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Glycosylation of recombinant proteins is of particular
importance because it can play significant roles in the
clinical properties of the glycoprotein. In this work, the
N-glycan structures of recombinant human Factor IX (tg-
FIX) produced in the transgenic pig mammary gland were
determined. The majority of the N-glycans of transgenic pig-
derived Factor IX (tg-FIX) are complex, bi-antennary with
one or two terminal N-acetylneuraminic acid (Neu5Ac) moi-
eties. We also found that the N-glycan structures of tg-FIX
produced in the porcine mammary epithelial cells differed
with respect to N-glycans from glycoproteins produced in
other porcine tissues. tg-FIX contains no detectable Neu5Gc,
the sialic acid commonly found in porcine glycoproteins pro-
duced in other tissues. Additionally, we were unable to detect
glycans in tg-FIX that have a terminal Galα(1,3)Gal disac-
charide sequence, which is strongly antigenic in humans.
The N-glycan structures of tg-FIX are also compared to the
published N-glycan structures of recombinant human glyco-
proteins produced in other transgenic animal species. While
tg-FIX contains only complex structures, antithrombin III
(goat), C1 inhibitor (rabbit), and lactoferrin (cow) have both
high mannose and complex structures. Collectively, these
data represent a beginning point for the future investiga-
tion of species-specific and tissue/cell-specific differences in
N-glycan structures among animals used for transgenic an-
imal bioreactors.

Keywords: glycoprotein/Factor IX/glycosylation/mammary
gland/transgenic animal

Introduction

Factor IX (FIX) is a vitamin K-dependent plasma glycoprotein
that plays an essential role in the blood clotting pathway. A defi-
ciency of FIX activity leads to the bleeding disorder hemophilia
B, and is currently treated by replacement therapy. A number
of posttranslational modifications are made to Factor IX, in-
cluding γ-carboxylation of 12 glutamates near the N-terminus,
β-hydroxylation of Asp64, phosphorylation of Ser158, sulfation

1To whom correspondence should be addressed: Tel: +1-402-472-1743;
Fax: +1-402-472-6989; e-mail: kvancott2@unl.edu

of Tyr155, and both N- and O-glycosylation. These complex
posttranslational modifications require production of recombi-
nant Factor IX (r-FIX) in mammalian cell expression systems.
Factor IX for replacement therapy is currently purified from
donor plasma or produced recombinantly in Chinese Hamster
Ovary (CHO) cell culture (BeneFIX R©).

Glycosylation of recombinant proteins is of particular im-
portance because it can affect properties including enzyme ac-
tivity, protein stability, pharmacokinetics, and immunogenicity
(Varki et al. 1999). Human Factor IX zymogen has two potential
N-glycosylation sites at Asn157 and Asn167 in the activation
peptide (amino acids 146–180), which is proteolytically re-
moved by Factor XIa or Factor VIIa-Tissue Factor (reviewed
in Kurachi et al. 1982). The N-glycans of human plasma-
derived Factor IX (pd-FIX) are reported to be complex, tri-
and tetra-antennary, and sialylated with N-acetylneuraminic acid
(Neu5Ac) (Makino et al. 2000). The only other pd-FIX N-
glycans that have been structurally analyzed are those from
bovine Factor IX, which has three N-glycan sites at Asn158,
Asn168, and Asn173 in the activation peptide. Bovine Factor
IX N-glycan structures are also of the complex classification
(Mizuochi et al. 1983). There are currently no published reports
that relate the structure of Factor IX N-glycans to specific in
vivo biological or pharmacokinetic properties.

It is well established that glycoproteins exist as a pop-
ulation of glycoforms due to macro- and microheterogene-
ity, and that a recombinant protein will likely have different
N-glycan structures compared to the endogenous protein. The
challenge for the production of a recombinant therapeutic gly-
coprotein is to ensure that there is consistency in the glyco-
forms that are produced and that any differences in the gly-
can structure do not result in detrimental clinical properties.
The N-glycans of BeneFIX R© are reported to be of a more
complex structure and contain different linkages, more fuco-
sylation, and more poly-N-acetyllactosamine repeat structures
than plasma-derived FIX (Bond et al. 1998). These differences
were not linked to any adverse effects, and the manufacturing
process of BeneFIX R© results in a highly consistent N-glycan
fingerprint (Harris et al. 1998). Thus, despite differences in
the N-glycan structure and other posttranslational modifica-
tions (e.g., the extent of serine phosphorylation and tyrosine
sulfation), BeneFIX R© was licensed by the US and European
regulatory agencies and is currently used to treat hemophilia
B patients.

Transgenic animal bioreactors are another potential source
of recombinant human glycoproteins (Lubon et al. 1996),
but there are only a few published reports on the N-glycan
structures that are present on transgenic-derived glycopro-
teins. To date, the most complete analyses to be published
are that of recombinant human antithrombin III produced in
transgenic goats (Edmunds et al. 1998), recombinant human
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Analysis of the N-glycans of recombinant human Factor IX

Fig. 1. Monosaccharide composition of tg-FIX from pig K75 day 30 of lactation, r-FIX from CHO cells (BeneFIX R©), and pd-FIX (Mononine R©).

lactoferrin produced in transgenic cows (Van Berkel et al. 2002),
and the recombinant human C1 inhibitor produced in transgenic
rabbits (Koles et al. 2004a). In this work, we determined the
structure of the N-glycans of recombinant human Factor IX
purified from transgenic pig milk. To our knowledge, this is the
first report of detailed structural analysis of N-glycans from a
recombinant protein produced in the porcine mammary epithe-
lial cells. Our purpose in doing this was 3-fold: (1) to determine
how N-glycan structures of transgenic-derived Factor IX dif-
fer from N-glycans of pd-FIX so as to provide a foundation for
future structure/function investigations; (2) to investigate tissue-
specific differences in the N-glycans of glycoproteins produced
in the pig; and (3) to contribute toward the future investiga-
tion of species-specific differences of N-glycans produced in
transgenic animal bioreactors. Using a combination of capil-
lary electrophoresis, high performance liquid chromatography
(HPLC), and mass spectrometry, we have found that the major-
ity of the N-glycans of tg-FIX are complex, bi-antennary, and
with one or two terminal sialic acid groups.

Results

Transgenic FIX (tg-FIX) products purified from two daily milk
samples of two animals (K45 and K75) were used as rep-
resentative samples for this study. The purified tg-FIX con-
tains many subpopulations that differ with respect to the ex-
tent of posttranslational modifications such as γ-carboxylation
(Lindsay et al. 2004). For this work the tg-FIX was purified by
heparin affinity and anion exchange chromatography, and then
polished by reverse phase HPLC. The heparin binding site in
FIX is in the heavy chain (Yang et al. 2002), a region of the pro-
tein devoid of posttranslational modifications, and the product
of heparin affinity chromatography represents the entire popu-
lation of Factor IX molecules produced by the bioreactor. The
biologically active tg-FIX subpopulations were further puri-
fied by anion exchange chromatography, a purification step that
separates the subpopulations based on the γ-carboxyglutamate

(Gla) content (Gillis et al. 1997). We have found that this final
purification step does not fractionate the tg-FIX with respect
to glycoforms; the Gla content determines the protein–column
interactions. The tg-FIX was purified from mid-lactation milk
samples of K75 (day 30) and K45 (day 45), and we have deter-
mined that the N-glycan features described here are representa-
tive of those from all the transgenic pigs analyzed so far.

Asn157 and Asn167, which are located in the FIX activation
peptide, are the only asparagine residues in an Asn-Xxx-Ser/Thr
sequon. We have not found any other N-glycosylation sites by
LC-MS/MS analysis in tg-FIX and in plasma-derived FIX (data
not shown). We also confirmed that the N-glycan site occupancy
at Asn157 and Asn167 is essentially complete by analysis of the
deglycosylated activation peptide by LC-ESI-TOF mass spec-
trometry: removal of the N-glycans with PNGaseF results in
the conversion of occupied asparagine residues to aspartic acid,
and a +1 Da change in molecular weight for each occupied
Asn (supplementary Figure 1). These experiments were also
performed in the presence of H2

18O to confirm that nonspecific
deamidation was not occurring prior to or during this analysis.
We could find no significant evidence for partial N-glycosylation
in purified tg-FIX.

