2010

B(C₆F₅)₃-promoted tandem silylation and intramolecular hydrosilylation: diastereoselective synthesis of oxasilinanes and oxasilepanes

Roman Shchepin
*University of Nebraska–Lincoln*

Chunping Xu
*University of Nebraska-Lincoln*

Patrick Dussault
*University of Nebraska-Lincoln, pdussault1@unl.edu*

---

Follow this and additional works at: [http://digitalcommons.unl.edu/chemistrydussault](http://digitalcommons.unl.edu/chemistrydussault)

---

[http://digitalcommons.unl.edu/chemistrydussault/31](http://digitalcommons.unl.edu/chemistrydussault/31)

---

This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Patrick Dussault Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
B(C₆F₅)₃-promoted tandem silylation and intramolecular hydrosilylation: diastereoselective synthesis of oxasilinanes and oxasilepanes

Roman Shchepin†, Chunping Xu†, and Patrick Dussault*
Department of Chemistry, University of Nebraska–Lincoln, Lincoln, NE 68588-0304

Abstract

B(C₆F₅)₃ promotes regio- and stereoselective cyclizations of unsaturated alkoxysilanes to generate oxasilinanes and oxasilepanes. The same products are available directly from alkenols via tandem silylation and hydrosilylation.

Intramolecular hydrosilylation of alkenes is an important transformation in organic synthesis. Initially investigated for unsaturated silanes, the methodology is now often applied to unsaturated alkoxy- and aminosilanes, where stereospecific oxidative cleavage of the newly formed C-Si bond enables stereodefined synthesis of diols and aminoalcohols. The majority of examples involve metal-catalyzed 5-endo or 5-exo ring closures, although six-membered cyclizations have been reported. We now report regio- and stereoselective formation of oxasilinanes and oxasilepanes via formation and cyclization of unsaturated alkoxysilanes in the presence of a nonmetal catalyst.

In the course of investigations into the influence of Lewis acids on the ozonolysis of unsaturated silanes, we found that addition of B(C₆F₅)₃ to a solution of unsaturated alkoxysilane 1-Pr resulted in regioselective formation of oxasilane 2-Pr with high 3,5-trans diastereoselectivity (Table 1). The cyclization proceeded efficiently at −78 °C or RT and in the presence of either stoichiometric or catalytic B(C₆F₅)₃. Cyclization was also observed for the dimethylsilyl ether (not shown), but the hydrolytic instability of this class of reactants led us to abandon this thread following the discovery of the tandem cyclizations discussed later.

Supporting Information Available. Details regarding preparation and characterization of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.
The cyclization, apparently the first intramolecular example of a known intermolecular hydrodysilylation,10 was investigated further using alkoxysilanes prepared as illustrated in Scheme 1. 6-endo cyclization onto an α-substituted styrene (3-Pr) proceeded slowly but in high yield and with high trans selectivity (Scheme 2). Cyclization onto a cyclobutene (5-Pr) proceeded much more slowly through a 6-endo pathway to furnish a modest yield of the cis-fused adducts (6-Pr) as a 5:1 mixture of sidechain epimers. A bishomoallyl substrate, 7-Pr, reacted very slowly through a 6-exo pathway to furnish a trans,3,6-disubstituted-2-oxa-1-silinane (8-Pr).

B(C₆F₃)₃ also catalyzes the reductive silylation of alcohols,11 and we became intrigued by the possibility of tandem silylation/hydrodysilylation (Table 2). B(C₆F₃)₃-promoted reaction of alkenol 1 with stoichiometric Et₂SiH₂ or Ph₂SiH₂ generated oxasilinanes 2-Et or 2-Ph with very similar regio- and stereoselection as observed in the stepwise cyclizations. Although alcohols 3 and 5 decomposed under the tandem conditions, cyclohexenol 9 reacted to selectively furnish the 3,5-trans diastereomer of cis-fused octahydrobenzooxasilinanes 10-Et and 10-Ph; the lower yield for the Et₂SiH₂ reaction is likely related to undesired reductive deoxygenations (vida infra). Alkenol 11, which generates an intermediate siloxane capable of undergoing cyclization through electronically comparable 5-exo or 6-endo pathways, reacted only through the latter. Bishomoallyl alcohol 13 underwent selective reaction through a 7-endo pathway to furnish oxasilene 14-Et as a 62:38 cis/trans mixture.

Reactions employing Et₂SiH₂ often furnished a significant amount of byproducts appearing to result from alcohol deoxygenation.12 For example, reaction of benzylic alcohol 15 produced oxasilane 16-Et along with a byproduct identified as a disiloxane on the basis of mass spectrometry and oxidative desilylation (Scheme 3).13,14 Application of the one-pot conditions to allylic alcohol 17 resulted only in rapid formation of the diethyl silyl ether. In general, reactions employing Ph₂SiH₂ proceeded more slowly but generated fewer byproducts; this can be seen, for example in the formation of 10-Et vs. 10-Ph (Table 2). The exception was cyclobutene 5, where decomposition was observed for either silane.

Oxidative desilylation of the hindered siloxanes was initially attempted under Tamao conditions (KF, KHCO₃, q. H₂O₂, MeOH/THF).5 However, as illustrated in Scheme 4, the oxidations were found to proceed in higher yield using a procedure developed by Woerpel (t-BuOOH, CsOH•H₂O, n-Bu₄NF, DMF).5 The stereochemistry of diols 19 and 21 was determined by comparison with literature reports, establishing (14-Et) or confirming (16-Et) the stereochemistry of cyclizations.

The cyclizations, clearly related to intermolecular B(C₆F₃)₃-mediated hydrodysilylations,10 and potentially related to cyclizations of unsaturated silanes in the presence of triphenylmethyl cation,17 almost certainly involve electrophilic attack on an alkene by a silylum-like species derived from interaction of B(C₆F₃)₃ with the Si-H (Scheme 5).18,19 Reduction of the resulting carbocation by the hydridoboron species would furnish the cyclized product and regenerate the Lewis acid catalyst. The selective formation of 3,5-trans-disubstituted oxasilinanes can be rationalized by hyperconjugation of the newly formed C-Si bond with the carbocation,20 with the resulting conformation dictating approach of the hydride. Analogous stereoselectivity has been observed in formation of siloxanes through hydrogen atom deliver to carbon-centered radicals.21

Although 5-exo cyclizations are well-established for Pt-or Rh-catalyzed hydrodysilylations,1-3 we observed selective 6-endo vs. 5-exo cyclization with a substrate where either mode would proceed via a secondary carbocation (Table 2, substrate 11). We also observed very different rates for 6-exo and 6-endo cyclizations involving electronically similar carboxilation intermediates (7-Pr vs. 1-Pr). These results point to the importance of interactions between
the alkene and the developing silylium-like species. The cis selectivity observed for six-membered ring annelations, which complements results from metal-catalyzed cyclizations, 1:3:22 presumably reflects stereoelectronic requirements for trapping of the β-silyl cations. The stereoselectivity of sidechain introduction results from cyclization through the low-energy conformer of a chair-like transition state (eq 1).

Several lines of evidence indicate that the tandem reactions and stepwise processes involve a common hydrosilylation step. Both processes proceed with nearly identical regio- and diastereoselectivity. Furthermore, dialkylsilyl ethers are observed (TLC) as intermediates in some of the slower reactions, and become the only product when cyclization is disfavored, as for allylic alcohol (Scheme 3). Finally, a diene substrate reacts selectively across the homoaallyl alcohol (eq 2).

The formation of deoxygenated byproducts is observed mainly in the tandem reactions. The chemoselective deoxygenation of unhindered alcohols by trialkylsilane and B(C₆F₅)₃ has been postulated to involve attack of a silylium ate complex on intermediate silyl ethers, suggesting the deoxygenations observed here result from intermolecular reductions directly competing with cyclization.

Overall, the transformation provides a new method for the regio- and stereoselective synthesis of cyclic siloxanes and derived diols. Given that B(C₆F₅)₃ has been reported to catalyze the hydrosilylation of ketones and aldehydes, it is likely the method could be extended to allow the synthesis of oxasilacycles from unsaturated aldehydes and ketones.

**Supplementary Material**

Refer to Web version on PubMed Central for supplementary material.

**Acknowledgments**

Research support and funding for NMR instrumentation was provided by NSF (CHE-0749916, MRI 0079750, and CHE 0091975). Research was conducted in facilities remodeled with NIH support (RR016544-01). We are grateful for advice from Prof. V. Gevorgyan (Univ. of Illinois at Chicago) and for advice or technical support from S. DiMagno, J. Dumais, J. Belot, C. Schwartz, and S. Basaga (Univ. of Nebraska-Lincoln).

Org Lett. Author manuscript; available in PMC 2011 November 5.
References


8. Stereochemical assignments are based upon $^3$J$_H$ couplings, nOe correlations, and a literature correlation for diol 21.


21. Cai Y, Roberts BP. J Chem Soc, Perkin Trans 1. 1998:467. Ibid., 3653. In contrast to the results described in this work, we observed a single predominant conformation of oxasilinanes.


