nebraska at Omaha, Omaha, Nebraska

Gerry Binzcick
University of Florida, Gainesville, Florida

Jennifer Gates
University of Florida, Gainesville, Florida

Megan Horton
University of Nebraska at Omaha, Omaha, Nebraska

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/usepapapers
Part of the [Civil and Environmental Engineering Commons](https://digitalcommons.unl.edu/civilenvironmentalengineering)

Orlando, Edward; Kolok, Alan; Binzcick, Gerry; Gates, Jennifer; Horton, Megan; Lambright, Christy; Gray, Jr., L. Earl; Soto, Ana M.; and Guilette, Jr., Louis J., "Endocrine-Disrupting Effects of Cattle Feedlot Effluent on an Aquatic Sentinel Species, the Fathead Minnow" (2004). _U.S. Environmental Protection Agency Papers_. 28.
http://digitalcommons.unl.edu/usepapapers/28
Endocrine-Disrupting Effects of Cattle Feedlot Effluent on an Aquatic Sentinel Species, the Fathead Minnow

Edward F. Orlando,1,2 Alan S. Kolok,3 Gerry A. Binzick,1 Jennifer L. Gates,1 Megan K. Horton,3 Christy S. Lambright,4 L. Earl Gray, Jr.,4 Ana M. Soto,5 and Louis J. Guillette, Jr.1

1Department of Zoology, University of Florida, Gainesville, Florida, USA; 2Biology Department, St. Mary’s College of Maryland, St. Mary’s City, Maryland, USA; 3Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA; 4U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA; 5Department of Anatomy and Cell Biology, Tufts University School of Medicine, Boston, Massachusetts, USA

Over the last decade, research has examined the endocrine-disrupting action of various environmental pollutants, including hormones, pharmaceuticals, and surfactants, in sewage treatment plant effluent. Responding to the growth of concentrated animal feeding operations (CAFOs) and the pollutants present in their wastewater (e.g., nutrients, pharmaceuticals, and hormones), the U.S. Environmental Protection Agency developed a new rule that tightens the regulation of CAFOs. In this study, we collected wild fathead minnows (Pimephales promelas) exposed to feedlot effluent (FLE) and observed significant alterations in their reproductive biology. Male fish were demasculinized (having lower testicular testosterone synthesis, altered head morphometrics, and smaller testis size). Defeminization of females, as evidenced by a decreased estrogen:androgen ratio of in vitro steroid hormone synthesis, was also documented. We did not observe characteristics in either male or female fish indicative of exposure to environmental estrogens. Using cells transfected with the human androgen receptor, we detected potent androgenic responses from the FLE. Taken together, our morphologic, endocrine-logic, and in vitro gene activation assay data suggest two hypotheses: a) there are potent androgenic substances in the FLE; and/or b) there is a complex mixture of androgenic and estrogenic substances that alter the hypothalamic–pituitary–gonadal axis, inhibiting the release of gonadotropin-releasing hormone or gonadotropins. This is the first study demonstrating that the endocrine and reproductive systems of wild fish can be adversely affected by FLE. Future studies are needed to further investigate the effects of agricultural runoff and to identify the biologically active agents, whether natural or pharmaceutical in origin. Key words: anabolic steroid hormones, aquatic ecosystem health, contaminated animal feeding operation (CAFO), environmental androgens and estrogens, gene expression, HPG axis, hypothalamic–pituitary–gonadal axis, pharmaceuticals and personal care products (PPCPs), Pimephales promelas. Environ Health Perspect 112:353–358 (2004). doi:10.1289/ehp.6591 available via http://dx.doi.org/[Online 1 December 2003]