Monosaccharide and sialic acid analysis
Glycan composition was obtained using the monosaccharide
analysis method developed by Chen and Evangelista (1995).
Bovine fetuin run as a standard resulted in a monosaccharide
composition similar to that reported in Chen and Evangelista and
was repeatable with less than 5% of relative standard deviation
(RSD) (data not shown). It should be noted that this method gives
a quantitation of monosaccharides from both O- and N-glycans.
Human Factor IX contains two O-glycosylation sites in the light
chain at Ser53 and Ser61: the glycan at Ser53 is a unique Xyl-
Xyl-Glc and Xyl-Glc structure (Nishimura et al. 1989) found
in epidermal growth factor domains, and the glycan at Ser61 is
a NeuAcα(2–6)Galβ(1–4)GlcNAcβ(1–3)Fucα1-tetrasaccharide
(Nishimura et al. 1992; Harris et al. 1993). The four potential
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Table I. Sialic acid contents of tg-FIX, r-FIX (BeneFIX R©), pd-FIX
(Mononine R©), porcine thyroglobulin, and pig IgG (ND: not detected)

Sample Neu5Ac (mol/mol
protein)

Neu5Gc
(mol/mol
protein)

tg-FIX [pig K45, lactation day 45] 5.4 ± 0.4 ND
tg-FIX [pig K75, lactation day 30] 3.2 ± 0.2 ND
rFIX [BeneFIX R©] 6.5 ± 0.9 ND
pd-FIX [Mononine R©] 8.8 ± 0.3 ND
Porcine thyroglobulin 25.2 ± 0.1 2.2 ± 0.2
Pig IgG ND 0.7 ± 0.1

O-glycan sites in the activation peptide of FIX are sparsely occu-
pied, and do not contribute significantly to the monosaccharide
composition. A representative analysis of a tg-FIX sample pu-
rified from a mid-lactation milk sample (pig K75, lactation day
30) is shown in Figure 1. BeneFIX R© and Mononine R© had sig-
nificantly higher amounts of N-acetylglucosamine (GlcNAc),
mannose (Man), fucose (Fuc), and galactose (Gal) than tg-FIX.
As expected, glucose (Glc) and xylose (Xyl) were also detected
in all FIX samples, and glycopeptide analysis has shown that the
Xyl-Xyl-Glc glycan at Ser53 and the tetrasaccharide at Ser61
are present in tg-FIX (data not shown).

Sialic acids were analyzed by reverse phase HPLC using the
method described in Anumula (1995). This method accounts
for sialic acids released from both N- and O-glycans. Results
from the two representative tg-FIX samples are compared with
BeneFIX R© and Mononine R© in Table I. Our results show no
Neu5Gc on BeneFIX R© and Mononine R© (limit of quantitation
was 0.05 mol/mol protein), which is consistent with previous
reports (Bond et al. 1998; Harris et al. 1998; Makino et al.
2000). The tg-FIX also had no quantifiable Neu5Gc, as have all
other tg-FIX samples we have analyzed throughout the course
of lactation for multiple animals to date. The Neu5Ac levels in

tg-FIX (∼3–5 mol/mol protein) were lower than that found in
Mononine R© (8.8 mol/mol protein) and BeneFIX R© (6.5 mol/mol
protein). For comparison, two endogenous porcine proteins
were also analyzed; Neu5Gc was detected in both thyroglobulin
(2.2 mol/mol protein) and IgG (0.7 mol/mol protein).

N-Glycan profiling using normal phase high performance
liquid chromatography (NP-HPLC)
HPLC N-glycan profiling separates released oligosaccharides
by size, charge, linkage, and overall structure (Anumula and
Dhume 1998). The complete digestion of N-glycans from gly-
coproteins by PNGase F was confirmed by SDS–PAGE analysis
of the undigested and digested proteins. We obtained a single
band on the gels after PNGase F treatment (data not shown).
The well-characterized glycoprotein, bovine fetuin, was used as
a standard in assignment of N-glycan separation on the basis
of the number of sialic acid moieties (Figure 2A). The sepa-
rated N-glycans of bovine fetuin are grouped and designated
as 0S for neutral glycans, 1S for mono-, 2S for di-, 3S for
tri-, and 4S for tetrasialylated oligosaccharides. In agreement
with the literature, tri- and tetrasialylated glycans are predom-
inant in Mononine R© (Figure 2B) and BeneFIX R© (Figure 2C).
Representative profiles of tg-FIX N-glycans are presented in
Figure 2D, E. The N-glycans of tg-FIX from both animals
are primarily mono- and disialylated. We have found that the
N-glycan profiles have been consistent from animal to ani-
mal with respect to the identity of the peaks present. There
is variation, however, in the relative amounts of each peak be-
tween animals and throughout the course of an animal’s lac-
tation, as evidenced by the profiles given for K45 and K75.
The N-glycan profiles of two endogenous porcine glycoproteins
are significantly different from tg-FIX. Porcine thyroglobulin
(Figure 2F), a glycoprotein synthesized in the thyroid, con-
tains a mix of neutral and acidic oligosaccharides. Porcine IgG
(Figure 2G), a glycoprotein synthesized in B cells, contains
primarily neutral N-glycans.

Fig. 2. HPLC N-glycan profiles of (A) Bovine Fetuin, (B) pd-FIX (Mononine R©), (C) r-FIX (BeneFIX R©), (D) tg-FIX [K45 day 45], (E) tg-FIX [K75 day 30],
(F) porcine thyroglobulin, and (G) pig IgG. The labels 0-S, 1-S, 2-S, 3-S, and 4-S indicate mono-, di-, tri-, and tetrasialylated oligosaccharide groups, respectively.
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Fig. 3. MS spectra of underivatized N-glycans of tg-FIX from (A) K45 day 45 and (B) K75 day 30.

Underivatized N-glycan analysis using ESI-MS/MS
While the NP-HPLC profiling method gives information about
N-glycan heterogeneity and sialic acid content, it does not give
detailed structural information. N-Glycans were enzymatically
released from tg-FIX and structures were determined by ESI-
MS and ESI-MS/MS analysis in the negative ion mode on a
triple-quadrupole/ion trap instrument. As described in Harvey
(2005), ammonium nitrate was used to enhance ionization of
the acidic oligosaccharides. In the ion trap scanning mode, pre-
cursor ions were a mixture of the nitrate adducts and deproto-
nated ions. By increasing the collision energy (CE) in Q2 of
the instrument (applied to all ions), the nitrate adducts were
converted to deprotonated ions, which simplified the spectra.
A CE = 40 V was chosen as the optimal setting for obtain-
ing simpler spectra without fragmenting the oligosaccharides.
Figure 3 shows the MS spectra of N-glycans from the two tg-
FIX samples. Possible candidate structures of N-glycans were
obtained from the molecular masses from the ion trap survey
scan (by searching theoretical precursor ion mass on web-based
Glycomod: [http://ca.expasy.org/tools/glycomod/]) and by de-
termining if the corresponding MS/MS spectra were consistent
with the precursor ion definition. We present detailed MS/MS
data from the tg-FIX from pig K45/day 45 to illustrate the data
analysis process.

The MS/MS structural characterization of N-glycans in
this work was performed based on the N-glycan biosynthe-
sis scheme. On the core region (Man α1–3/Man α1–6 Man
β1–4 GlcNAc β1–4 GlcNAc), GlcNAc is linked to Man α1–3

Man (which is called “the 3-antenna”) or Man α1–6 Man
(which is “the 6-antenna”) via β1–2, 4, and 6 to make various
branches. The linkage between Gal (or N-acetylgalactosamine
(GalNAc)) and GlcNAc is likely the β1–4 linkage. Sialic acid
can be linked to Gal (or GalNAc) through α2–3, or 6. Fuc
on the reducing GlcNAc is attached by the α1–3 or 1–6 link-
age. This N-glycan biosynthetic scheme was used as the basis
for determining the proposed structures with sequences and
linkages.

Figure 4 presents the MS/MS spectra of the precursor ions
m/z 1183 [M-2H]2− (panel A) and m/z 1110 [M-2H]2− (panel
B) from the N-glycans of tg-FIX from pig K45/day 45. The
precursor ion m/z 1183 [M-2H]2− is proposed as a fucosylated
disialylated biantennary structure, and the precursor ion m/z
1110 [M-2H]2− is similar but without fucosylation. The MS/MS
spectrum of these precursor ions has a B3 ion (m/z 655), but no
m/z 696 ion, so both antennae are consistent with Neu5Ac-Gal-
GlcNAc, not Neu5Ac-GalNAc-GlcNAc. The abundant B1 ion
(m/z 290) is consistent with Neu5Ac termination of this glycan,
which is also confirmed by B3 (m/z 655) and B4 (m/z 817) ions.
We found no results consistent with Neu5Gc incorporation. The
coexistence of the fragment ions 2,4A7 (m/z 1030 [M-2H]2−),
2,4A7/Y6 (m/z 1769 [M-H]−), 0,2A7 (m/z 1133 [M-2H]2−), and
0,2A7/Y6 (m/z 1975 [M-H]−) in the MS/MS spectrum of the m/z
1183 precursor ion indicates α(1–6) linked core fucosylation. In
the MS/MS spectrum of the precursor ion m/z 1110 [M-2H]2−,
the fragment ions 0,2A7 (m/z 1060 [M-2H]2−) and 0,2A7/Y6 (m/z
1829 [M-H]−) indicate a lack of fucosylation.
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Fig. 4. MS/MS spectra of underivatized N-glycans from tg-FIX (K45 day 45) illustrating how structural assignment is made: (A) m/z = 1184 [M-2H]2− and
(B) m/z = 1110 [M-2H]2− (�, fucose; �, mannose; �, galactose; �, GlcNAc; �, Neu5Ac).