Scheme 1.
Preparation of alkoxy silanes

*a*Inseparable 3:1 mixture with 1-chloro-1-alkycyclobutane
Scheme 2.
Additional cyclizations
Scheme 3.
Byproduct formation

\[ \text{Et}_2\text{SiH}_2 (1.1 \text{ equiv}) \]
\[ \text{B(C}_6\text{F}_5)_3^a \]
\[ \text{Tol, 0 }^\circ\text{C} \]

\[
\begin{align*}
\text{OH} & \quad \text{15} \\
\text{Ph} & \quad \text{16-Et} \\
\text{O-Si} & \quad \text{Et} \\
\text{Et} & \quad \text{Et} \\
\text{Me} & \quad \text{(51%)} \\
\end{align*}
\]

\[
\begin{align*}
\text{OH} & \quad \text{17} \\
\text{Hex} & \quad \text{18-Et} \\
\text{O-SiEt}_2\text{H} & \quad \text{Hex} \\
\end{align*}
\]

\[ \text{Et}_2\text{SiH}_2 (1.1 \text{ equiv}) \]
\[ \text{B(C}_6\text{F}_5)_3^b \]
\[ \text{Tol, 0 }^\circ\text{C} \]

\[ 0.6 \text{ equivalents.} \]
\[ 0.25 \text{ equivalents.} \]
Scheme 4.
Oxidative desilylation
Scheme 5.
Proposed mechanism
Table 1

Cyclization of 1-Pr

<table>
<thead>
<tr>
<th>BAR3 (equiv)</th>
<th>temp (°C)</th>
<th>t (h)</th>
<th>yield (%)</th>
<th>trans %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>−78</td>
<td>&lt; 0.1</td>
<td>82</td>
<td>nd</td>
</tr>
<tr>
<td>0.4</td>
<td>rt</td>
<td>&lt; 0.1</td>
<td>88</td>
<td>nd</td>
</tr>
<tr>
<td>0.1</td>
<td>−78</td>
<td>&lt; 0.1</td>
<td>93</td>
<td>nd</td>
</tr>
<tr>
<td>0.07</td>
<td>rt</td>
<td>&lt; 0.1</td>
<td>84</td>
<td>94c</td>
</tr>
</tbody>
</table>

Prepared as illustrated in Scheme 1.

Final temperature; reactants mixed at −78 °C.

5% of the cis-diastereomer isolated.
### Table 2

Tandem silylation/hydrosilylation

<table>
<thead>
<tr>
<th>subs</th>
<th>n</th>
<th>R₁, R₂</th>
<th>X</th>
<th>t (h)</th>
<th>prod</th>
<th>yield</th>
<th>trans %&lt;sup&gt;a&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Me,H</td>
<td>Et</td>
<td>0.1</td>
<td>2-Et</td>
<td>47 %</td>
<td>&gt;90</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Me,H</td>
<td>Ph</td>
<td>0.15</td>
<td>2-Ph</td>
<td>80 %</td>
<td>&gt;90</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Ph,H</td>
<td>Ph</td>
<td>-</td>
<td>-</td>
<td></td>
<td>decomp</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>(CH₂)₂</td>
<td>Ph</td>
<td>-</td>
<td>-</td>
<td></td>
<td>decomp</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>(CH₂)₄</td>
<td>Et</td>
<td>0.5</td>
<td>10-Et</td>
<td>39 %</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>(CH₂)₄</td>
<td>Ph</td>
<td>1</td>
<td>10-Ph</td>
<td>73 %</td>
<td>84</td>
</tr>
<tr>
<td>11&lt;sup&gt;c&lt;/sup&gt;</td>
<td>1</td>
<td>H,Me</td>
<td>Et</td>
<td>0.1</td>
<td>12-Et</td>
<td>16 %</td>
<td>60</td>
</tr>
<tr>
<td>11&lt;sup&gt;c&lt;/sup&gt;</td>
<td>1</td>
<td>H,Me</td>
<td>Ph</td>
<td>1</td>
<td>12-Ph</td>
<td>24 %</td>
<td>~1:1</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>H,Me</td>
<td>Et</td>
<td>0.1</td>
<td>14-Et</td>
<td>73 %</td>
<td>38</td>
</tr>
</tbody>
</table>

<sup>a</sup>3,5 stereochemistry;  
<sup>b</sup> cis ring fusion; see Scheme 3 for structure of 10-Ph.  
<sup>c</sup> 3:3:1 mixture of E/Z isomers.
B\((\text{C}_6\text{F}_5)_3\)-promoted tandem silylation and intramolecular hydrosilylation: diastereoselective synthesis of oxasilinanes and oxasilepanes

OL 2010-018757

Roman Shchepin, Chunping Xu, and Patrick Dussault*
pdussault1@unl.edu

Supporting Information - Experimental Procedures

General Experimental Procedures: 2

Alcohol precursors 2
1. 2-Methyldec-1-en-4-ol (1): 2
2. 2-Phenyldec-1-en-4-ol (3): 3
3. 1-Cyclobutenyloctan-2-ol (5): 3
4. 2-Methyl-2-dodecen-6-ol (7): 3
5. 1-Cyclohexenyloctan-2-ol (9): 3
7. 2-Methylundec-1-en-5-ol (13): 4
8. 3-Methyl-1-phenylbut-3-en-1-ol (15): 4
9. 2-Methylnon-1-en-3-ol (17): 4

Diisopropylsilyl ethers 4
1. Diisopropyl-(2-methyldec-1-en-4-oxy)silane (1-Pr): 4
2. Diisopropyl-(2-phenyldec-1-en-4-oxy) silane (3-Pr): 4
3. Diisopropyl-(1-cyclobutenyloctyl-2-oxy)silane (5-Pr): 5
4. Diisopropyl-(2-methyl-2-dodecen-6-oxy)silane (7-Pr): 5

B\((\text{C}_6\text{F}_5)_3\)-catalyzed cyclizations of diisopropylsilyl ethers (illustrated for 1-Pr) 5
1. (trans)-1,1-Diisopropyl-3-hexyl-5-methyl-2,1-oxasilinane (trans-2-Pr) and cis-2-Pr 6
2. (trans)-1,1-Diisopropyl-3-hexyl-5-phenyl-2,1-oxasilinane (trans-4-Pr): 7
3. (3α,5α,6α), (3β,5α,6α)-1,1-Diisopropyl-3-hexyl-2-oxa-1-sila[4.2.0] bicyclooctane (6-Pr): 7
4. (trans)-1,1-Diisopropyl-3-hexyl-6-isopropyl-2,1-oxasilinane (8-Pr): 8

B\((\text{C}_6\text{F}_5)_3\)-catalyzed tandem silylation/hydrosilylation (general procedure) 8
1. 1,1-Diethyl-3-hexyl-5-methyl-2,1-oxasilinane (2-Et): 9
2. 1,1-Diphenyl-3-hexyl-5-methyl-2,1-oxasilinane (2-Ph): 9
3. (3β,5α,6α) and (3α,5α,6α)-2,1-Benzoxasilin, octahydro-1,1-diethyl-3-hexyl (10-Et): 9
4. (3β,5α,6α)-2,1-Benzoxasilin, octahydro, 1,1-diphenyl-3-hexyl ((3β,5α,6α)-10-Ph) and (3α, 5α,6α)-2,1-Benzoxasilin, octahydro, 1,1-diphenyl-3-hexyl ((3α, 5α,6α)-10-Ph): 10
5. (3,6-trans) and (3,6-cis)-1,1-Diethyl-3-hexyl-6-methyl-2,1-oxasilinane (trans-12-Et and (cis)-12-Et): 11
6. (3,6-trans) and (3,6-cis)-1,1-Diphenyl-3-hexyl-6-methyl-2,1-oxasilinane (trans-12-Ph and (cis)-12-Ph): 12
7. (3,6-trans) and (3,6-cis)- 1,1-Diethyl-3-hexyl-6-methyl-2-oxa-1-silepane (3,6-trans) and (3,6-cis): 13
\[(trans-\text{ and }cis-14-Et)\].
\[(3,5-trans)-1,1-Diethyl-5-methyl-3-phenyl-2,1-oxasilinane (16-Et)\]:
Diethyl (2-methylnon-1-en-3-oxy)silane (18-Et):
\[
\text{Oxidative Desilylation:}
\]
(Tamao oxidation) 2-Methylundecane-1,5-diol (19):
(Woerpel oxidation) 2-(2-Hydroxyoctyl)-cyclohexanol (20):
3-Methyl-1-phenyl-1,4-butanediol (21)

References 15

General Experimental Procedures:
Tetrahydrofuran (THF) was distilled from Na/Ph₂CO under N₂. Dichloromethane (CH₂Cl₂) was distilled from CaH₂. Stock solutions of B(C₆H₅)₃ were prepared either by: A) Transferring a freshly opened commercial sample (typically 1.0 g) into a oven-dried flask under N₂ followed by dissolution (0.2 M) in freshly distilled (Na/Ph₂CO) toluene; or B) Working inside a glove box under inert atmosphere, dividing a 1.0 g commercial sample of B(C₆F₅)₃ into individual vials (ca. 200 mg/vial). The vials were removed from the glove box to prepare stock solutions in toluene (0.2 M) that were used immediately and then discarded. i B(C₆H₅)₃ dissolves completely in toluene at 0.2M; the solubility of the hydrate is significantly lower. All other reagents and solvents were used as purchased unless otherwise noted. Thin layer chromatography (TLC) was performed on 0.25 mm hard-layer silica G plates; developed plates were visualized with a handheld UV lamp and/or by staining with one of the following: 1% ceric sulfate and 10% ammonium molybdate in 10% H₂SO₄ (general stain, after charring) or 1% aq. KMnO₄ (for alkenes). Analytical and preparative HPLC were performed on a 4.6 mm x 25 cm Si column (5 µm) or 21.4 mm x 25 cm Si column (8 µm); both employed RI detection. NMR spectra were recorded at 400 MHz (¹H) or 100 MHz (¹³C) in CDCl₃ unless otherwise indicated. ¹H NMR signals are reported as: [chemical shift (multiplicity, integration, J couplings in Hz, other information). Infrared spectra were recorded as neat films (ZnSe crystal or NaCl plates) with selected absorbances reported in wave numbers (cm⁻¹). High resolution mass spectrometry was conducted at the Nebraska Center for Mass Spectrometry.