There has been a great deal of research over the last decade examining the endocrine-disrupting action of various environmental pollutants, including hormones, pharmaceuticals, and surfactants, in sewage treatment plant effluent. Responding to the growth of concentrated animal feeding operations (CAFOs) and the pollutants present in their wastewater (e.g., nutrients, pharmaceuticals, and hormones), the U.S. Environmental Protection Agency developed a new rule that tightens the regulation of CAFOs. In this study, we collected wild fathead minnows (Pimephales promelas) exposed to feedlot effluent (FLE) and observed significant alterations in their reproductive biology. Male fish were demasculinized (having lower testicular testosterone synthesis, altered head morphometrics, and smaller testis size). Defeminization of females, as evidenced by a decreased estrogen:androgen ratio of in vitro steroid hormone synthesis, was also documented. We did not observe characteristics in either male or female fish indicative of exposure to environmental estrogens. Using cells transfected with the human androgen receptor, we detected potent androgenic responses from the FLE. Taken together, our morphologic, endocrine-logic, and in vitro gene activation assay data suggest two hypotheses: a) there are potent androgenic substances in the FLE; and/or b) there is a complex mixture of androgenic and estrogenic substances that alter the hypothalamic–pituitary–gonadal axis, inhibiting the release of gonadotropin-releasing hormone or gonadotropins. This is the first study demonstrating that the endocrine and reproductive systems of wild fish can be adversely affected by FLE. Future studies are needed to further investigate the effects of agricultural runoff and to identify the biologically active agents, whether natural or pharmaceutical in origin. Key words: anabolic steroid hormones, aquatic ecosystem health, contaminated animal feeding operation (CAFO), environmental androgens and estrogens, gene expression, HPG axis, hypothalamic–pituitary–gonadal axis, pharmaceuticals and personal care products (PPCPs), Pimephales promelas. Environ Health Perspect 112:353–358 (2004). doi:10.1289/ehp.6591 available via http://dx.doi.org/[Online 1 December 2003]

These studies have helped focus attention on the possible detrimental roles of pharmaceutical agents released into the environment. A wide array of pharmaceutical agents, including hormonal mimics, have been reported in sewage and open waters in various countries (Daughton and Ternes 1999; Kolpin et al. 2002; Stumpf et al. 1999; Ternes 1998). These agents include drugs commonly prescribed for the treatment of heart disease, stress, inflammation, bacterial infections (antibiotics), and birth control. Further, veterinary drugs, such as growth promoters and antibiotics, are used extensively in agriculture, but few studies have examined their presence in the environment, although some studies have recently reported the presence of these compounds in groundwater near farms (Peterson et al. 2000). Importantly, no studies have examined the possible effects of these compounds on wildlife exposed to runoff from farms using large concentrations of pharmaceutical agents, such as cattle feedlots.

Address correspondence to E.F. Orlando, Biology Department, 18952 E. Fisher Road, St. Mary’s College of Maryland, St. Mary’s City, MD 20686-3001 USA. Telephone: (240) 895-4376. Fax: (240) 895-4996. E-mail: eorlando@smcm.edu

We thank G. Ankley, M. Chow, W. Hessler, M. Mann, K. Selcer, C. Tyler, and R. Stasiak for their assistance during this study.

This research was supported by a grant to E.F.O. and T.J.G. from the European Commission (contract DG XII-E2/98/AF2). The research described in this article has been reviewed by the National Health Environmental Effects Research Laboratory, U.S. EPA, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

The authors declare they have no competing financial interests.

Received 14 July 2003; accepted 1 December 2003.
In the United States, hormone supplements are used in the production of approximately 90% of the beef cattle (Balter 1999). These supplements promote rapid growth and increase the conversion of feed to muscle mass. Currently, marketed hormone implants contain pharmaceutical-grade compounds that have androgenic, estrogenic, or progestogenic activities or a mixture of these activities (Schiffer et al. 2001). Androgenic trenbolone acetate, estrogenic zeranol, and progestogenic melengestrol acetate are commonly used singly or combined with native steroid hormones, including T, E2, or progesterone (Schiffer et al. 2001).

Recent studies have indicated that there is a basis for concern about the ecologic effects of these pharmaceutical supplements. Trenbolone acetate, a synthetic androgenic anabolic steroid used in cattle production, is metabolized into trenbolone-β, the biologically active molecule, and excreted as trenbolone-α and -β (Schiffer et al. 2001). Trenbolone-β has a half-life in liquid manure of >260 days, suggesting that it could have ecologic impacts if released into the environment as runoff from feedlots (Schiffer et al. 2001). In another study, estrogenic activity was detected in ponds below feedlots housing a cattle herd in an academic agricultural facility (Irwin et al. 2001).

Responding to a concern over the growth of concentrated animal feeding operations (CAFOs) and the pollutants present in their wastewater (e.g., nutrients, pharmaceuticals, hormones, etc.), the U.S. Environmental Protection Agency (U.S. EPA) recently issued a new agency rule that tightens the regulation of CAFOs (U.S. EPA 2003). The latest rule revises the existing 1976 U.S. EPA requirements on CAFOs in two ways: a) more CAFOs will be required to seek discharge permits under the Clean Water Act (1972) (e.g., previously exempt dry litter poultry operations); and b) all CAFOs must develop and implement a nutrient management plan.