The structures of the other precursor ions in Figure 3
were also identified by analyzing MS/MS spectra (see sup-
plementary Figure 2), and these structures are summarized in
Table II. All precursor ions were identified as depro-
tonated adducts. We identified monosialylated trianten-
nary (m/z 2441 and 2295), monosialylated biantennary
(m/z 2117, 2076, 1971, and 1930), disialylated trianten-
nary (m/z 1366), and disialylated biantennary glycans (m/z
1203, 1183, 1110, and 1130). We found evidence for
isomers containing Gal-GlcNAc and GalNAc-GlcNAc se-
quences on the 3- and 6-antennae for the precursor ions m/z
1130 [M-2H]2−, 1203 [M-2H]2−, 1971 [M-H]−, and 1058
[M-2H]2− (supplementary Figure 2a, b, e, and g). The ion
0,4A5/Y6 (m/z 586) indicates that the 6-antenna contains a Gal-
GlcNAc sequence, which also denotes that the correspond-
ing GalNAc-GlcNAc is located on the 3-antenna. However,
the MS/MS spectra show a weak signal of the fragment ion,
0,4A5/Y6 (m/z 627), which reflects a GalNAc-GlcNAc sequence
on the 6-antenna. Based on this observation, we conclude that
the structures bearing GalNAc-GlcNAc on the 3-antenna are
more abundant ion than those bearing GalNAc-GlcNAc on the
6-antenna. The two possible isomers are expressed as a dotted
line between Gal (or GalNAc) and GlcNAc in Table II.

In addition to these more common structures, we were also
able to identify N-glycans that appear to be sulfated. The struc-

ture of m/z 1078 [M-2H]2− is proposed to be monosialylated,
biantennary, and with sulfation on the core Fuc. As shown in
Figure 5A, the presence of 0,4A7 (m/z 285), 2,4A7 (m/z 1769),
and B6 (m/z 1709) are consistent with a sulfated α(1–6) linked
core Fuc. To confirm the presence of sulfate, and not phosphate
on the glycans, the ion-pairing method using the peptide trily-
sine (K3) was employed, as described in Zhang et al. (2006).
During MS/MS fragmentation in the presence of K3, sulfated
glycans tend to undergo sulfur–oxygen cleavage, resulting in
[M-SO3+H]+ and [K3+SO3+H]+ ions, while phosphorylated
glycans produce fragment ions from the dissociation of the non-
covalent bond between the glycan and K3. The MS/MS spectra
of this proposed sulfated N-glycan ([M+K3+2H]2+ m/z 1281)
in this work has the [K3+SO3+H]+ (m/z 483) ion and the
[M-SO3+H]+ type ions, which are consistent with a sulfated,
not phosphorylated, glycan (supplementary Figure 3a). The
abundant B1 ion (m/z 290) indicates Neu5Ac termination of
this glycan, which is also confirmed by B3 (m/z 655) and B4
(m/z 817) ions. The presence of the m/z 655 ion also indicates
that the composition of an antenna is Neu5Ac+Gal+GlcNAc.

The structure of the m/z 1260 [M-2H]2− ion is proposed to
be a monosialylated triantennary with a sulfation on the core
Fuc (Figure 5B). The fragment ions 0,4A7 (m/z 285) indicate a
sulfation on the core α(1–6) linked Fuc, and Z1 (m/z 428) also
confirms a sulfated Fuc linked to a GlcNAc. B1 (m/z 290) and
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Table II. Proposed N-glycan structures of tg-FIX and their relative percentage (based on HPLC profiling and MS analysis) from K45/day 45 and K75/day 30 (�,
fucose; �, mannose; �, galactose; �, GlcNAc; �, GalNAc; �, Neu5Ac; ND, not detected)

Experimental m/z Theoretical m/z Adduct Structure Amount (%) Amount (%)
K45/day 45 K75/day 30

1025.2 1025.3 [M-2H]2− ND ND

1078.3 1077.8 [M-2H]2− ND ND

1110.7 1110.4 [M-2H]2− 4.6 11.2

1130.8 1130.9 [M-2H]2− 1.1 2.5

1183.8 1183.4 [M-2H]2− 10.1 5.3

1203.8 1203.9 [M-2H]2− 3.9 0.9

1260.9 1260.4 [M-2H]2− ND ND

1293.0 1292.9 [M-2H]2− 0.9 ND

1366.2 1366.0 [M-2H]2− 1.7 0.5

1930.6
965.1

1930.7
964.8

[M-H]−
[M-2H]2−

25.2 31.1

Continued
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Table II. Continued

Experimental m/z Theoretical m/z Adduct Structure Amount (%) Amount (%)
K45/day 45 K75/day 30

1971.9
985.6

1971.7
985.3

[M-H]−
M-2H]2−

5.7 2.0

2076.7
1038.2

2076.7
1037.9

[M-H]−
[M-2H]2−

30.7 24.6

2117.8
1057.8

2117.8
1058.4

[M-H] −
[M-2H]2−

4.4 1.1

2295.6
1147.2

2295.8
1147.4

[M-H]−
[M-2H]2−

5.8 5.4

2441.7
1220.8

2441.9
1220.4

[M-H]−
[M-2H]2−

5.3 11.3

B3 (m/z 655) ions indicate Neu5Ac termination of this glycan.
As described in Harvey 2005, the 0,4A type ring fragment ions
can provide information about the sequences and elongations at
the 6-antenna. For example, the ion, 0,4A5/Y6 − 18 (m/z 586)
in Figure 5B indicates that the oligosaccharide consists of one
branch of Gal-GlcNAc on the 6-antenna. This information may
also suggest two branches of Gal-GlcNAc on the 3-antenna. The
0,4A ions generally do not bear sialic acid, because sialic acid is
readily lost during cross-ring fragmentation. Therefore, the po-
sition of sialic acid termination on the branch was not assigned.
The presence of sulfation on this structure was also examined
by the MS/MS fragmentation with K3 ([M+K3+2H]2+ m/z
1463). The [K3+SO3+H]+ ion was observed, indicating a sul-
fated structure (supplementary Figure 3b).

The MS/MS spectrum of m/z 1025 [M-2H]2− (Figure 6)
shows fragment ions indicating a sulfated biantennary struc-
ture with a Gal or GalNAc residue on each antenna.
The fragment ion m/z 282 (HexNAc+80) and m/z 485
(HexNAc2+80) indicate a sulfation on GlcNAc or GalNAc
of the antenna having GalNAc+GlcNAc composition. The
fragment ion 1,4A5/Z5β (m/z 534) indicates that the sulfa-
tion is on the GlcNAc residue of the 3-antenna. These re-
sults are consistent with a composition of the 3-antenna being
SO3+GalNAc+GlcNAc. We were unable to detect a fragment
ion indicating Neu5Ac+SO3+GalNAc+GlcNAc (m/z 776).
Therefore, it is deduced that Neu5Ac termination may be
only positioned on the 6-antenna composed of Gal+GlcNAc
composition. The 2,4A7 type ions (2,4A7 m/z 944 [M-2H]2−
and 2,4A7/Y6α m/z 1599 [M-H]−) and 0,2A7 ion (m/z 1659

[M-H]−) in the MS/MS spectrum indicate no core fucosy-
lation. The MS/MS fragmentation of this structure with K3
([M+K3+2H]2+ m/z 1228) also showed the [K3+SO3+H]+
ion, indicating the presence of sulfation (supplementary
Figure 3c). In summary, the precursor ion m/z 1025 is a bianten-
nary structure with SO3+GalNAc+GlcNAc composition of the
3-antenna and Neu5Ac+Gal+GlcNAc composition of the 6-
antenna. The identified sulfated structures above were found
from tg-FIX N-glycans of both animals.

To get a more quantitative understanding the distribution of
N-glycans, we combined the NP-HPLC profiling with off-line
ESI-MS/MS analysis. Derivatized oligosaccharides were col-
lected, dried and reconstituted with 10 mM ammonium hydrox-
ide in 50% methanol, and analyzed in the negative ion mode.
The results are summarized in Figure 7 and the corresponding
relative percentages of each identified N-glycan for pig K45/day
45 and K75/day 30 are listed in Table II. The elution times of the
derivatized glycans were consistent with the sialic acid content
assigned by comparison with bovine fetuin glycans. The struc-
tures from 33.9 to 38.6 min retention time are monosialylated
structures, while the structures from 47.5 to 51.4 min are disia-
lylated. In the MS/MS spectra of the collected major peaks from
the N-glycan profile, most of the fragment ions from the MS/MS
spectra were the results of glycosidic linkage fragmentation
(B, C, Y, and Z type), consistent with results reported by Harvey
(2005) (data not shown). We observed that fucosylated glycans
(e.g., the peak 1S-4 and 2S-3 in Figure 7) elute earlier than their
corresponding nonfucosylated glycan (e.g., peaks 1S-5 and 2S-
4 in Figure 7). We confirmed that derivatized N-glycan peaks
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Fig. 5. MS/MS spectra of the putative sulfated N-glycans (A) m/z = 1078 [M-2H]2− and (B) m/z = 1260 [M-2H]2− from tg-FIX (K45 day 45) (�, fucose;
�, mannose; �, galactose; �, GlcNAc; �, Neu5Ac).