Preparation of Alcohols:
2-Methyldec-1-en-4-ol (1): Into a 0 °C solution of heptanal (3.5 mL, 25 mmol) in THF (10 mL) was added dropwise a solution of 2-methylallyl magnesium chloride in THF (50 mL, nominally 0.5 M). After 20 min, the reaction was quenched with water (20 mL), acidified with conc. HCl (~...
3 mL) and extracted with 10% EA/Hex (250 mL x 2). The combined extracts were sequentially washed with 10% aq. HCl and water. A standard workup and purification (5% EA/Hex) furnished 3.53 g (82%) of a compound with spectral properties matching literature reports.ii

2-Phenyldec-1-en-4-ol (3)iii was prepared by ene reaction of heptanal with α-methylstrotyrene by the procedure of Snider:iv 1H δ 7.44-7.41 (2H); 7.38-7.33 (2H); 7.32-7.27 (2H); 5.43 (d, 1H, 1.6); 5.18 (bs, 1H); 3.66 (m, 1H), 2.84 (ddd, 1H, 14, 4, 1; AB with 2.67), 2.67 (dd, 1H, 14, 9); 1.69 (d, 1H, 3); 1.4-1.5 (3H), 1.2-1.3 (6 H); 0.88 (t, 3H, 6.5); 13C δ 145.5, 140.5, 128.4, 127.7, 126.2, 115.2, 69.4, 43.8, 37.0, 31.8, 29.3, 25.6, 22.6, 14.1; IR 3368 (s, b); 2927, 2856, 1626, 1444, 898, 705 cm⁻¹; HRFAB MS calc. For C16H24OLi (M+Li)⁺: 239.1984; found 239.1984.

1-Cyclobutenyloctan-2-ol (5) was prepared from methylenecyclobutane (1.0 g, 15 mmol) and heptanal (2.7 mL, 1.3 equiv) by a similar procedure as for 3 to afford 0.99 g of alcohol 5 as an inseparable 3:1 mixture with 1-chlorocyclobutyl-2-octanol. The spectra of the product (Rf = 0.3, 10% EA) matched a literature report.v

2-Methyl-2-dodecen-6-ol (7) was prepared (1.39 g, 71%) by reaction of the Grignard reagent derived from 5-bromo-2-methyl-2-pentene (2.0 mL, 15 mmmol) with a slight exces of heptanal: Rf=0.4 (5% EA/hex); 1H δ 5.14 (bt, 1H, 6); 3.60 (m, 1H); 2.09 (m, 2H); 1.69 (bs, 3H); 1.63 (bs, 3H); 1.55-1.38 (6H); 1.35-1.23 (6H); 0.89 (t, 3H, 7); 13C δ 132.0; 124.2; 71.8; 37.5, 37.3, 31.8, 29.4, 25.7, 25.6, 24.4, 22.6, 17.6, 14.1; IR: 3377 (b, s, OH); 3328, 2924, 2855, 1454, 1377 cm⁻¹; 2928, 2864, 2092, 1463, 1379, 1056, 1001, 837 cm⁻¹; HRFAB calculated for C13H25O (M-H)⁻: 197.1905; found 197.1912 (-5.4 ppm); M⁺ also observed at 196.1813.

1-Cyclohexenyloctan-2-ol (9) was prepared from the reaction of heptanal (1.12 mL, 8.0 mmol), methylenecyclohexane (1.12 mL, 10 mol) and Me₂AlCl (12 mL, nominally 1 M solution in hexanes) by a similar procedure as for 3. The product (1.23 g, 73%) displayed spectra consistent with literature reports.vi Rf =0.4 (10% EA/Hex

(E,Z)-Undec-2-en-5-ol (11) was prepared (1.17 g, 86%) from prop-1-enylmagnesium bromide (24 mL, nominally 0.5M in THF), epoxyoctane (1.2 mL, 8 mmol) and CuI(0.152g, 0.8 mmol).
The product was a 3.3:1 mixture of E- and Z-isomers based upon integration of the $^1$H signals at $\delta$ 1.64 and 1.69 ppm. Spectral properties matched literature reports. \textsuperscript{vii} R$_f$ =0.4 (10% EA/Hex).

2-Methylundec-1-en-5-ol (13) \textsuperscript{viii} was prepared (1.45 g, 98%) from 2-methylallyl magnesium chloride (24 mL, nominally 0.5M in THF), 2-hexyloxirane (1.2 mL, 8 mmol) and CuI(0.152g, 0.8 mmol) by a similar manner as 15. R$_f$ =0.3 (10% EA/Hex).

3-Methyl-1-phenylbut-3-en-1-ol (15) was prepared (1.30 g, quant.) from reaction of benzaldehyde (0.85 mL, 8.0 mmol) and 2-methylallyl magnesium chloride (20.8 mL, nominally 0.5M in THF) by a procedure similar to that applied for 1. Spectral properties matched a literature report. \textsuperscript{ix} R$_f$ =0.3 (10% EA/Hex)

2-Methylnon-1-en-3-ol (17)\textsuperscript{x} was prepared (1.05 g, 84%) from heptanal (1.12 mL, 8.00 mmol) and allylmagnesium chloride (20.8 mL, nominally 0.5M solution in THF) by a similar procedure as used for 1. R$_f$ =0.2 (10% EA/Hex). Spectral properties matched a literature report.

Alkoxy silanes:

Diisopropyl(2-methyldec-1-en-4-oxy)silane (1-Pr)

Into a THF (15 mL) solution of 2-methyldec-1-en-4-ol (0.724 g, 4.30 mmol) was added sodium bis(trimethylsilyl)amide (4.3 mL, nominally 2M) followed by SiClH(i-Pr)$_2$ (1.1 mL). After 4 h the reaction was quenched with brine and extracted with hexane (2 x 200 mL). The combined organic extracts were concentrated \textit{in vacuo} and the residue was purified by flash chromatography in hexane to afford 1.09 g (89%) of the silyl ether: R$_f$ =0.4 (hexane); $^1$H (600 MHz) $\delta$ 4.78 (app. s, 1H), 4.78(app. s, 1H), 4.21(s, 1H), 3.85(p, 1H, 5.7), 2.27(dd, 6 and 13.2), 2.17(dd, 1H, 7.2 and 13.2), 1.75(s, 3H), 1.43 (m, 10H), 1.05(m, 12H), 0.95(m, 2H), 0.90(t, 3H, 6.0); $^{13}$C (150 MHz) $\delta$ 142.9, 112.8, 73.0, 45.7, 36.7, 31.9, 29.4, 25.2, 22.9, 22.6, 17.60, 17.57, 17.46, 14.1, 12.73, 12.71; IR 2927, 2862, 2097, 1642, 1463, 1377 cm$^{-1}$. HRMS (CI) calc. for C$_{17}$H$_{35}$OSi (M-H)$^+$: 283.2457; found 283.2469 (4.2 ppm); M$^+$ (284.2543) observed in lower abundance.
**Diisopropyl-(2-phenyldec-1-en-4-oxy)silane (3-Pr)** was prepared (0.435 g, 70%) from alcohol 3 (0.428 g, 1.8 mmol) by a procedure similar to that applied to the synthesis of 1-Pr: \( R_f = 0.9 \) (5% EA/hex); \(^1\)H \( \delta \) 7.42 (bd, 2H, 8), 7.34 (bt, 2H, 8), 7.72 (app tt, 1H, 8, 1); 5.32 (d, 1H, 1, 6), 5.13 (bs, 1H); 4.18 (bt, 1H, 1, 6), 3.76 (m, 1H), 2.81 (ddd, 1H, 14, 5.8, 1); 2.64 (ddd, 1H, 1, 14, 6.4, 1); 1.55-1.36 (3H), 1.33-1.18 (7H); 1.04-0.98 (12H, overlapping Me doublets); 0.98 -0.91 (m, 2H); 0.88 (t, 3H, 6, 4); \(^13\)C \( \delta \) 145.7, 141.2, 128.2, 127.3, 126.3, 114.9, 72.9, 43.2, 36.5, 31.8, 29.4, 24.9, 22.6, 17.54, 17.48, 14.41, 14.07, 12.64, 12.61; IR: 3031, 2954, 2865, 3095, 1462, 1254 cm\(^{-1}\); HRFAB Calc. For C\(_{22}\)H\(_{37}\)OSi (M-H): 345.2613; found 345.2605 (2.5 ppm).

**Diisopropyl(1-cyclobutenyloctyl-2-oxy)silane (5-Pr)** was prepared in 55% yield (485 mg) from 5 (546 mg, estimated 2.25 mmol based upon purity) by a similar procedure as for 1-Pr: \( R_f = 0.3 \) (hexane); \(^1\)H \( \delta \) 5.72 (s, 1H); 4.20 (s, 1H); 3.81 (apparent pentet, 1H, 5-6); 2.45 (m, 2H), 2.35 (bs, 2H); 2.22 (m, 2H); 1.5-1.23 (10H); 1.07-1.02 (12H, isopropyl groups); 0.895 (t, 3H, 6.5); \(^13\)C \( \delta \) 147.3, 129,3, 73.1, 38.8, 36.9, 32.0, 31.9, 29.4, 27.0, 25.3, 22.6, 17.6, 17.5, 17.4, 14.1, 12.7; IR 2926, 2864, 2089, 1462, 1055, 837 cm\(^{-1}\); HRFAB Calc. For C\(_{18}\)H\(_{35}\)OSi (M-H): 295.2457; found 295.2452 (1.7 ppm).