In our research, we examined whether endocrine activity could be detected in natural stream/river systems below feedlots by studying the reproductive endocrinology and secondary sex characteristics of wild fish populations. We examined adult fathead minnows (FHMs), _Pimephales promelas_, living upstream and downstream of cattle feedlots in Nebraska. The FHM was chosen because it is a well-characterized toxicologic model and native to the study region. FHMs have been proposed as a sentinel species for exposure to environmental androgens and estrogens (Ankley et al. 2001). Untreated male and female FHMs exposed to androgens develop increased head size and nuptial tubercles on the dorsal region of the head. Untreated female and male FHMs exposed to estrogens synthesize the yolk protein vitellogenin (Tyler et al. 1999). We hypothesized that fish populations exposed to effluent from the cattle feedlots would exhibit altered sex steroid hormone titers and altered head morphology compared with FHM populations from the reference site. In addition, we hypothesized that the water would contain hormonally active substances.

Materials and Methods

Research sites. For this initial study, we identified two affected sites: a) a stream directly below the effluent outfall of a feedlot with a high density of penned cattle (designated the contaminated site); and b) a stream that receives runoff from fields with dispersed cattle and agricultural activity (designated the intermediate exposure site) (Figure 1). Both sites are confluent with the Elkhorn River and have several commercial feedlots that release effluent into retaining ponds, which then drain into the river. In addition to the sites above, we identified a number of reference sites upriver from these feedlots. These streams also flowed into the Elkhorn River but with no apparent feedlot activity in the surrounding area. We were able to capture FHMs in sufficient numbers from only one of these sites (designated the reference site), which is located within the Oak Valley State Wildlife Management Area. At each site, water quality information was obtained that included temperature, pH, dissolved oxygen (DO), and salinity (Table 1).

Fish. During 9 days in June 1999, FHMs (n = 97) were collected at each of the sites using a seine or minnow traps. Immediately upon capture, fish were placed in coolers containing aerated river water. Fish were then transferred to the University of Nebraska in Omaha, where they were anesthetized with tricaine methanesulfonate (MS-222, 150 ppm; A5040, Sigma Chemical Co., St. Louis, MO) and processed. Various morphologic measurements were obtained, including length (0.1 mm), mass (grams), widest head width (HW; 0.1 mm), and interocular (IO) distance (0.1 mm). Hepatic tissue and gonads were removed and mass (grams) obtained; then gonads were immediately transferred to an explant culture. After *in vitro* culturing, the gonads were fixed in neutral buffered formalin and processed for paraffin histology following standard protocol (Humason 1997). To determine the reproductive stage of the gonad, we compared the mean values of four stages of gametogenesis in both sexes between sites (Grier 1981; Selman and Wallace 1989).

Gonadal cultures and radioimmunoassays. *In vitro* gonadal synthesis of sex steroid hormones was examined in female and male FHMs following a modification of the protocol described by McMaster et al. (1995). Gonadal tissue culture medium consisted of Media 199 (pH 7.4; no. 21200-027; Gibco, Ontario, Canada),...
3-isobutyl-1-methykanthine (final concentration, 0.1 mM; no. I-7018; Sigma), forskolin (final concentration, 5 µM; no. F-6886; Sigma), and androstenedione (final concentration, 100 ng/mL; no. A-9630, Sigma). Culture medium was sterile-filtered into an autoclaved glass bottle and stored on ice.

After gonads were excised, they were weighed, placed in glass test tubes with 1 mL culture medium, wrapped in Parafilm, and incubated on a rocking plate for 6 hr at 24°C. Parameters of the assay, including the incubation time and quantity of gonadal tissue and culture medium, were determined empirically from a previously conducted pilot study. After incubation, the culture medium was decanted and stored at –80°C until assayed.

In vitro production of E2 and T in female FHMs and T in male FHMs was measured via radioimmunoassay on extracted culture media as described previously (Guillette et al. 1995). Culture medium samples were extracted twice as described previously (Guillette et al. 1995). After incubation, the culture medium was sterile-filtered into an autoclaved glass bottle and stored on ice.

Table 1. Water quality parameters for the three sites confluent with the Elkhorn River in eastern Nebraska from which FHMs were collected.