Fig. 6. MS/MS spectrum of the putative sulfated N-glycan (m/z = 1025 [M-2H]2−) from tg-FIX (K45 day 45) (�, fucose; �, mannose; �, galactose; �, GlcNAc;
�, GalNAc; �, Neu5Ac).
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Fig. 7. Summary of identified structures of AA-derivatized N-glycans of tg-FIX (K45 day 45) from HPLC profiling and ESI-MS/MS analysis (�, fucose; �,
mannose; �, galactose; �, GlcNAc; �, GalNAc; �, Neu5Ac; AA, 2-aminobenzoic acid).

having the same retention time from two different transgenic
pigs were the same structures. The most abundant N-glycan from
tg-FIX [K45 day 45] is the monosialylated core-fucosylated
biantennary (m/z 2076 [M-H]− underivatized mass), while that
from tg-FIX [K75 day 30] is the monosialylated biantennary
without fucosylation (m/z 1930 [M-H]− underivatized mass).
Sialylated N-glycans comprise over 95% of the total N-glycan
population. The linkage of Neu5Ac-Gal (or GalNAc) is con-
firmed to be α(2–3) by comparing NP-HPLC N-glycan profiles
for samples treated with a sialidase specific for the α(2–3) link-
age and another sialidase that cleaves at both α(2–3) and α(2–6)
linkages. The acidic N-glycans are completely converted to neu-
tral species after the treatment with both the α(2–3) sialidase and
the α(2–3,6) sialidase (supplementary Figure 4a), indicating that
Neu5Ac is linked via α(2–3) linkage. Fully sialylated N-glycans
(with no terminal Hex or HexNAc residues) account for about
20% of the total population; the majority of the N-glycans are
partially sialylated. We were not able to detect sulfated glycans
using the NP-HPLC profiling-MS method.

The structures determined by MS/MS analysis did not have
any N-glycans with Galα(1–3)Gal terminal disaccharides, and
we found evidence for only α(1–6) linked core Fuc struc-
tures. The absence of α-Gal moiety was also investigated
by α-galactosidase digestion and the resulting effect on the
N-glycan profiles. As shown in supplementary Figure 4b, no
peak shifts were observed on NP-HPLC N-glycan profiles
treated with α-galactosidase. We also confirmed the Fuc linkage
by exoglycosidase treatment. To confirm the absence of α(1–3)
linked fucosylation, α(1–3) fucosidase digestion was employed
and the resulting N-glycan profiles did not show any peak shift,
indicating the absence of α(1–3) linked fucosylation (supple-
mentary Figure 4c).

Discussion

The objective of this work is to report on the N-glycan struc-
tures of tg-FIX and how they compare with N-glycans found
in plasma-derived FIX, other porcine glycoproteins, and in re-
combinant glycoproteins produced in other transgenic animal
species. The only potential N-glycosylation sites of FIX (Asn-

Xxx-Thr/Ser sequons) are located at Asn157 and Asn167 in the
activation peptide of the protein. We have confirmed by LC-
MS/MS and LC-MS analysis that tg-FIX is not N-glycosylated
at any other Asn residues, and that glycosylation at Asn157 and
Asn167 is essentially complete. The site occupancy by partic-
ular N-glycan structures at either Asn157 or Asn167 was not
determined as part of this work; this aspect of site occupancy
of tg-FIX and other recombinant glycoproteins produced in the
transgenic animal bioreactor will be the subject of future studies.

Differences in the N-glycan structure between a recombinant
protein and its human version are to be expected, and trans-
genic animal-derived proteins are no exception. Human plasma-
derived FIX N-glycans are complex, highly branched (tri- and
tetra-antennary), and highly sialylated (Makino et al. 2000).
Approximately 35% of human FIX N-glycans are fucosylated,
and 80% of the antennae are terminated with sialic acid. Mul-
tiple analytical methods were used in this study to ensure that
the results for tg-FIX analysis were consistent. Monosaccharide
analysis showed that tg-FIX has lower amounts of Neu5Ac, Gal,
GlcNAc, and Man compared with Mononine R© and BeneFIX R©.
This indicates that the N-glycans of tg-FIX are less branched
and less sialylated. Results from HPLC profiling and ESI-MS
analysis confirmed this: tg-FIX N-glycans are complex, bi- and
tri-antennary, partially sialylated with Neu5Ac (no Neu5Gc),
and partially core-fucosylated.

The two animals studied in this work had different tg-FIX
expression levels during their lactations: K45 ranged from 3
to 4 mg/mL, and K75 ranged from 1 to 2 mg/mL. For both
animals, approximately 95% of the N-glycans of tg-FIX de-
tected by HPLC profiling are sialylated, but only about 20%
of the glycans are fully sialylated. However, there appears to
be significant differences for core fucosylation of tg-FIX with
expression level, as pig K45/day 45 had 56%, but K75/day
30 contained 37% of fucosylated N-glycans. The variations of
tg-FIX N-glycans from other animals and different days of lac-
tation are under investigation. So far, the N-glycan profiles of
tg-FIX K45 showed that the relative proportions of the disia-
lylated structures decreased, but the total sialylated structures
and the overall sialic acid content remained constant during lac-
tation (unpublished observations). In comparison to our data,
Koles et al. (2004b) reported that disialylated structures and the
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overall sialic acid content decreased on recombinant C1 in-
hibitor N-glycan produced in transgenic rabbit milk. Plus, fu-
cosylation of tg-FIX K45 N-glycans increased, while that of
the recombinant C1 inhibitor N-glycans decreased, as lactation
progressed. These interanimal and daily variations in the rela-
tive amounts of tg-FIX N-glycans will be further explored and
presented in a future publication, as an established production
herd becomes available.

The effects of the tg-FIX N-glycans on protein function are
yet to be determined. Very little has been published about how
N-glycan structures affect FIX function. Bharadwaj et al. (1995)
showed that enzymatic removal of sialic acid from Factor IX had
no effect on in vitro procoagulant activity, but it is not known
how fucosylation or partial sialylation affects in vivo proper-
ties. It is likely that enzymatic activity (proteolysis of Factor
X to Factor Xa) of FIX is not affected by the N-glycan struc-
tures since they are not present in the active enzyme. This does
not rule out other important in vivo functions, however, as the
N-glycans are present in the circulating zymogen. Glycans are
known to mediate protein–protein and protein–cell interactions,
and the degree of sialylation of a glycoprotein is thought to
be an important determinant of its pharmacokinetic properties
(Varki et al. 1999; Sinclair and Elliott 2005). Glycoproteins with
desialylated glycans generally can bind to the hepatic asialogly-
coprotein receptors, so that they are cleared rapidly from a blood
circulation (Hoermann et al. 1993; Joziasse et al. 2000; Jones
et al. 2007). It remains to be seen how partial sialylation affects
the in vivo function of tg-FIX.

Significant efforts have been made to improve the sialyla-
tion of recombinant glycoproteins so as to improve initial re-
covery and circulation half-life. Hamilton et al. (2006) have
engineered yeast for human-like N-glycosylation and sialyla-
tion with Neu5Ac. Several strategies have been explored to
improve sialylation of recombinant glycoproteins in CHO cells,
including media optimization and coexpression of glycosyl-
transferases (Baker et al. 2001; Bobrowicz et al. 2004; Li et al.
2006). Additionally, in vitro methods have been developed to
sialylate recombinant glycoproteins after purification (Raju et al.
2001; Wrotnowski 2001; Zopf and Vergis 2002). Similar strate-
gies of nutritional optimization, coexpression of glycosyltrans-
ferases, or in vitro processing could also be used for tg-FIX.
We also found evidence for sulfated N-glycans in tg-FIX, which
has not been reported for pd-FIX. It was reported that liver cells
have receptors which can bind to sulfated glycans (Szkudlinski
et al. 1995; Leteux et al. 2002). Therefore, glycoproteins hav-
ing sulfated glycan may be rapidly cleared from circulation. It
remains to be seen if this effect will be significant. Future exper-
iments that compare tg-FIX with pd-FIX and CHO cell-derived
FIX pharmacokinetics will be instructive toward resolving these
questions.