**Diisopropyl-(2-methyl-2-dodecen-6-oxy)silane (7-Pr)** was prepared (0.707g, 73%) from alcohol 7 (617 mg, 3.1 mmol) by a similar procedure as for 1-Pr: \( R_f = 0.3 \) (hexane); \(^1\)H \( \delta \) 5.12 (bt, 1H, 6-7), 4.21 (s, 1H), 3.69 (pentet, 1H, 6.4); 2.08 & 1.98 (ABXY, 2H), 1.69 (s, 3H); 1.62 (s, 3H); 1.53-1.45 (4H), 1.35-1.25 (8H), 1.08-1.02 (12H, isopropyl), 1.02-0.95 (2H); 0.90 (t, 3H, 6); \(^13\)C \( \delta \) 131.4, 124.5, 74.3, 36.8, 36.9, 31.9, 29.5, 25.7, 25.3, 24.0, 22.6, 17.64, 17.59, 17.5, 14.1, 12.7; IR 2929, 2864, 2088, 1463, 1377, 1063, 1002, 841, 800 cm\(^{-1}\); HRFAB Calc. For C\(_{19}\)H\(_{39}\)OSi (M-H): 311.2770; found 311.2773 (1.0 ppm).

**General Procedure for intramolecular hydrosilylation** (illustrated for 1-Pr). To an anhydrous toluene solution (6 mL) of 1-Pr (0.285g, 1.00 mmol), either at -78, 0 °C, or rt, was added B(C\(_6\)F\(_5\))\(_3\). The amount of catalyst ranged from 0.1 to 1.0 eq, as a 0.2M solution in toluene. After the reaction was complete (TLC), the reaction was quenched with sat. aq. NaHCO\(_3\) (5 mL) and the resulting mixture extracted with hexane (2 X 100 mL). The combined organic layers were concentrated in vacuo and the residue was purified by flash chromatography (hexane) to afford...
trans-2-Pr (236 mg, 83%) followed by a small amount of cis-2-Pr (18 mg, 6%). Analysis of the crude reaction mixtures by GC/MS generally found 91-95% of the trans isomer; the minor (syn) byproduct eluted first on GC. Both diasteromers displayed a predominant fragment at m/z 241, [M-iPr]. The stereochemistry was assigned based upon the relative strength of nOe transfer in the trans and cis isomers (see Scheme below), and by the magnitude of the axial/axial and axial/equatorial couplings for $^3J_{5,6}$ couplings. The stereochemical assignment was supported by a correlation of the $^3J_H$ of the minor (cis) byproduct with a literature report for similar molecules. 

(3,5-trans)-1,1-Diisopropyl-3-hexyl-5-methyl-2,1-oxasilinane (trans-2-Pr)

Rf = 0.2 (hexane); $^1$H δ 3.99(m, 1H), 1.96(m, 1H), 1.57(m, 1H), 1.38(m 11H), 0.99(m, 12H), 0.95(m, 4H), 0.88[m, 4H, includes 0.89(t, 3H, 6.8), and peak at 0.90], 0.80(dd, 1H, J1=1.6, J2=4.8, J3=14.8), 0.28(dd, 1H, 10.4 and 14.8); $^{13}$C δ 72.0, 41.3, 37.5, 31.9, 29.4, 26.3, 26.1, 23.8, 22.6, 17.28, 17.27; 17.19, 17.16, 15.1, 14.1, 13.7, 13.1; IR (2942, 2931, 2864, 1464 cm$^{-1}$); HRFABMS (3-NBA) calc. for C$_{14}$H$_{29}$OSi [M-(i-Pr)$^+$]: 241.1988; found 241.1992 (1.7 ppm). Diaxial couplings and nOe excitations are summarized in the accompanying graphic.

(3,5-cis)-1,1-Diisopropyl-3-hexyl-5-methyl-2,1-oxasilinane (cis-2-Pr):

Rf = 0.4 (hexane); $^1$H δ 3.76(m, 1H), 1.77(m, 1H), 1.51(d of q., 1H, 2 and 13.6), 1.38(m 11H), 1.04-0.94 [m, 15H, peak at 1.00 (d, 6.5) visible nOe upon irradiation at 0.21], 0.89[m, 5H,
includes 0.89(t, 3H, 6.8), and other peaks], 0.72(ddd, 1H, J

\textsubscript{1} =2.4, J\textsubscript{2}=4.0, J\textsubscript{3}=14.4), 0.21(dd, 1H, 12.8 and 14.4); 13\textsuperscript{C} \delta 74.6, 44.3, 39.1, 31.9, 29.7, 29.4, 27.5, 25.3, 22.7, 17.71, 17.68, 17.14, 17.10, 15.7, 14.1, 13.1, 12.3; IR identical to \textit{anti-2-Pr}. Diaxial couplings and nOe excitations are summarized in the accompanying graphic.

The \textsuperscript{1}H NMR spectra of \textit{cis}-3,5-disubstituted 2,1-oxasilacyclohexanes display H\textsubscript{3} (axial) as a ddd between 3.45 and 3.7 ppm and with individual coupling constants of up to 11 Hz.\textsuperscript{11} The same work found the \textsuperscript{2}J coupling for H\textsubscript{6}/H\textsubscript{6}' to be 14 Hz, and the axial/axial and equatorial/axial \textsuperscript{3}J \textsubscript{5-6} couplings to be 13.3 and 3.5 Hz, respectively. These values agree closely with our observations for \textit{cis-2-Pr}.

(3,5\textsuperscript{-trans})- 1,1-Diisopropyl-3-hexyl-5-phenyl-2,1-oxasilinane (\textit{trans-4-Pr}):

By a procedure similar to that described for \textit{1-Pr}, cyclization of silane \textit{3-Pr} (0.299 g, 0.862 mmol) furnished 0.257 g (86% yield) of \textit{4-Pr}: R\textsubscript{f} = 0.3 (5% EA/hex); \textsuperscript{1}H \delta 7.34 (t, 2H, 7.5); 7.27 (bd, 2H, 7.5); 7.22 (bd, 1H, 7.5); 4.16 (m, 1H); 3.05 (bt, 1H, 12.5), 1.96 (near dt, 12, 6; on same CH\textsubscript{2} as 1.75; 1.77 (m, 1H, on same CH\textsubscript{2} as 1.55); 1.75 (m, 1H, on same CH\textsubscript{2} as 1.96); 1.55 (m, 1H, on same CH\textsubscript{2} as 1.78), 1.5 (m, 1H, on same CH\textsubscript{2} as peak buried at 1.32), 1.4-1.26 (7H, includes portion of CH\textsubscript{2} shared with 1.5 as well as three CH\textsubscript{2}-related spin systems), 1.12 (d, 3H, 7), 1.10 (3H, obscured), 1.09 (d, 3H, 7), 1.02 (6H, broad s), 0.98 (m, 1H, part of CH\textsubscript{2} with 0.90); 0.92 (t, 3H, 7), 0.90 (partially obscured dd, 20, 14). Through-space (nOe) correlations: Excitation of 4.16: collapses 1.96 to dt (6,14) as H\textsubscript{4} equatorial); enhances 1.77, 1.75, 1.5, 1.32; Excitation of 3.05 enhances 7.27, 1.77, 1.5, (shows evidence of direct coupling to 1.96); enhances d at 1.11, 1.09, and m/bs at 1.00 and 0.08; enhances methyl at 0.89? 13\textsuperscript{C} 149.8, 128.5, 126.4, 125.9, 73.0, 40.7, 37.0, 34.4, 31.9, 29.5, 26.5, 22.7, 17.34, 17.27, 17.21, 17.16, 15.7, 14.1, 13.9, 13.0; HR-FAB calcd. C\textsubscript{22}H\textsubscript{38}OSi (M-H)+: 345.2613; found: 345.2605 (2.5 ppm)

1,1-Diisopropyl-3-hexyl-2-oxa-1-sila[4.2.0] bicyclooctane (\textit{6-Pr}) was prepared (65 mg, 32%) as a separable mixture of diasteromers by cyclization of \textit{5-Pr} (200 mg, 0.67 mmol).

Diastereomer 1 (3\alpha,5\alpha,6\alpha); 54 mg; R\textsubscript{f} = 0.3 (hexane); \textsuperscript{1}H \delta 3.58 (m, 1H, methine, cross speaks to spin system centered on 1.5 ppm); 2.51 (m, 1H, methine, coupled to 2.38, 1.95, 1.57); 2.38 (apparent pentet, 1H, part of methylene, coupled to 2.51, 1.99, 1.95, 1.68, 1.57); 1.99 (m, 1H, methine); 1.95 (m, 1H, part of methylene); 1.68 (dd, 1H, 13, 6); 1.57 (m, 1H); 1.55-1.25 (11H);
1.04-9.97 (12H, 4 Me in isopropyl); 0.898 (t, 3H, 6.4), 0.88 (m, 1H), noE from 3.58 reveals as apparent pentet; $^{13}$C δ 73.18, 29.17, 38.61, 36.28, 21.97, 30.92, 29.41, 25.32, 26.69, 21.96, 18.57, 17.64, 17.53, 17.47, 17.07, 14.12, 13.44, 12.99; IR 2926, 2802, 1463, 1131, 1040, 882 cm$^{-1}$.