<table>
<thead>
<tr>
<th>Site</th>
<th>Temperature (°C)</th>
<th>pH</th>
<th>DO (mg/mL)</th>
<th>Salinity (ppt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminated</td>
<td>24.8</td>
<td>7.88</td>
<td>2.37</td>
<td>0.8</td>
</tr>
<tr>
<td>Intermediate</td>
<td>23.3</td>
<td>NA</td>
<td>2.79</td>
<td>0.2</td>
</tr>
<tr>
<td>Reference</td>
<td>21.7</td>
<td>7.84</td>
<td>4.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Table 2. Morphometric values (mean ± 1 SE) for female FHMs from three sites confluent with the Elkhorn River in eastern Nebraska.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Contaminated site (n = 23)</th>
<th>Intermediate site (n = 13)</th>
<th>Reference site (n = 19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (mm)</td>
<td>5.36 ± 0.19</td>
<td>5.68 ± 0.11</td>
<td>5.68 ± 0.12</td>
</tr>
<tr>
<td>Soma mass (g)</td>
<td>2.23 ± 0.26</td>
<td>2.48 ± 0.15</td>
<td>2.48 ± 0.14</td>
</tr>
<tr>
<td>Gonad mass (g)</td>
<td>0.312 ± 0.005</td>
<td>0.418 ± 0.05</td>
<td>0.405 ± 0.03</td>
</tr>
<tr>
<td>Liver mass (g)</td>
<td>0.005 ± 0.008</td>
<td>0.065 ± 0.006</td>
<td>0.076 ± 0.007</td>
</tr>
<tr>
<td>IO distance (mm)</td>
<td>4.05 ± 0.18<sup>a</sup></td>
<td>4.24 ± 0.15<sup>a</sup></td>
<td>4.72 ± 0.13<sup>a</sup></td>
</tr>
<tr>
<td>HW (mm)</td>
<td>7.07 ± 0.24</td>
<td>7.22 ± 0.19</td>
<td>7.35 ± 0.17</td>
</tr>
</tbody>
</table>

Values with different superscripts within a row of data are significantly different (p < 0.05); values in rows with no superscripts are not significantly different.

Environmental Health Perspectives • VOLUME 112 | NUMBER 3 | March 2004

Results

Morphometrics. No significant difference was noted in length (p = 0.29) and mass (p = 0.70) among female FHMs from the three sites (Table 2). Further, no significant difference was noted in ovarian (p = 0.13) or liver (p = 0.45) mass. In contrast, IO distance was significantly different (F = 5.6, p = 0.008), with females from the contaminated and...
intermediate sites having smaller distances than females from the reference site (Table 2). HW, however, was not different (p = 0.47). IO distance was correlated with HW, and the regression lines from each site have similar slopes but significantly different y-intercepts (p = 0.02), with the reference site having a higher y-value than the other two sites.

As with females, no significant difference was noted in length (p = 0.14) or body mass (p = 0.15) among male FHMs collected at the three sites (Table 3). Male fish from all sites were significantly larger than female fish from the three study sites. We found a significant difference in testicular (F = 4.58, p = 0.017) but not hepatic (F = 1.9, p = 0.16) mass in males (Table 3). Males from the contaminated and intermediate sites had significantly smaller testes than did those from the reference site. IO distance was significantly different (F = 4.2, p = 0.02), with males from the contaminated and intermediate sites having reduced IO distance than did those from the reference site. Males from the contaminated site (Table 3). Male fish from all sites (p = 0.08). IO distance correlated with HW in males, with the regression lines from each site having similar slopes.

Histopathology. No apparent pathology was observed in any of the ovaries or testes using standard histologic techniques. Also, through histologic examination, we confirmed that all FHMs collected were adults and that the reproductive stage of the gonads in males and females did not vary among sites.

Gonadal steroidogenesis. No significant difference in ovarian E2 synthesis was observed among sites (p = 0.44; Figure 2A). Ovarian mass was not correlated with E2 synthesis (contaminated: r² = 0.074, p = 0.22; intermediate: r² = 0.115, p = 0.25; reference: r² = 0.169, p = 0.11). Mean ovarian synthesis of T was not different among sites (p = 0.08; Figure 2B). When the data from the females were examined as an estrogen:androgen (E:A) ratio, a significant difference was clearly apparent (F = 5.6, p = 0.02; Figure 2C). Our data indicate that the females from the contaminated and intermediate sites had a defeminized sex hormone ratio, that is, a decreased E:A ratio based on a reduction in E2 synthesis and an increase in T synthesis (Figure 2A,B).

There was a significant difference in T synthesis in vitro from testicular tissue obtained from the fish collected from the three sites (F = 5.6, p = 0.008; Figure 3), and in vitro T synthesis was lower in testes obtained from contaminated and intermediate site fish. T synthesis was not correlated with testicular weight at any of the study sites (contaminated: r² = 0.14, p = 0.21; intermediate: r² = 0.03, p = 0.61; reference: r² = 0.11, p = 0.19).