The N-glycans of tg-FIX were also compared to what is
known about other porcine glycoprotein N-glycans. To our
knowledge, there are no published reports specifically analyz-
ing glycosyltransferases/glycosidase expression in the porcine
mammary epithelial cells, but inferences into cell-specific
N-glycosylation can be made by comparing our data with that
of previously published data for porcine lactoferrin and other
porcine glycoproteins. The two points of comparison that we
will highlight are (1) Gal(α1,3)Gal at the nonreducing ter-
mini of the antennae and (2) incorporation of Neu5Gc. The
Gal(α1,3)Gal moiety is strongly antigenic in humans (Sandrin

and McKenzie 1994; Konakci et al. 2005). It is reported that the
Gal(α1,3)Gal antigen is present in glycoproteins from porcine
kidney, liver, pancreas, and lung (Oriol et al. 1993; Kim et al.
2006). However, Spik et al. (1994) reported the absence of
Gal(α1,3)Gal in the N-glycans of porcine lactoferrin, an en-
dogenous glycoprotein synthesized in the porcine mammary
epithelial cells and secreted into the milk. Animal glycoproteins
also have Neu5Gc, which is synthesized by hydroxylation of
Neu5Ac by CMP-Neu5Ac hydroxylase. Humans do not pro-
duce Neu5Gc due to a point mutation in the gene encoding
CMP-Neu5Ac hydroxylase (Varki 2001; Irie and Suzuki 1998).
Since Neu5Gc is not expressed in humans it is thought to be
antigenic (Malykh et al. 2001; Zhu and Hurst 2002; Miwa et al.
2004). Malykh et al. (1998) analyzed several porcine tissues for
the Neu5Gc content and CMP-Neu5Ac hydroxylase activity.
They found that the amount of CMP-Neu5Ac hydroxylase activ-
ity was proportional to the Neu5Gc content, and that the amount
of Neu5Gc per glycoprotein is predominant in the porcine sub-
mandibular gland, lymph node, small intestine, spleen, and thy-
mus. Neu5Ac is more prevalent in glycoproteins from the lung,
liver, kidney, and heart. They did not analyze mammary gland
tissue. Neu5Gc has not been detected in porcine lactoferrin as
reported by Spik et al. (1994). The absence of Neu5Gc and
Gal(α1,3)Gal in tg-FIX supports the hypothesis that the porcine
mammary epithelial cells glycosylate proteins in a cell-specific
manner that is different from other porcine tissues, and that
glycosylation of tg-FIX is similar to other milk glycoproteins
produced in the pig.

Although there are no other reported cases of N-glycan
characterization for r-FIX produced in other transgenic animal
species for direct comparison, our data can be compared with
other glycoproteins produced in the mammary glands of the
transgenic goat, cow, rabbit, and mouse as a beginning point
for future studies that will more thoroughly investigate differ-
ences in N-glycosylation machinery in the different species.
Recombinant antithrombin III produced in transgenic goat milk
had N-glycan structures that included oligomannose glycans
on Asn155, and complex fucosylated, mono- and disialylated
glycans at Asn96, Asn135, and Asn192 (Edmunds et al. 1998).
In addition, the complex N-glycans detected in transgenic goat-
produced antithrombin III were sialylated with both Neu5Gc
and Neu5Ac. In contrast, human plasma-derived antithrombin
III N-glycans are complex, nonfucosylated, and sialylated with
Neu5Ac (Franzen et al. 1980). The N-glycans of recombinant
human lactoferrin produced in transgenic cows contain oligo-
mannose, hybrid, and complex structures, whereas endogenous
human lactoferrin contains only complex N-glycans (Van
Berkel et al. 2002). The N-glycans of the human plasma-
derived C1 inhibitor are reported to be complex, biantennary,
and disialylated with Neu5Ac (Strecker et al. 1985), while
N-glycans from the recombinant C1 inhibitor produced in
transgenic rabbit milk were found to be of all three major classes
of N-glycans: oligomannose, hybrid, and complex (Koles et al.
2004a). The complex glycans of the transgenic rabbit-derived
C1 inhibitor accounted for approximately 50–55% of the
N-glycans and were mono- and bi-antennary, and sialylated
with Neu5Ac (no Neu5Gc detected). Transgenic mouse-derived
recombinant human interferon-γ (James et al. 1995) showed a
similar N-glycosylation pattern to endogenous hu-
man interferon-γ (Sareneva et al. 1996). Asn25-linked
glycans were of complex and fucosylated structures, but
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Asn97-linked glycans were of oligomannose and hybrid struc-
tures for both the recombinant and endogenous glycoproteins.
In contrast to the above-mentioned examples in the goat, cow,
rabbit, and mouse, we have found only complex glycans in
the tg-FIX from the pig. Additionally, in contrast to the goat,
we could detect no Neu5Gc in the tg-FIX N-glycans. As other
glycoproteins are produced in the transgenic pig and other
species, it will be interesting to see if the currently observed
features of N-glycosylation are maintained, and whether any
particular species glycosylate recombinant proteins with more
human-like structures.

In summary, we have presented data showing that the
N-glycans of tg-FIX are complex, bi- and tri-antennary, sialy-
lated with Neu5Ac, and partially fucosylated. These structures
differ from pd-FIX in the degree of branching and the level of
sialylation. We were unable to detect high Man N-glycans, gly-
cans with Gal(α1,3)Gal termination, or glycans with Neu5Gc,
but we did find evidence for sulfated glycans. The identified N-
glycans from tg-FIX are consistent with structures found in the
KEGG (Kyoto Encyclopedia of Genes and Genomes) glycan
structure composite map of humans, and similar to that reported
earlier for porcine lactoferrin. These data provide evidence that
the porcine mammary epithelial cells glycosylate recombinant
proteins in a manner that is different from other transgenic ani-
mal species and from other cells within the transgenic pig biore-
actor. The different N-glycan structures found on tg-FIX versus
pd-FIX will also be useful in studying the relationship between
the FIX N-glycan structure and in vivo function.

Experimental

Materials
All reagents, standard sugars, reference proteins, and trilysine
(K3) were purchased from Sigma (St. Louis, MO), unless other-
wise noted. 9-Aminopyrene-1,4,6 trisulfonate (APTS) was ob-
tained from Beckman-Coulter (Fullerton, CA). Tetrahydrofu-
ran (0.025% BHT inhibited) and phosphoric acid (85% HPLC
grade) were from J. T. Baker (Phillipsburg, NJ). Acetonitrile
(Burdick and Jackson, HPLC grade) was purchased from VWR
(Chicago, IL). pd-FIX (Mononine R©) and r-FIX (BeneFIX R©)
were gifts from Dr. Paul E. Monahan (University of North
Carolina, Chapel Hill, NC). PNGase F, α2–3, and α(2–3, 6)
sialidase were purchased from New England Biolabs (Beverly,
MA). α(1–3, 4) fucosidase and α-galactosidase were obtained
from Prozyme (San Leandro, CA) and QA-Bio (Palm Desert,
CA), respectively. N-Glycan standards were purchased from
V-labs (Covington, CA).

Two transgenic pigs-derived FIXs (tg-FIX) expressed in two
transgenic pigs (K75 and K45) were used in this study. Pig
K75 and K45 are animals that contain a cDNA human Factor
IX transgene construct with a 4.2 kb mouse whey acid pro-
tein (mWAP) promoter (Van Cott et al. 1999). The average ex-
pression levels over the course of lactation were approximately
1000–2000 µg/mL for pig K75, and 3000–4000 µg/mL for pig
K45. The lactating pigs were milked by hand and the milk was
immediately frozen at −50◦C.

Purification of transgenic-Factor IX
Transgenic-FIX was purified from transgenic pig milk by hep-
arin affinity chromatography as described previously (Lindsay

et al. 2004). A BioCAD Vision chromatography system (Ap-
plied Biosystems, Foster City, CA) was used for all purifica-
tion steps below with 280 nm detection. Heparin-Sepharose FF
(Amersham Biosciences, Piscataway, NJ) was packed in a Poros
HP glass column (PerSeptive Biosystems, Framingham, MA).
The milk was thawed and mixed 1:1 (v:v) with 200 mM EDTA
pH 7.4 and centrifuged for 15 min at 5000 rpm at 4◦C, and
the solidified milk fat was separated from the skim milk/EDTA.
The skim milk/EDTA was diluted 1:5 (v:v) with loading buffer
(20 mM Tris, 50 mM NaCl, 0.1% Tween 20, pH 7.4), and loaded
onto the column (25 mm ID × 90 mm L) at 0.5 cm/min. The
column was washed with the loading buffer at 1 cm/min, and
then washed with 20 mM Tris, 200 mM NaCl, 0.1% Tween 20,
pH 7.4 at 2 cm/min. Transgenic-FIX was eluted with 20 mM
Tris, 500 mM NaCl, 0.1% Tween 20, pH 7.4 at 2 cm/min.

Transgenic-FIX purified through the Heparin Sepharose col-
umn was further purified by an anion exchange column to sep-
arate biologically active populations. Source 15Q (Amersham
Biosciences, Piscataway, NJ) was packed in a Poros HP glass
column (25 mm ID × 120 mm L). One part of the Heparin
Sepharose product was diluted with two parts of a loading buffer
(20 mM Tris, pH 9), and loaded onto the column at 1 cm/min.
The column was washed with 90% : 10% loading buffer : elution
buffer (20 mM Tris, 1 M ammonium acetate, pH 9) for 5 CV
(column volume) at 1 cm/min. Inactive tg-FIX was eluted with
54% : 46% (loading buffer : elution buffer), and active FIX with
a 100% elution buffer at 1 cm/min.

The active fraction from the anion exchange column was
purified further by reversed phase on a Supecosil LC318 HPLC
column (4.6 mm ID × 250 mm L, 5 µm particles, Supelco, St.
Louis, MO). The solvents were A: 0.1% (w/v) TFA in water and
B: 0.1% (w/v) TFA in acetonitrile. The solvent program was as
follows: 5% B for 3 CV, followed by 5–35% B over 6 min, and
then 35–65% B for 15 min, followed by 6 min of 65–95% B.
The flow rate was constant at 1 mL/min.