Diastereomer 2 (3β,5α,6α): 11.6 mg; $R_f = 0.2$ (hexane); $^1$H δ 4.11 (m or apparent heptet, 1H); 2.825 (m, 1H; coupled into 2.2, 1.92, 1.47; correlates with methine C at 32.6 ppm); 2.24 (m, 1H; correlates with methylene C at 26 ppm), 2.13 (m, 1H, correlates with methylene at 26 ppm), 2.06 (m, 1H, correlates with methylene at 20 ppm), 1.92 (m, 2H correlates with methylene at 26 and methine at 17); 1.47 (m, 4H), 1.4-1.25 (9H), 1.15-1.05 (1H); 1.07 (m, 3H0, 1.03 (app d, 3H, 6.4), 0.997 (d, 3H, 6.7); 0.94 (d, 3H, 6.7); 0.83 (m, 1H); $^{13}$C δ 69.55, 38.79, 37.78, 32.64, 31.97, 29.44, 26.28, 25.71, 22.68, 20.07, 17.53, 17.43, 17.33, 17.13, 16.24, 14.10, 13.18, 13.12; IR 2927, 2803, 1464, 1092, 993, 882 cm$^{-1}$; HRMS calcd. for C$_{18}$H$_{35}$OSi (M-H)$^+$: 295.2457; found: 295.2456 (6.4 ppm).

$(trans)$ 1,1-Diisopropyl-3-hexyl-6-isopropyl-2,1-oxasilinane (8-Pr) was prepared (87 mg, 20% yield) from from 7-Pr (419 mg, 1.34 mmol) by a similar procedure (0.2 equiv B(C$_6$F$_5$)$_3$) as for 2-Pr, except that the reaction was warmed to 0° C and held at that temperature for 16 h. Following a careful flash chromatography to remove a large amount of byproduct, the product was isolated as a single product by NMR and GC/MS: $R_f = 0.5$ (hexane); $^1$H δ 3.68 (m, 1H; C3-axial), 2.05 (dtd, 1H, 12.8, 5, 2.4; H$_5$-eq, HMQC shows relationships to 1.35; COSY shows couplings to H$_5$-axial, H$_4$-axial, H$_6$); 1.69 (m, 2H; 1H includes H$_4$-axial; linked by COSY to H$_4$-eq at 1.15); 1H is CH of C$_6$ sidechain, with correlations to C$_6$ and sidechain methylenes); 1.5-1.25 (9H, includes: 1.35 m for H$_5$-axial; multiple spin systems from sidechain CH$_2$ groups); 1.15 (m, 1H, C$_4$-eq); 1.11 (d, 3H, 6-7, iPrSi); 1.09 (d, 3H, 6-7, iPrSi); 1.10 (m, 1H, CH), 1.05 (d, 3H, ~7, iPrSi); 1.00 (d, 3H, ~7, iPrSi); 0.96 and 0.93 (each d, 3H, J ~6.5, Me$_2$CHC$_6$); 0.89 (t, 3H, 4-5, Me); 0.63 (ddd, 13, 9, 5, H$_6$, COSY to iPrCH at 1.7); GC-MS: single major peak at 28.17 min (269, [M-iPr]); $^{13}$C δ 74.6, 39.2, 36.4, 32.2, 31.6, 29.6, 28.8, 27.6, 25.7, 24.8, 22.9, 22.0, 19.8, 18.6, 18.1, 17.8, 14.4, 13.8, 13.1; IR 2927, 2865 (s); 1464, 1382, 1068 cm$^{-1}$; HRFAB calc for C$_{19}$H$_{39}$OSi (M-H)$^+$: 311.2770; found 311.2783 (3.9 ppm); (M+H)$^+$ at 312.2818 also observed.
General procedure for tandem silylation/hydrosilylation: Into a solution of unsaturated alcohol (typically 1 mmol) in 6 mL anhydrous toluene was added diethylsilane or diphenylsilane (1.2 mmol). The solution was cooled to 0 °C and B(C₆F₅)₃ was added (typically 0.1-0.5 equiv) from a 0.2-0.3 M stock solution in anhydrous toluene, resulting in vigorous bubbling. Once the alkene had largely disappeared (TLC), the reaction was quenched with 10% aq. NaHCO₃ (30 mL). The resulting mixture was extracted with hexane (2 x 50 mL) and the crude products were purified by flash or column chromatography.

(3,5-trans)-1,1-Diethyl-3-hexyl-5-methyl-1-oxa-2-silinane (2-Et)
Using the tandem procedure described above, alcohol 1 (0.34 g, 2.0 mmol) was reacted with diethylsilane(0.33 mL, 2.6 mmol). TLC indicated that the reaction was completed within 5 minutes. Column chromatography using 0-5% EA/hex as the eluting solvent afforded 0.24g (47%) of the silacyclohexane. A small portion of the product was purified by semi-preparative HPLC (21 x 250mm, 5 mL/minute of 1% EA/hex): Rₜ =0.58 (5% EA/hex); ¹H δ 3.93-3.99(1H), 1.98-2.06(1H), 1.55-1.59(1H), 1.36-1.50(4H), 1.27(7H, m), 1.01(3H, d, 6.7), 0.94(3H, t, 6.4), 0.94(3H, t, 7.9), 0.88(3H, t, 6.8), 0.72(1H, ddd, 1.4, 4.6, 14.5), 0.57(4H, q, 7.5), 0.33(1H, dd, 10, 14.5); ¹³C δ 72.0, 41.4, 37.3, 31.9, 29.4, 26.3, 25.7, 24.1, 22.6, 17.7, 14.1, 7.6, 6.9, 6.7, 6.5; IR: 2953, 2925, 2874, 1458, 1413, 1156, 1047, 1003, 762 cm⁻¹. HR-FABMS calcd. for C₁₅H₃₂O[M+H]⁺: 257.2301; Found: 257.2300

(3,5-trans)-1,1-Diphenyl-3-hexyl-5-methyl-1-oxa-2-silinane (2-Ph) was prepared (0.59 g, 84%) from alcohol 1 (0.34 g, 2.0 mmol) and diphenylsilane (0.41 mL, 2.2 mmol) using the tandem procedure described above. The reaction was conducted for 10 min and the crude product was purified by gradient flash chromatography (0-5% EA/hex). A small portion of the product was purified by semi-preparative HPLC (21x250 mm, 5 mL/min of 1% EA/hex). The major product was assigned by comparison with 1-Pr: Rₜ = 0.23 (2% EA/hex); ¹H δ 7.51-7.61(5H), 7.30-7.42(5H), 4.16-4.21(1H), 2.24-2.28(1H), 1.27-1.63(15H), 1.03(3H, d, 6.8), 0.87(3H, t, 6.8), 0.79-0.95(2H); ¹³C δ 137.26, 137.24, 134.2, 134.1, 129.63, 129.57, 127.78, 127.73, 72.2, 41.6, 37.5, 31.8, 29.2, 26.1, 25.0, 24.8, 22.6, 19.0, 14.1; IR: 3068, 3049, 3000, 2954, 2925, 2856, 1454, 1428, 1151, 1116, 1041, 997, 821, 756, 731, 699 cm⁻¹; HR FABMS calcd. for C₂₃H₃₃OSi [MH]+: 353.2307; found: 353.2300 (1.7 ppm).
(3β,5α,6α) and (3α,5α,6α) 2,1-Benzoxasilin, octahydro-1,1-diethyl-3-hexyl (10-Et): Using the tandem procedure described above, alcohol 9 (0.21 g, 1.00 mmol) was reacted with diethylsilane (0.17 mL, 1.3 mmol) for 30 min, to furnish, after standard workup and chromatography, 0.11 g (39%) of the oxasilane. A small portion of the product was purified by semi-preparative HPLC (21x250 mm, 5 mL/min of 1% EA/hex) to furnish a 5:1 mixture of C₃ epimers. Traces of several minor components were visible (RI detection) just before elution of the major product: Rᵣ = 0.34 (2% EA/hex); ¹H δ 3.87(1H, m), 1.95-1.99(1H), 1.61-1.78(3H), 1.27-1.52(17H), 1.13(1H, q, 5.2 ), 0.97(3H, t, 8.0), 0.95(3H, t, 8.0), 0.88(3H, t, 6.8), 0.69-0.78(1H), 0.55-0.66(3H). ¹³C δ 70.0, 38.6, 38.1, 33.5, 31.9, 31.5, 29.4, 26.0, 25.4, 25.0, 24.7, 24.5, 22.7, 14.1, 6.8, 6.7, 6.2; IR: 2852, 1459, 1413, 1377, 1237, 1187, 1127, 1097, 1059, 1004, 972, 934, 802, 724 cm⁻¹; MS: HR-FAB: calcd. for C₁₈H₃₆O[M-H]⁺: 295.2456; found: 295.2448. The stereochemistry of the major product was assigned in analogy with 10-Ph (below) and by the chemical shifts for the axial H₃-axial (3.7 ppm) in the trans/cis isomer (major) vs. the equatorial H₃ (3.9 ppm) in the cis/cis isomer (minor).