Discussion

To our knowledge, this is the first study to document endocrine disruption in fish exposed to FLE. Wild fish collected below a feedlot exhibited altered reproductive biology, including decreased T synthesis, altered head morphometrics, and smaller testis size in males and decreased E:A ratio in female fish. We did not observe overt characteristics in either male or female fish suggesting environmental exposure to estrogens. With an *in vitro* assay using cells transfected with hAR, we detected potent androgenic responses from the FLE. Taken together, our morphologic, endocrinologic, and *in vitro* gene activation assay data suggest two hypotheses: *a* there is an androgenic substance(s) in the FLE and/or *b* there is a mixture of endocrine-active substances that alter the hypothalamic–pituitary–gonadal axis. Further support for the hypothesis that androgens are present in the FLE comes from observations of androgenic activity (Soto et al. 2004).

Table 3. Morphometric values (mean ± 1 SE) for male FHMs from three sites confluent with the Elkhorn River in eastern Nebraska.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Contaminated site</th>
<th>Intermediate site</th>
<th>Reference site</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 12)</td>
<td>(n = 10)</td>
<td>(n = 17)</td>
</tr>
<tr>
<td>Length (mm)</td>
<td>6.25 ± 0.35</td>
<td>6.68 ± 0.25</td>
<td>6.85 ± 0.07</td>
</tr>
<tr>
<td>Soma mass (g)</td>
<td>3.69 ± 0.65</td>
<td>4.06 ± 0.46</td>
<td>4.80 ± 0.18</td>
</tr>
<tr>
<td>Gonad mass (g)</td>
<td>0.007 ± 0.01*</td>
<td>0.088 ± 0.01*</td>
<td>0.111 ± 0.01b</td>
</tr>
<tr>
<td>Liver mass (g)</td>
<td>0.107 ± 0.02</td>
<td>0.104 ± 0.02</td>
<td>0.143 ± 0.01</td>
</tr>
<tr>
<td>IO distance (mm)</td>
<td>5.58 ± 0.37</td>
<td>5.83 ± 0.37</td>
<td>6.77 ± 0.15b</td>
</tr>
<tr>
<td>HVW (mm)</td>
<td>8.3 ± 0.54</td>
<td>8.64 ± 0.39</td>
<td>9.34 ± 0.12</td>
</tr>
</tbody>
</table>

Values with different superscripts within a row of data are significantly different (p < 0.05); values in rows with no superscripts are not significantly different.

Figure 2. Mean (± 1 SE) *in vitro* synthesis of (A) E2 (p = 0.44) and (B) T (p = 0.08) from the ovaries obtained from fish from three Nebraska sites, and (C) the E:A ratio. Abbreviations: Con, contaminated; Int, intermediate; Ref, reference. The E:A ratio (C) was significantly decreased for ovaries cultured from fish collected from the Con and Int sites (p = 0.02). Values with different superscripts within a row of data are significantly different (p < 0.05); values in rows with no superscripts are not significantly different.
However, Soto et al. (2004) also found estrogenic activity in FLE using the MCF-7 cell in vitro E-Screen assay, suggesting that there could be a complex mixture of natural and pharmaceutical compounds in the effluent.

Our data clearly demonstrate androgenic activity from water obtained below feedlots. However, it does not identify the causal agents. Androgenic activity could be due to natural androgens found in fecal material or androgenic pharmaceuticals used in growth implants (Meyer 2001). Natural androgens have relatively short half-lives in feces and in the open water of retaining ponds (Meyer 2001). In contrast, recent studies demonstrate that metabolites of synthetic androgens (e.g., trenbolone-β from trenbolone acetate) used in growth implants have longer half-lives. Approximately 27.5% of the initial concentration of trenbolone-β was still present in manure piles 4.5 months after deposition (Schiffer et al. 2001). Natural steroids appear to be rapidly degraded, with half-lives measured on the order of days to hours. No literature could be found regarding the relative persistence of zeranol or melengestrol in feedlot retaining ponds, however.

Trenbolone-β acts as a potent androgen agonist in the CV-1 cell assay used to test FLE in this study (Wilson et al. 2002). In fact, its potency was equal to or greater than that of the positive control, DHT, at similar concentrations. Trenbolone acetate is known to be 8–10-fold more potent than native T in cattle (Schiffer et al. 2001). Furthermore, in an in utero screening assay, maternal trenbolone-β increased anogenital distance and attenuated the display of nipples in female rat offspring (Wilson et al. 2002).