Monosaccharide analysis using capillary electrophoresis
The monosaccharide content of glycoproteins was analyzed us-
ing the method as described by Chen and Evangelista (1995).
Glycoprotein samples (∼5 µg) were dried in a speed-vac (Lab-
conco CentriVap, Kansas City, MO), and then mixed with
20 µL of 2.0 N TFA in a 0.5 mL Eppendorf Biopur Safe-lock
tube. The samples were heated at 100◦C for 5 h. After cooling
down to room temperature, samples were dried by speed-vac
and then redissolved with 5 µL of 25 mM carbonate (pH 9.5).
The hydrolyzed sugars were reacetylated by adding 2 µL of
acetic anhydride and incubating for 30 min at room tempera-
ture. The mixture was concentrated to dryness for derivatization
with APTS. The dried samples were mixed with 2 µL of APTS
(100 mM in 0.9 M citric acid) and 1 µL of NaBH3CN (1 M
in THF). The mixture was vortexed and then heated at 55◦C
for 2 h. The reaction mixture was diluted with 197 µL of the
borate buffer (120 mM, pH 10.2). CE was performed using
Beckman P/ACE 5000 with a laser-induced fluorescent detector
(Fullerton, CA). A 20 µm × 27 cm eCAP fused silica capillary
was used with a 120 mM borate buffer (pH 10.2). Separation
conditions were as follows: pressure injection (0.5 psi) for 2 s,
followed by 50 min electrophoresis at 25 kV. Detector settings
were 488 nm excitation and 520 nm emission, and the cathode
was at the capillary outlet. A monosaccharide standard mixture
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was also treated and derivatized with every batch analysis of gly-
coproteins using the same method. The mixture was GalNAc,
GlcNAc, Man, Glc, Xyl, Fuc, and Gal (purchased from Sigma,
St. Louis, MO). A 5-point calibration was employed (0.1, 0.5,
1, 5, and 10 nmol of each sugar). Linearity of calibration curves
was validated with criteria of correlation coefficient better than
0.99. Precision and repeatability of the assay were confirmed
by analyzing a test sample (bovine fetuin) with standards three
times. The stability of samples prepared prior to analysis was
tested analyzing bovine fetuin and standards both after prepara-
tion and 48 h later. Protein concentrations were determined by
the bicinchoninic acid (BCA) assay and used for calculation of
the monosaccharide to protein ratio (mol/mol).

Sialic acid analysis using reversed phase HPLC
Sialic acids were analyzed by reverse phase HPLC using the
method described in Anumula (1995). Glycoprotein samples
(5–10 µg in 50 µL) were mixed with 50 µL of 0.5 M
sodium bisulfate (NaHSO4) in 1.6 mL screw cap microcen-
trifuge tubes, and then hydrolyzed at 80◦C for 20 min. The
hydrolyzed samples were derivatized by adding with 100 µL of
O-phenylenediamine-2HCl, OPD (20 mg/mL in 0.25 M
NaHSO4). The tubes were heated at 80◦C for 40 min. Solvent A
consisted of 0.15% (v/v) 1-butylamine, 0.5% (v/v) phosphoric
acid, and 1% (v/v) tetrahydrofuran in water. Solvent B was 50%
of solvent A in acetonitrile. After samples were cooled down to
room temperature, 0.8 mL of solvent A was added and vortexed
vigorously. Proteins and any other particles were precipitated by
centrifugation and the supernatant (100 µL) was analyzed by
reverse phase HPLC (Supelcosil LC318 HPLC column; 4.6 mm
ID × 250 mm L, 5 µm particles, Supelco, St. Louis, MO). The
column was equilibrated with 5% B for 10 min at 1 mL/min.
The OPD-derivatized sialic acids were eluted with 13% B for
20 min and the column was washed for 10 min with 100% sol-
vent B. Waters 2695 Separations module and 2475 fluorescent
detector (Milford, MA) were used to detect OPD-derivatized
sialic acids. The detector settings were 230 nm excitation,
425 nm emission, and 40 nm bandwidth. The sialic acid standard
mixture (Neu5Ac and Neu5Gc) was analyzed each time with the
analysis of glycoproteins. Calibration curves were determined
with six different concentrations of each sialic acid standard
(100, 200, 400, 600, 800, and 1000 pmol). Linearity of calibra-
tion curves were accepted if the correlation coefficient was bet-
ter than 0.99. Reproducibility and repeatability were evaluated
by analyzing a test sample (pd-FIX, Mononine) with standards
three times. The stability of prepared samples was tested by
analyzing Mononine and standards right after preparation and
3 d after preparation. Protein concentrations were obtained from
the BCA assay.

PNGase F digestion and purification of N-glycans from
glycoproteins
Purified tg-FIX, pd-FIX (Mononine R©), r-FIX (BeneFIX R©),
porcine thyroglobulin, pig IgG, and bovine fetuin were incu-
bated with PNGase F (substrate: enzyme = 250:1 mass ratio) in
50 mM sodium phosphate at 37◦C for 24 h. Released N-glycans
were separated from proteins using C18 Extract Clean columns
(100 mg, 1.5 mL Alltech, Deerfield, IL). The cartridges were
equilibrated with 6 mL of 5% acetic acid in water, and then the

sample was applied to the column. The flow through, along with
the wash of 1 mL of 5% acetic acid, contained the N-glycans.

The N-glycan fraction was further desalted by using Carbo-
graph Extract Clean columns (150 mg, 4 mL, Alltech, Deerfield,
IL). The solvent system was as follows: A: 0.1 (w/v)% TFA in
50% acetonitrile/50% water, B: 0.1 (w/v)% TFA in 5% ace-
tonitrile/95% water. The cartridge was washed with 30% acetic
acid in water first and then HPLC grade water, and primed with
3 mL of solvent A followed by 6 mL of solvent B. The glycan
solution was applied to the column, and then washed with water
and solvent B. Glycans were eluted with 2 × 0.5 mL of solvent
A, and dried by speed-vac.

For MS analysis, the glycan samples were further purified
by a Stylus Protip 5–50 µL HILIC (Hydrophilic Interaction
Chromatography) needle (The Nest Group Inc. Southboro, MA).
The dried glycan was dissolved in 50 µL of 90% acetonitrile
and then aspirated in and out of the tip to allow maximum
binding to the media. The adsorbed sample was washed with
90% acetonitrile. Glycans were eluted with 50 µL of water.

Exoglycosidase digestions of N-glycans
The purified N-glycans were further digested with exoglycosi-
dase enzymes prior to HPLC profiling. For sialidase digestion,
the N-glycans were incubated with α(2–3) sialidase or with
α(2–3, 6) sialidase in 50 mM sodium citrate, pH 6 at 37◦C for
12 h. The N-glycans were also reacted with α-galactosidase in
50 mM sodium phosphate, pH 6.5 or with α(1–3, 4) fucosidase
in 50 mM sodium citrate, pH 5 at 37◦C for 12 h. The digested
N-glycans were centrifuged on the Millipore EZ filtration car-
tridge (Millipore, Billerica, MA) and purified from the enzymes
by collecting the filtrate.

Derivatization of N-glycan with 2-aminobenzoic acid (2-AA)
N-Glycan profiles were determined based on the HPLC method
of Anumula and Dhume (1998). Dried N-glycans were recon-
stituted with 100 µL water prior to derivatization. The derivati-
zation reagent was prepared fresh by dissolving 30 mg of 2-AA
and 20 mg of sodium cyanoborohydride in 1 mL of 4% sodium
acetate trihydrate (w/v) and 2% boric acid (w/v) in methanol.
Purified N-glycans (20 µL) were mixed with 100 µL of the
derivatization reagent in 1.5 mL screw cap centrifuge tubes,
and then reacted at 80◦C for 40 min. After cooling, the sam-
ple was diluted with 1 mL 95% (v/v) acetonitrile/water. The
excess reagent was removed by the Waters Oasis HLB car-
tridge (1 mL, Milford, MA). The cartridge was rinsed with 2
mL of 95% (v/v) acetonitrile/water. The sample was applied
to the cartridge, followed by washing with 2 mL of 95% (v/v)
acetonitrile/water. AA derivatized N-glycans were eluted by 1
mL of 20% (v/v) acetonitrile/water. The eluted N-glycans were
stored at −80◦C for NP-HPLC profiling analysis. The viability
of the AA-derivatized samples can be maintained up to 3 years
(Anumula and Dhume, 1998). The reagent and solvent are stable
for several months.

NP-HPLC profiling of 2-AA derivatized N-glycan
Profiling of AA-derivatized N-glycan was performed on an
amine bonded polymeric column (Polymer-NH2, 5 µm, 4.6 mm
ID × 250 mm L, Astec, Whippany, NJ) with a CPF10
prefilter (Vydac, Hesperia, CA). Solvent A was 2% acetic acid
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and 1% tetrahydrofuran (inhibited) in acetonitrile, and Solvent
B 5% acetic acid, 3% triethylamine and 1% tetrahydrofuran
(inhibited) in water. 100 µL of the derivatized sample was in-
jected by the autosampler. The gradient program started 30%
B for 2 min, followed by an increase to 95% B over 80 min.
The column was isocratic with 95% B for 15 min and equi-
librated with initial conditions for 15 min prior to next injec-
tion. The column temperature was 50◦C and flow rate constant
1 mL/min. The HPLC system consisted of the Waters 2695 Sep-
arations module and 2475 fluorescent detector (Milford, MA).
The detector settings were 360 nm excitation, 425 nm emission,
and 20 nm bandwidth. Fraction collect started at 20 min every
30 s for 60 min. The collected fractions were dried by speed-vac
for electrospray ionization ion trap mass spectrometry (ESI-Ion
Trap MS) analysis.