(3β,5α,6α) and (3α,5α,6α)-2,1-Benzoxasilin, octahydro, 1,1-diphenyl-3-hexyl (10-Ph)

Using the tandem procedure described above, alkenol 9 (0.22 g, 1.1 mmol) was reacted with diphenylsilane (0.21 mL, 1.1 mmol) for 1 h, to furnish, after standard workup and a gradient flash chromatography (0-5% EA/hex), 0.30 g (73%) of the cyclic oxasilane as a 1:5 mixture (NMR) of the cis/cis and trans/cis isomers, differing in the stereochemistry at C₃. Rᵣ = 0.50 (2% EA/hex); HR FABMS calc. for C₂₆H₃₇O₃Si [MH⁺]: 393.2613; found: 393.2629 (3.8 ppm). A small portion of the product was further purified by semi-preparative HPLC (21 x 250mm, 5 mL/min of 1% EA/hex); the minor product eluted first.

cis/cis (3α,5α,6α)- (minor) ¹H δ 7.65-7.69(2H), 7.49-7.51(2H), 7.28-7.45(6H), 3.84-3.89(1H; COSY correlation with spin systems at δ 2.1, 1.96; weak correlation with δ 1.5; nOe observed to 2.1 and 1.2); 2.05-2.10(1H, correlates only with δ 1.96), 1.93-1.99(1H, correlates with δ 3.9, 2.05, 1.2), 1.42-1.71(12H), 1.19-1.39(10H), 1.2 (1H, obscured t or dd, correlates with 1.97, 1.7); 0.90(3H, t, 6.8); ¹³C δ 135.6, 134.5, 134.3, 129.6, 129.5, 127.9, 127.5, 74.7, 38.8, 35.3, 34.5, 33.5, 32.0, 29.4, 27.9, 25.4, 22.9, 22.7, 22.3, 21.2, 14.2; IR 3068, 3048, 3000, 2925, 2855,
1447, 1428, 1142, 1055, 1009, 970, 924, 801, 736, 710, 699 cm\(^{-1}\). HRFAB calc. for C\(_{26}\)H\(_{37}\)OSi (MH\(^+\)): 393.2613; found: 393.2629 (3.8 ppm).

trans,cis (3\(\beta\),5\(\alpha\),6\(\alpha\)) (major) \(^1\)H \(\delta\) 7.65 (m, 2H; nOe to 1.7), 7.55 (2H; modest nOe to 4.3), 7.31-7.41(6H), 4.31(1H, m, H\(_3\); correlates with 1.6, 1.5; significant noE to d 7.7, 2.1; this proton appears to be significantly deshielded by the edge of the neighboring arene; this assumption is supported by the observation of mutual nOes involving the arene as well as by MM2 calculations; 2.20 (m, 1H; COSY crosspeaks wth 2.1, 1.5-1.6; nOE to 1.73, 1.5, 1.4), 2.07 (ddd, 1H, J values estimated as 13-14, 8, 3-4;COSY with 2.2, 1.5; nOE to peaks at d 4.3, 1.4), 1.83(m, 1H; correlates to 1.45; nOe with d 1.5, 1.3), 1.73(dt, 1H; weak COSY with 1.83; nOE to 2.2, 1.5), 1.17-1.48(20H), 0.87(3H, t, 6.8); \(^{13}\)C \(\delta\) 137.8, 136.7,134.6, 134.3, 134.2, 129.5, 129.3, 127.8, 127.7, 127.6, 72.4, 37.7, 37.6, 32.6, 31.8, 29.5, 29.3, 26.1, 25.3, 24.8, 24.5, 24.0, 22.6, 14.1; IR 3068, 3048, 3022, 2999, 2920, 2851, 1590, 1486, 1447, 1428, 1376, 1187, 1114, 1057, 997, 938, 916, 821, 801, 772, 699 cm\(^{-1}\).

(3,6-trans and 3,6-cis- 1,1-Diethyl-3-hexyl-6-methyl-2-oxa-1-silinane (trans- and cis-12-Et): Using the tandem procedure describe above, alkenol 11 ( 0.34 g, 2.0 mmol) was reacted with Et\(_2\)SiH\(_2\) (0.33 mL, 2.6 mmol) for 5 minutes to furnish, following standard workup and chromatography (0-5% EA/hex), a 2.7: 1 mixture of trans- and cis-12-Et (81.9 mg, 16%): R\(_f\) = 0.41 ( 2% EA/hex ); HREIMS calc. for C\(_{15}\)H\(_{31}\)OSi (M-H\(^+\)): 255.2244; found 255.2142 (0.9 ppm). A small portion of the product was purified by semi-preparative HPLC (21 x 250 mm, 5 mL/min 1% EA/hex); the major (trans) and minor (cis) isomers elute at 16 and 17 min, respectively. The assignment of cis- and trans oxasilanes was based upon the upfield \(^1\)H chemical shift for the axial H\(_3\).

trans-12: \(^1\)H \(\delta\) 3.60-3.65(1H), 1.83-1.89(1H), 1.61-1.66(1H), 1.20-1.47(12H), 0.99(3H, t, 7.9), 0.98(3H, t, 7.9), 0.91(3H, t, 6.8), 0.88(3H, t, J-6.8), 0.49-0.84(4H); \(^{13}\)C \(\delta\) 74.5, 38.7, 35.8, 32.7, 31.9, 29.4, 25.5, 22.7, 17.5, 15.7, 14.1, 6.7, 5.0, 1.7; IR 2954, 2927, 2876, 2858, 1461, 1377, 1236, 1087, 1042, 1014, 836, 724 cm\(^{-1}\).

cis-12: \(^1\)H \(\delta\) 3.70-3.76(1H), 1.82-1.90(1H), 1.62-1.69(1H), 1.24-1.56(14H), 1.02(3H, d, 7.6), 0.97(3H, t, 7.9), 0.96(3H, t, 7.9), 0.88(3H, t, 6.8), 0.51-0.74(4H); \(^{13}\)C \(\delta\) 74.2, 38.1, 31.9, 30.8, 29.8, 29.3, 25.8, 22.7, 15.0, 14.4, 14.1, 6.8, 6.3, 4.2, 4.1; IR 2953, 2927, 2874, 1460, 1413, 1377, 1235, 1161, 1138, 1088, 1044, 1005 cm\(^{-1}\).
(trans) and (cis)-1,1-Diphenyl-3-hexyl-6-methyl-1-oxa-2-silacyclohexane (trans- and cis-12-Ph). Using the tandem procedure described above, alcohol 11 (0.34 g, 2.0 mmol) was reacted with Ph₂SiH₂ (0.41 mL, 2.2 mmol) for 1 h. The crude products were subjected to column chromatography using 0-5% EA/hex as the eluting solvent to afford 0.17 g (24%) of the oxasilacyclohexane. A small portion of the product was further purified by semi-preparative HPLC (21 x 250 mm, 1% EA/hexane, 5 mL/min), which partially resolved the major and minor isomers. The predominant isomer was assigned as trans on the basis of the 3.85 ppm chemical shift for the axial H₃: R_f =0.32 (2% EA/hex); ¹H (mixture of diastereomers) δ 7.65-7.68(m), 7.53-7.55(m), 7.30-7.44(m) 4.02-4.07(m), 3.85-3.90(m), 1.94-2.04(m), 1.78-1.86(m), 1.39-1.74(m), 1.13(d, 3H, 7.2), 1.07(d, 3H, 8), 0.87-0.92(m); ¹³C (mixture of two diastereomers) δ 136.0, 135.1, 134.5, 134.4, 134.3, 129.8, 129.6, 129.5, 127.9, 127.8, 127.7, 127.6, 75.8, 74.8, 38.8, 38.6, 35.9, 32.3, 31.9, 30.2, 30.1, 29.39, 29.36, 25.5, 25.4, 22.7, 19.4, 16.3, 15.3, 14.1, 13.9; IR: 3069, 3048, 2927, 2857, 1457, 1428, 1117, 1042, 987, 933, 736, 700 cm⁻¹; HRFAB calc. for C₂₃H₂₃OSi (M+H)⁺: 353.2300; found: 353.2293 (2.1 ppm).

(3,6-trans) and (3,6-cis)-1,1-Diethyl-3-hexyl-6-methyl-2-oxa-1-silepane (trans- and cis-14-Et). Using the tandem procedure described above, alcohol 13 (0.360 g, 1.95 mmol) was reacted with diethylsilane (0.28 mL, 2.2 mmol) for 5 min, to furnish, following standard workup and chromatography, 0.29 g (55%) of a 38:62 mixture of 3,6-trans- and 3,6-cis-oxasilacycloheptanes accompanied by 0.16 g of an unknown side product. A small portion of the product was further purified by semi-preparative HPLC (21 x 250 mm, 5 mL/min 1% EA/hex); the major and minor diastereomers eluting at 17.0 and 18.0 min, respectively: R_f = 0.2 (hexane); IR: 2982, 2953, 2925, 2874, 1461, 1377, 1237, 1090, 1007, 850, 757 cm⁻¹; HREIMS calcd. for C₁₆H₃₄OSi[M-C₂H₅]⁺: 241.1764; found: 241.1986. Diastereomer 1 ((trans, minor): ¹H δ 3.59 (td, 1H, 8.6, 4), 1.73(m, 3H), 1.26-1.48(11H), 1.08 (m, 1H), 0.99(3H, d, 6.6), 0.95(3H, t, 7.9), 0.94(3H, t, 7.9), 0.88(3H, t, 6.8), 0.69 (dt, 1H, 15, 2) 1H), 0.48-0.63(5H). ¹³C δ 75.0, 39.9, 39.3, 38.4, 32.0, 31.0, 29.3, 28.8, 26.1, 23.3,22.7, 14.1, 7.00, 6.8, 6.1, 5.9
Diasteromer 2 ((cis, major): $^1$H $\delta$ 3.76 (m, 1H), 1.96 (m, 1H), 1.34-1.73(17H), 1.01(3H, d, 6.7), 0.94(6H, t, 7.9), 0.88(3H, t, 6.8), 0.73 (m,1H), 0.51-0.63(5H). $^{13}$C $\delta$ 73.8, 38.4, 35.2, 34.6, 31.9, 29.44, 29.37, 26.2, 25.6, 22.7, 22.1, 14.1, 7.3, 6.9, 6.8, 6.3

(trans)-1,1-Diethyl-5-methyl-3-phenyl-2-oxa-1-silinane (trans-16-Et) was prepared as a single diastereomer from 15 (0.32g, 2.0 mmol) and Et$_2$SiH$_2$ (0.33 mL, 2.6 mmol ) using procedure “B” described above except that the reaction temperature was held between 5 and 10 °C. The product was assigned as the trans-isomer in analogy with 2-Pr; this was confirmed by a correlation via diol 21 (vida infra). The crude product was purified by column chromatography (0-5% EA/Hex) to furnish 0.25 g of a diethylsiloxysiloxane byproduct followed by 0.25 g (51%) 16-Et, predominantly as the trans diastereomer. A small portion of the product was further purified by semi-preparative HPLC (21 x 250mm, 5 mL/min of 1% EA/hex).