In a recent laboratory study, FHMs exposed to trenbolone-β displayed severely altered female and male reproductive biology (Ankley et al. 2003). In females, fecundity decreased, mallelike secondary sex characteristics developed (nuptial tubercles), and plasma concentrations of T, E2, and vitellogenin were all significantly increased. In males, plasma concentrations of 11-ketotestosterone were decreased and E2 and vitellogenin were increased. Although difficult to compare directly because of differences in experimental design, data from our field study support the results of this laboratory study.

Trenbolone-β binds the FHM ARs with greater affinity than does T (Ankley et al. 2003). In male FHMs, trenbolone-β could act at the level of the hypothalamus or pituitary to depress gonadotropin–releasing hormone (GnRH) and/or gonadotropic hormone (GtH) synthesis and/or release, leading to decreased T synthesis, testicular mass, and IQ distance, as was seen in this study in the males from the contaminated site. Female FHMs exposed to FLE at the intermediate and contaminated sites in this study had decreased E:A ratios caused by a decrease in ovarian E2 and an increase in T synthesis during in vitro culture. That is, if the hormones were examined individually, no significant difference was observed among sites; however, when a ratio was calculated, it was obvious that ovarian steroidogenesis was altered in fish obtained from the intermediate and contaminated sites. This result suggests that some component of the FLE has the potential to inhibit ovarian aromatase, the enzyme that converts T to E2 (Norris 1997). Interestingly, trenbolone-β at certain concentrations has been shown to weakly bind the FHM estrogen receptor, induce vitellogenesis in male FHMs, and weakly bind the rainbow trout estrogen receptor in an in vitro transfected yeast system (Ankley et al. 2003; Le Guevel and Pakdel 2001). Future research should investigate what constituent(s) of the FLE may be inhibiting aromatase synthesis or action.

Other compounds that are strong anabolic agents, such as the mycoxtoxin zearalonal, are estrogenic in cattle, humans, rainbow trout (Oncorhynchus mykiss), and Atlantic salmon (Salmo salar) (Arulwe et al. 1999; Le Guevel and Pakdel 2001). Zearalonal is also known to depress concentrations of follicle-stimulating hormone and leutinizing hormone in cattle. Zearalonal, measured as resorcylic acid lactones, was not detected by Soto et al. (2004). Furthermore, we do not know, presently, if zearalonal can interact with GnRH or GtH receptors in fish.

Water quality parameters obtained during this study suggested that the responses observed in fish were unlikely to be complicated by differences in the aquatic environment (Table 1). No fish were found in the retaining pond immediately below the feedlot. This site had very low DO levels (0.7 ppt) and relatively high salinity (1.2 ppt). When the contaminated sites (where fish were obtained) were compared with the reference site, it was apparent that DO was slightly different, as was salinity. The slightly lower observed DO is not surprising given the eutrophic nature of the effluent-laden streams where fish were caught. Salinity was also elevated at the contaminated site versus the other sites, but the levels reported here should have little effect on the fish because the differences were < 1 ppt. Thus, it is unlikely that these variables significantly influenced the end points measured in this study.

We were not able to identify sites (feedlots) where only endogenous ovarian steroids would be in the runoff. That is, all the feedlots we identified used growth implants in their cattle. We had hoped to identify sites that had operations raising cattle without hormone supplements and searched extensively for such locations in the same region. All of the operations we identified that did not use hormone implants also did not raise cattle in a feedlot setting. These implant-free cattle are usually free-ranging cattle; that is, they are raised at low density on open rangelands. Future studies are needed to examine fish exposed to slurries of manure from treated and untreated animals. Given the recent publication documenting wide-scale contamination of U.S. water bodies with numerous pharmaceutical agents (Kolpin et al. 2002), future work—such as that presented in this study combined with intensive environmental chemistry—is urgently needed if we are to understand the possible adverse effects of these compounds on aquatic ecosystem health.

Figure 3. Mean (± 1 SE) in vitro T synthesis from testes obtained from fish from three Nebraska sites (p = 0.008). Abbreviations: Con, contaminated; Int, intermediate; Ref, reference. Values with different superscripts within a row of data are significantly different (p = 0.05); values in rows with no superscripts are not significantly different.

Figure 4. Fold induction of in vitro gene expression induced by FLE, DHT (1 nm) (mean ± 1 SE, n = 7), and medium control in CV-1 cells transfected with hAR and the MMTF-Luciferase reporter.

References