ESI-Ion trap MS analysis of N-glycans
MS analysis was performed on a 4000 Q-Trap hybrid triple
quadruple/ion trap system (Applied Biosystems, Foster City,
CA) with a MicroIon Spray II ion source. Approximately 30–
50 pmol/µL of N-glycans were prepared in 50% methanol with
10 mM ammonium hydroxide or ammonium nitrate for the
negative ion mode. The sample solution was infused using
a nanoflow Picotip emitter (uncoated SilicaTip, 360 µm OD/
15 µm ID, New Objectives, Woburn, MA) at 0.5 µL/min. The
source settings were as follows: curtain gas = 20, collision
gas = high, ion spray voltage = −2400 V, Gas 1 = 5, inter-
face heater temperature = 150◦C, and the declustering potential
was set at −90 V. Collision energy (CE) in Q2 was dependent
on the analyte. The best MS/MS spectra for the precursor ions
above m/z 1500 were generally obtained at CE approximately
−130 to −80 V; smaller precursor ions were fragmented at CE
of approximately −100 to −50 V. The scan rate was set to
1000 amu/s for enhanced MS (EMS) (ion trap mode) and en-
hanced product ion (EPI) scans (MS/MS), and 250 amu/s for
enhanced resolution (ER) scans. For EMS, the linear ion trap
(LIT) fill time was 100 ms with Q0 trapping activated. In EPI,
Q1 was set to low resolution, with Q0 trapping activated, and
an LIT fill time of up to 400 ms.

IDA (information-dependent acquisition) was also used for
data collection from underivatized N-glycan samples. Survey
scans (MS) were performed in EMS, followed by ER of the four
most intense peaks. Then MS/MS spectra were taken on these
four peaks. IDA criteria were set as follows: select 1–4 most
intense peak, include charge states 1–4 including unknown, ER
was used to confirm the charge state, and former target ions
were excluded after one occurrence for 60 s.

AA-derivatized N-glycans separated using HPLC were dried
under vacuum and reconstituted with 10 µL of 50% methanol/
0.1% ammonium hydroxide. The sample solution was infused
using a discrete Picotip emitter (GlassTip, 1.2 mm OD/0.94 mm
ID, New Objectives, Woburn, MA). For EMS scans, the
declustering potential was −30 V, the ion spray voltage was
−1700 V, the curtain gas was set at 20, the interface heater tem-
perature was set at 150◦C, the trap scan speed was set to 1000
amu/s, and the LIT fill time was 20 ms with Q0 trapping acti-
vated. In the EPI mode, collision energy was applied at −80 V
and Q1 resolution was set to low resolution, and the LIT fill
time was 200 ms with Q0 trapping.

Funding

The National Heart, Lung, and Blood Institute (R01 HL078944-
01) and the University of Nebraska.

Acknowledgements

The authors wish to acknowledge helpful discussions with Dr.
Stephan B. Abramson (LifeSci Partners LLC), and Prof. Paul
Monahan (UNC-Chapel Hill) during the preparation of this
manuscript.

Supplementary Data

Supplementary data for this article is available online at
http://glycob.oxfordjournals.org/.

Conflict of interest statement.

W.H.Velander is a co-founder and stockholder in ProGenetics
LLC, a company that is commercializing the production of re-
combinant proteins in transgenic animal milk.

Abbreviations

2-AA, 2-aminobenzoic acid; APTS, 9-aminopyrene-1,4,6 trisul-
fonate; BCA, bicinchoninic acid; ESI-Ion Trap MS, electrospray
ionization ion trap mass spectrometry; Fuc, fucose; Gal, galac-
tose; GalNAc, N-acetylgalactosamine; Glc, glucose; GlcNAc,
N-acetylglucosamine; IDA, information-dependent acquisition;
Man, mannose; Neu5Ac, N-acetylneuraminic acid; Neu5Gc, N-
glycolylneuraminic acid; NP-HPLC, normal phase high per-
formance liquid chromatography; pd-FIX, plasma-derived Fac-
tor IX; r-FIX, recombinant Factor IX; tg-FIX, transgenic pig-
derived Factor IX; Xyl, xylose.

References

Anumula KR. 1995. Rapid quantitative determination of sialic acids in gly-
coproteins by high-performance liquid chromatography with a sensitive
fluorescence detection. Anal Biochem. 230:24–30.

Anumula KR, Dhume ST. 1998. High resolution and high sensitivity methods
for oligosaccharide mapping and characterization by normal phase high
performance liquid chromatography following derivatization with highly
fluorescent anthranilic acid. Glycobiology 8(7):685–694.

Baker KN, Rendall MH, Hills AE, Hoare M, Freedman RB, James DC. 2001.
Metabolic control of recombinant protein N-glycan processing in NS0 and
CHO cells. Biotechnol Bioeng. 73:188–202.

Bharadwaj D, Harris RJ, Kisiel W, Smith KJ. 1995. Enzymatic removal of sialic
acid from human Factor IX and Factor X has no effect on their coagulant
activity. J Biol Chem. 270(12):6537–6542.

Bobrowicz P, Davidson RC, Li H, Potgieter TI, Nett JH, Hamilton SR, Stadheim
TA, Miele RG, Bobrowicz B, Mitchell T, et al. 2004. Engineering of an
artificial glycosylation pathway blocked in core oligosaccharide assembly
in the yeast Pichia pastoris: Production of complex humanized glycoproteins
with terminal galactose. Glycobiology. 14(9):757–766.

Bond M, Jankowski M, Patel H, Karnik S, Strang A, Xu B, Rouse J, Koza S,
Letwin B, Steckert J, et al. 1998. Biochemical characterization of recombi-
nant Factor IX. Semin Hematol. 35(2):11–17.

Chen FA, Evangelista RA. 1995. Analysis of mono-and oligosaccharide iso-
mers derivatized with 9-aminopyrene-1,4,6-trisulfonate by capillary elec-
trophoresis with laser-induced fluorescence. Anal Biochem. 230:273–280.

Edmunds T, Van Patten SM, Pollock J, Hanson E, Bernasconi R, Higgins
E, Manavalan P, Ziomek C, Meade H, McPherson JM, et al. 1998.

538



Analysis of the N-glycans of recombinant human Factor IX

Transgenically produced human antithrombin: Structural and func-
tional comparison to human plasma-derived antithrombin. Blood.
91(12):4561–4571.

Franzen LE, Svensson S, Larm O. 1980. Structural studies on the carbohydrate
portion of human antithrombin III. J Biol Chem. 255(11):5090–5093.

Gillis S, Furie BC, Furie B, Patel H, Huberty MC, Switzer M, Foster WB,
Scoble HA, Bond MD. 1997. Gamma-carboxyglutamic acids 36 and 40 do
not contribute to human factor IX function. Protein Science. 6:185–196.

Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz
P, Stadheim TA, Li H, Choi BK, et al. 2006. Humanization of yeast to pro-
duce complex terminally sialylated glycoproteins. Science. 313:1441–1443.

Harris RJ, van Halbeek H, Glushka J, Basa LJ, Ling VT, Smith KJ, Spell-
man MW. 1993. Identification and structural analysis of the tetrasaccha-
ride NeuAc alpha(2→6)Gal beta(1→4)GlcNAc beta(1→3)Fuc alpha1→O-
linked to serine 61 of human factor IX. Biochemistry. 32(26):6539–6547.

Harris DP, Andrews AT, Wright G, Pyle DL, Asenjo JA. 1998. The application
of aqueous two-phase systems to the purification of pharmaceutical proteins
from transgenic sheep milk. Bioseparation. 7(1):31–37.

Harvey DJ. 2005. Fragmentation of negative ions from carbohydrates: Part 3.
Fragmentation of hybrid and complex N-linked glycans. J Am Soc Mass
Spectrom. 16:647–659.

Hoermann R, Kubota K, Amir SM. 1993. Role of subunit sialic acid in hepatic
binding, plasma survival rate, and in vivo thyrotropic activity of human
chorionic gonadotropin. Thyroid. 3(1):41–47.

Irie A, Suzuki A. 1998. CMP-N-Acetylneuraminic acid hydroxylase is exclu-
sively inactive in humans. Biochem Biophys Res Commun. 248(2):330–333.

James DC, Freedman RB, Hoare M, Ogonah OW, Rooney BC, Larionov OA,
Dobrovolsky VN, Lagutin OV, Jenkins N. 1995. N-Glycosylation of recom-
binant human interferon-g produced in different animal expression systems.
Bio/Technology. 13:592–596.