16-Et: $R_f = 0.2$ (hexane) or 0.4 in 5% EA/hex); $^1$H $\delta$ 7.24-7.28(1H), 7.34-7.40(4H), 5.19(1H, dd, 3.9, 7.5), 2.19 (m, 1H), 1.85(1H, ddd, 14.1, 7.5, 3), 1.73(1H, ddd, 14.1, 7.1, 4), 1.17(3H, d, 6.9), 1.05(3H, t, 7.9), 0.94(1H, dd, 5.7, 12.2), 0.74(2H, q, 7.9), 0.69(2H, q, 7.9), 0.55(1H, dd, 7.0, 14.7); $^{13}$C $\delta$ 145.7, 128.1, 126.6, 125.4, 71.9, 43.7, 25.0, 23.5, 16.5, 8.0, 7.3, 6.7, 6.6; IR: 3087, 3063, 3028, 2953, 2874, 1494, 1453, 1412, 1377, 1354, 1236, 1207, 1137, 1088, 1066, 1005, 907, 853, 809, 737, 699 cm$^{-1}$; HR-FABMS calcd. for C$_{15}$H$_{24}$OSi.[M-H]$^+$: 247.1517; found: 247.1527.

Byproduct: $R_f = 0.8$ in 5% EA/hex. The byproduct displayed major ions at 343 (M-H)$^+$ and 189 (M- Si(Et)$_2$OSi(Et)$_2$H)$^+$ in the GC/MS spectra, and was tentatively assigned as 1,1-diethyl-1-(diethylsiloxy)-2-methyl-4-phenylbutyl silane. This assignment was supported by the lack of a carbinol HC and the presence of silane (4.5 ppm, narrow pentet) and multiple Et$_2$Si spin systems (1.1-0.87 for methyl groups; 0.7-0.45 for ethyl) in a complicated $^1$H NMR spectrum. $^{13}$C: 143.1, 128.4, 128.3, 125.5, 42.7, 33.7, 28.6, 22.9, 22.8, 7.4, 7.3, 7.1, 6.8, 6.6. Oxidative cleavage (Tamao oxidation, below) furnished 2-methyl-4-phenyl-1-butanol:xii $R_f = 0.3$ (20% EA/hex); $^1$H $\delta$ 7.30 (app t, 2H, 7); 7.22-7.18 (3H); 3.54 (dd, 1H, ABX, 10.8, 6); 3.48 (dd, 1H, ABX, 10.8 6.4); 2.73 (ddd, ABXY, 1H, 13.6, 10, 5.6); 2.62 (ddd, ABXY, 13.6, 10, 6); 1.79 (m, 1H); 1.68 (apparent hextet, 1H, 6-7); 1.58 (1H, bs, OH); 1.46 (m, 1H); 1.008 (d, 3H, 7.2). IR (ATR crystal) 3346 (s, broad), 2926, 2873, 1454, 1037 cm$^{-1}$; HREI: calcd. for C$_{11}$H$_{16}$O.[M]$^+$164.1204; Found: 164.1204 (1.6 ppm).
Diethyl (2-methylnon-1-en-3-oxy) silane (18-Et): Attempted one-pot reaction of 2-methyl non-1-en-3-ol (17, 0.22 g, 1.4 mmol) with diethylsilane (0.20 mL, 1.1 equiv) and B(C₆F₅)₃ (0.2 g, n toluene, ~0.4 mmol) as described for the synthesis of 2-Et furnished the corresponding diethylsilyl ether, 18-Et as an inseparable mixture with small amounts of one or more siloxanes: Rᵣ = 0.8 (hexane); ¹H: δ 4.85 (bs, 1H); 4.75 (bs, 1H); 4.51 (app pentet, 2.4, residual diethylsilane); 4.16 (t, 1H, 6.4); 1.68 (s, 3H); 1.45 (s, 0.7H, residual Si-H); 1.5 (m, 2H), 1.33-1.18 (8H); 1.0 - 0.92 (19 H, including some silane); 0.88 (t, 3H); 0.62 (dq, 4H, 7, 2); 0.53 (m, 8H, residual silane and siloxane); ¹³C: δ 147.4; 110.49; 76.71, 36.02, 31.9, 29.4, 25.5, 22.7, 17.1, 14.1, 7.47, 7.24, 6.97, 6.64, 6.61, 6.55; IR 2954, 2116, 1450 cm⁻¹. HRMS was attempted but gave no recognizable fragments.

Oxidation to diols

Tamao oxidation (illustrated for (2R*,5S*)-2-methylundecane-1,5-diol (19): 135 mg (0.50 mmol) of 14-Et wa reacted with KF (0.058 g, 2 eq), KHCO₃ (0.100 g, 2 eq), 30% H₂O₂ (1 mL, 20 eq, ca. 9M in H₂O) in MeOH/THF for 48 h to afford 0.030 g (30%) of diol 19 as an inseparable mixture of diasteromers. Rᵣ = 0.2 (30% EA/hex); ¹H δ 3.58 (m, 1H); 3.47 (t, 2H, 6; or bd, 1H, ~6, depending upon sample concentration), 2.3 (broad, 2H, varies with concentration); 0.89 (app t, 3H, 8); 0.857 (appt t, 3H, 8); 1.8-1.2 (15H); 0.85-0.92 (6H); ¹³C δ 72.4, 72.0, 67.8, 67.6, 37.53, 37.49, 35.8, 35.3, 34.3, 34.0, 31.8, 29.3, 28.9, 28.6, 25.7, 25.6, 22.6, 20.8, 16.8, 16.4, 14.1; The major diasteromer was assigned as 2R*,5S* based upon comparision with ¹³C data reported for a similar diol (major: 71.8, 67.8 ppm; minor 72.3, 67.6 ppm.). IR 3330 (b, OH), 2926, 2856, 1458, 1030 cm⁻¹; HRFAB calc. For C₁₂H₂₇O₂ [MH]⁺: 203.211; found: 203.2014 (1.3 ppm).

Oxidation of 88 mg (0.33 mmol) of the major (2nd eluting isomer) of 14-Et using the Woerpel procedure described below afforded 36.8 mg (56%) of 19. Spectral details were identical to those reported above.

Woerpel oxidation: 2-(2-Hydroxyoctyl)-cyclohexanol (20): To a solution of tert-butyl hydroperoxide (0.73 mL, 5-6M in decane) in 3 mL DMF at 0 °C was added cesium hydroxide
(0.52 g, 3.1 mmol). The reaction mixture was allowed to warm to 25 °C, whereupon a solution of oxasilane 10-Ph (0.10 g, 0.26 mmol) in 2 mL DMF was added dropwise. After 10 minutes, tetrabutylammonium fluoride (1.3 mL, 1 M in THF) was added. The reaction solution was stirred at RT for 2 h and then quenched with 10 mL of 10% aq. sodium bisulfite. The mixture was extracted with ether (2 x 20 mL) and the combined organic layers were dried and concentrated. The residue was subject to column chromatography using 40% EA/hex as eluting solvent to afford 22.8 mg (38%) of diol 20; Rf = 0.50 (50% EA/hex); IR (same except where noted): 3329-31, 2927-8, 2856, 1450, 1071 (diast 2), 1039 (diast 1), 976 cm⁻¹; HRMS calc. for C₁₄H₂₉O₂ (MH)⁺: 229.2168; found: 229.2159 (3.5 ppm).

Diastereomer 1: ¹H δ 3.95 (1H, m), 3.73-3.78 (1H), 2.19 (2H, s), 1.65-1.72 (4H), 1.48-1.61 (3H), 1.29-1.47 (14H), 0.88 (3H, t, 6.6) ¹³C δ 69.2, 69.1, 40.0, 38.1, 38.0, 33.1, 31.8, 29.3, 27.1, 25.8, 25.4, 22.6, 20.5, 14.1

Diastereomer 2: ¹H δ 3.90-3.93 (1H), 3.65-3.70 (1H), 1.72-1.75 (1H), 1.25-1.61 (18H), 0.88 (3H, t, 6.6); ¹³C δ 70.9, 70.0, 39.4, 39.1, 38.7, 32.4, 31.8, 29.3, 28.2, 25.6, 24.3, 22.6, 21.4, 14.1

MS: (1R*,3S*) 3-Methyl-1-phenyl-1,4-butanediol (21) was prepared in 69% by oxidation of oxasilane 16-Et using the Woerpel procedure described above: Rf = 0.2 (40% EA/hex); The product was assigned by comparison with literature reports. xvi Rf = 0.2 (40% EA/hex); ¹H δ 4.89 (dd, 1H, 7.6, 4.7); 3.57 (dd, ABX, 1H, 10.4, 4.4); 3.52 (dd, ABX, 1H, 10.4, 6.4); 1.9-1.7 (3-4H, includes both ABX and a multiplet); 0.97 (d, 3H, 6.8); ¹³C δ 144.7, 128.4, 127.4, 125.8, 71.8, 67.9, 43.5, 32.2, 17.2.