Jones AJS, Papac DI, Chin EH, Keck R, Baughman SA, Lin YS, Kneer J,
Battersby JE. 2007. Selective clearance of glycoforms of a complex glyco-
protein pharmaceutical caused by terminal N-acetylglucosamine is similar
in humans and cynomolgus monkeys. Glycobiology. 17(5):529–540

Joziasse DH, Lee RT, Lee YC, Biessen EAL, Schiphorst WECM, Koele-
man CAM, Van Den Eijinden DH. 2000. α3-Galactosylated glycopro-
teins can bind to the hepatic asialoglycoprotein receptor. Eur J Biochem.
267:6501–6508.

Kim Y-G, Kim S-Y, Hur Y-M, Joo H-S, Chung J, Lee D-S, Royle L, Rudd PM,
Dwek RA, Harvey DJ, et al. 2006. The identification and characterization
of xenoantigenic nonhuman carbohydrate sequences in membrane proteins
from porcine kidney. Proteomics. 6:1133–1142.

Koles K, Van Berkel PHC, Pieper FR, Nuijens JH, Mannesse MLM, Vliegen-
thart JFG, Kamerling JP. 2004a. N- and O-glycans of recombinant hu-
man C1 inhibitor expressed in the milk of transgenic rabbits. Glycobiology.
14(1):51–64.

Koles K, Van Berkel PHCJH, Mannesse MLM, Zoetemelk R, Vliegenthart
JFG, Kamerling JP. 2004b. Influence of lactation parameters on the N-
glycosylation of recombinant human C1 inhibitor isolated from the milk of
transgenic rabbits. Glycobiology. 14(11):979–986.

Konakci KZ, Bohle B, Blumer R, Hoetzenecker W, Roth G, Moser B, Boltz-
Nitulescu G, Gorlitzer M, Klepetko W, Wolner E, et al. 2005. Alpha-Gal on
bioprostheses: Xenograft immune response in cardiac surgery. Euro J Clin
Invest. 35:17–23.

Kurachi K, Davie EW. 1982. Isolation and characterization of a cDNA coding
for human Factor IX. Proc Natl Acad Sci USA 79:6461–6464.

Leteux C, Chai W, Loveless W, Yuen C-T, Uhlin-Hansen L, Combarnous Y,
Jankovic M, Maric SC, Misulovin Z, Nussenzweig MC, et al. 2002. The
cystein-rich domain of the macrophage mannose receptor is a multispecific
lectin that recognizes chondrointin sulfated A and B and sulfated oligosac-
charides of blood group lewis and lewis types in addition to the sulfated
N-glycans of Lutropin. J Exp Med. 191(7):1117–1126.

Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P,
Choi B-K, Cook WJ, Cukan M, et al. 2006. Optimization of humanized IgGs
in glycoengineered Pichia pastoris. Nature Biotechnol. 24(2):210–215.

Lindsay M, Gil G, Cadiz A, Velander WH, Zhang C, Van Cott KE. 2004.
Purification of recombinant Factor IX produced in transgenic pig milk and
fractionation of active and inactive subpopulations. J Chromatogr A. 1026(1-
2):149–157.

Lubon H, Paleyanda RK, Velander WH, Drohan WN. 1996. Blood proteins
from transgenic animal bioreactors. Transfus Med Rev. 5(2):131–143.

Makino Y, Omichi K, Kuraya N, Ogawa H, Nishimura H, Iwanaga S, Hase S.
2000. Structural analysis of N-linked sugar chains of human blood clotting
Factor IX. J Biochem. 128:175–180.

Malykh YN, Shaw L, Schauer R. 1998. The role of CMP-N-acetylneuraminic
acid hydroxylase in determining the level of N-glycolylneuraminic acid in
porcine tissues. Glycoconjugate J. 15:885–893.

Malykh YN, Schauer R, Shaw L. 2001. N-Glycolylneuraminic acid in human
tumors. Biochimie. 83:623–634.

Miwa Y, Kobayashi T, Nagasaka T, Liu D, Yu M, Yokoyama I, Suzuki A,
Nakao A. 2004. Are N-glycolylneuraminic acid (Hanganutziu-Deicher) anti-
gens important in pig-to-human xenotransplantation? Xenotransplantation.
11:247–253.

Mizuochi T, Taniguchi T, Fujikawa K, Titani K, Kobata A. 1983. The struc-
tures of the carbohydrate moieties of bovine blood coagulation Factor IX
(Christmas Factor). J Biol Chem. 258(10):6020–6024.

Nishimura H, Kawabata S, Kisiel W, Hase S, Ikenaka T, Takao T, Shimon-
ishi Y, Iwanaga S. 1989. Identification of a disaccharide (Xyl-Glc) and
a trisaccharide(Xyl2-Glc) O-glycosidically linked to a serine residue in
the first epidermal growth factor-like domain of human Factors VII and
IX and protein Z and bovine protein Z. J Biol Chem. 264(34):20320–
20325.

Nishimura H, Takao T, Hase S, Shimonishi Y, Iwanaga S. 1992. Human factor
IX has a tetrasaccharide O-glycosidically linked to serine 61 through the
fucose residue. J Biol Chem. 267(25):17520–17525.

Oriol R, Ye Y, Koren E, Cooper DKC. 1993. Carbohydrate antigens of pig tissues
reacting with human natural antibodies as potential targets for hyperacute
vascular rejection in pig-to-man organ xenotransplantation. Transplantation.
56(6):1433–1442.

Raju TS, Briggs JB, Chamow SM, Winkler ME, Jones AJS. 2001. Glycoengi-
neering of therapeutic glycoproteins: In vitro galactosylation and sialylation
of glycoproteins with terminal N-acetylglucosamine and galactose residues.
Biochemistry. 40(30):8868–8876.

Sandrin MS, McKenzie IFC. 1994. Galα(1–3)gal, the major xenoantigen rec-
ognized in pig by human natural antibodies. Immunol Rev. 141:169–190.

Sareneva T, Mortz E, Tolo H, Roepstorff P, Julkunen I. 1996. Biosynthesis and
N-glycosylation of human interferon-γ Asn25 and Asn97 differ markedly
in how efficiently they are glycosylated and in their oligosaccharide com-
position. Eur J Biochem. 242:191–200.

Sinclair AM, Elliott S. 2005. Glycoengineering: the effect of glycosylation on
the properties of therapeutic proteins. J Pharm Sci. 94(8):1626–1635.

Spik G, Coddevilee B, Mazurier J, Bourne Y, Carnbillaut C, Montreuil J. 1994.
Primary and three-dimensional structure of lactotransferrin (lactoferrin) gly-
cans. Adv Exp Med Biol. 357:21–32.

Strecker G, Ollier-Hartmann M-P, van Halbeek H, Vliegenthart JFG, Montreuil
J, Hartmann L. 1985. Primary structure elucidation of carbohydrate chains
of normal C1-esterase inhibitor (C1-INH) by 400-MHz 1H-NMR study. CR
Acad Sci Paris. 301:571–576.

Szkudlinski MW, Thotakura R, Tropea JE, Grossmann M, Wienthraub BD.
1995. Asparagine-linked oligosaccharide structures determine clearance
and organ distribution of pituitary and recombinant thyrotropin. Endo.
136(8):3325–3333.

Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J. 1999. Exploring
the biological roles of glycans. Essentials of Glycobiology. New York: Cold
Spring Harbor Laboratory Press. p. 57–68.

Varki A. 2001. Loss of N-glycolylneuraminic acid in humans: Mechanisms, con-
sequences, and implications for Hominid evolution. Yrbk Phys Anthropol.
44:54–69.

Van Berkel PHC, Welling MM, Geerts M, van Veen HA, Ravensbergen B,
Salaheddine M, Pauwels EKJ, Pieper F, Nuijens JH, Nibbering PH. 2002.
Large scale production of recombinant human lactoferrin in the milk of
transgenic cows. Nature Biotechnol. 20:484–487.

Van Cott KE, Butler SP, Russel CG, Subbramanian A, Lubon H, Gwazdauskas
FC, Knight J, Drohan WN, Velander WH. 1999. Transgenic pigs as bioreac-
tors: A comparison of gamma-carboxylation of glutamic acid in recombinant
human protein C and Factor IX by the mammary gland. Biomol Engineering.
15:155–160.

Wrotnowski C. 2001. Neose targets complex carbohydrate products. Genetic
Eng. News. 21:6.

Yang L, Manithody C, Rezaie AR. 2002. Localization of the heparin binding
exosite of factor IXa. J Biol Chem. 277(52):50756–50760.

Zhang Y, Jiang H, Go EP, Desaire H. 2006. Distinguishing phosphorylation
and sulfation in carbohydrates and glycoproteins using ion-pairing and mass
spectrometry. J Am Soc Mass Spectrom. 17:1282–1288.

Zhu A, Hurst R. 2002. Anti-N-glycolyneuraminic acid antibodies identified in
healthy human serum. Xenotransplantation. 9:376–381.

Zopf D, Vergis G. 2002. Glycosylation: A critical issue in protein development
and manufacturing. Pharmaceutical Visions. Spring, 10–14.

539


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2008

	Analysis of the N-glycans of recombinant human Factor IX purified from transgenic pig milk
	Geun-Cheol Gil
	William H. Velander
	Kevin E. Van Cott

	cwn035.dvi