References:


ix Denmark, S. E.; Yang, S. *Tetrahedron*, **2004**, *60*, 9695-9708.


**B(C₆F₅)₃-promoted tandem silylation and intramolecular hydrosilylation: diastereoselective synthesis of oxasilinanes and oxasilepanes**

Roman Shchepin, Chunping Xu, and Patrick Dussault*
pdussault1@unl.edu

**Supporting Information: **¹H and ¹³C NMR spectra

<table>
<thead>
<tr>
<th>Alcohols</th>
<th>pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methyldec-1-en-4-ol (1): ¹H, ¹³C</td>
<td>3-4</td>
</tr>
<tr>
<td>2-Phenyldec-1-en-4-ol (3): ¹H, ¹³C</td>
<td>5-6</td>
</tr>
<tr>
<td>1-Cyclobutenyloctan-2-ol (5): ¹H, ¹³C</td>
<td>7-8</td>
</tr>
<tr>
<td>2-Methyl-2-dodecen-6-ol (7): ¹H, ¹³C</td>
<td>9-10</td>
</tr>
<tr>
<td>1-Cyclohexenyloctan-2-ol (9): ¹H, ¹³C</td>
<td>11-12</td>
</tr>
<tr>
<td>(E,Z)-Undec-2-en-5-ol (11): ¹H, ¹³C</td>
<td>13-14</td>
</tr>
<tr>
<td>2-Methylundec-1-en-5-ol (13): ¹H, ¹³C</td>
<td>15-16</td>
</tr>
<tr>
<td>3-Methyl-1-phenylbut-3-en-1-ol (15): ¹H, ¹³C</td>
<td>17-18</td>
</tr>
<tr>
<td>2-Methylnon-1-en-3-ol (17): ¹H, ¹³C</td>
<td>19-20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alkoxy silanes</th>
<th>pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diisopropyl-(2-methyldec-1-en-4-oxy)silane (1Pr): ¹H, ¹³C</td>
<td>21-22</td>
</tr>
<tr>
<td>Diisopropyl-(2-phenyldec-1-en-4-oxy) silane (3-Pr): ¹H, ¹³C</td>
<td>23-24</td>
</tr>
<tr>
<td>Diisopropyl-(1-cyclobutenyloctyl-3-oxy)silane (5-Pr): ¹H, ¹³C</td>
<td>25-26</td>
</tr>
<tr>
<td>Diethyl-(2-methylnon-1-en-3-oxy) silane (18-Et): ¹H, ¹³C</td>
<td>27-28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cyclic Siloxanes</th>
<th>pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>(trans)-1,1-Diethyl-3-hexyl-5-methyl-2,1-oxasilinane (trans-2-Et): ¹H, ¹³C</td>
<td>29-30</td>
</tr>
<tr>
<td>(trans)-1,1-Diphenyl-3-hexyl-5-methyl-2,1-oxasilinane (trans-2-Ph): ¹H, ¹³C</td>
<td>31-32</td>
</tr>
<tr>
<td>(trans)-1,1-Diisopropyl-3-hexyl-5-methyl-2,1-oxasilinane (trans-2-Pr) ¹H, ¹³C</td>
<td>33-34</td>
</tr>
<tr>
<td>(trans)- 1,1-Diisopropyl-3-hexyl-5-phenyl-2,1-oxasilinane (trans-4-Pr): ¹H, ¹³C</td>
<td>35-36</td>
</tr>
<tr>
<td>1,1-Diisopropyl-3-hexyl-2-oxa-1-sila[4.2.0] bicyclooctane (6-Pr):</td>
<td></td>
</tr>
<tr>
<td>(3α, 5α, 6α)-6-Pr: ¹H, ¹³C</td>
<td>37-38</td>
</tr>
<tr>
<td>(3β, 5α, 6α)-6-Pr: ¹H, ¹³C</td>
<td>39-40</td>
</tr>
<tr>
<td>(trans)-1,1-Diisopropyl-3-hexyl-6-isopropyl-2,1-oxasilinane (trans-8-Pr): ¹H, ¹³C</td>
<td>41-42</td>
</tr>
<tr>
<td>2,1-Benzoxasilin, octahydro-1,1-diethyl-3-hexyl (10-Et)</td>
<td></td>
</tr>
<tr>
<td>(3β, 5α, 6α) and (3α, 5α, 6α)-10Et: ¹H, ¹³C</td>
<td>43-44</td>
</tr>
<tr>
<td>(3β, 5α, 6α)-2,1-Benzoxasilin, octahydro, 1,1-diphenyl-3-hexyl (10-Ph)</td>
<td></td>
</tr>
<tr>
<td>(3β, 5α, 6α)-(10-Ph): ¹H, ¹³C</td>
<td>45-46</td>
</tr>
<tr>
<td>(3α, 5α, 6α)-(10-Ph): ¹H, ¹³C</td>
<td>47-48</td>
</tr>
<tr>
<td>(trans)-1,1-Diethyl-3-hexyl-6-methyl-2,1-oxasilinane (12-Et): ¹H, ¹³C</td>
<td>49-50</td>
</tr>
</tbody>
</table>
(trans)-1,1-Diphenyl-3-hexyl-6-methyl-2,1-oxasilinane (12-Ph): $^1$H, $^{13}$C 51-52
1,1-Diethyl-3-hexyl-6-methyl-2-oxa-1-silepane (14-Et):
  (trans)-14-Et: $^1$H 53
  (cis)-14-Et: $^1$H, $^{13}$C (mixture) 54-55
(3,5-trans)-1,1-Diethyl-5-methyl-3-phenyl-2,1-oxasilinane (16-Et): $^1$H, $^{13}$C 56-57

<table>
<thead>
<tr>
<th>Diols</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylundecane-1,5-diol (19): $^1$H, $^{13}$C</td>
</tr>
<tr>
<td>2-(2-Hydroxyoctyl)-cyclohexanol (20):</td>
</tr>
<tr>
<td>diasteromer 1: $^1$H, $^{13}$C</td>
</tr>
<tr>
<td>diasteromer 2: $^1$H, $^{13}$C</td>
</tr>
<tr>
<td>3-Methyl-1-phenyl-1,4-butanediol (21): $^1$H, $^{13}$C</td>
</tr>
</tbody>
</table>

Diols pages
2-Methylundecane-1,5-diol (19): $^1$H, $^{13}$C 58-59
2-(2-Hydroxyoctyl)-cyclohexanol (20):
  diasteromer 1: $^1$H, $^{13}$C 60-61
  diasteromer 2: $^1$H, $^{13}$C 62-63
3-Methyl-1-phenyl-1,4-butanediol (21): $^1$H, $^{13}$C 64-65
SpinWorks 2.5: 1D Proton NMR

![Chemical structure of compound 1](image)

**File Information:**
- **File:** D:\CX_RVS_paper\More spectra\cx-6-24\1fid
- **Expt:** zg30
- **Transmitter freq.:** 400.132471 MHz
- **Time domain size:** 65536 points
- **Width:** 8278.15 Hz = 20.688513 ppm = 0.126314 Hz/pt
- **Number of scans:** 16

**Freq. of 0 ppm:** 400.130000 MHz
- **Processed size:** 32768 complex points
- **LB:** 0.300
- **GB:** 0.0000
- **Hz/cm:** 129.722
- **ppm/cm:** 0.32420

**SI_NMR 3**
Current Data Parameters
NAME            cx-6-24
EXPNO            2
PROCNO            1

F2 - Acquisition Parameters
Date_            20100805
Time            16.44
INSTRUM           spectPROBHD   5 mm QNP 1H/13
PULPROG          zgpg30
TD            65536
SOLVENT           CDC13
NS            33
DS            4
SWH            23980.814 Hz
FIDRES          0.365918 Hz
AQ            1.3664756 sec
RG            812.7
DW            20.850 usec
de            6.50 usec
TE            295.2 K
D1            2.00000000 sec
D11            0.03000000 sec
TD0            1

====== CHANNEL f1 ======
NUC1                13C
PL1                10.00 usec
SFO1            100.6228298 MHz

====== CHANNEL f2 ======
CPDPREG2         waltz16
NUC2                 1H
PCPD2            70.00 usec
PL2             -3.35 dB
PL12             13.34 dB
PL13             13.34 dB
SFO2            400.1316005 MHz

F2 - Processing parameters
SI            32768
SF            100.6127525 MHz
WDW                  EMSSB
LB                 1.00 Hz
PC                 0.0
SpinWorks 2.5: 13C NMR

file: D:\CX_RVS_paper\Lost RVS-CX Spectra\rvs-4-62\2\fid  
transmitter freq.: 100.622830 MHz

processed size: 65536 complex points
LB: 0.000  GB: 0.0000
Hz/cm: 644.008  ppm/cm: 6.40022

number of scans: 562

freq. of 0 ppm: 100.612773 MHz

width: 22075.06 Hz = 219.384162 ppm = 0.336839 Hz/pt

SI_NMR 8
SpinWorks 2.5: 1D Proton NMR

SpinWo

file: D:\CXRVS_paper\Lost RVS-CX Spectra\rvs-4-68\1\fid  expt: <zg30>
transmitter freq.: 400.132471 MHz
time domain size: 65536 points
width: 8278.15 Hz = 20.688513 ppm = 0.126314 Hz/pt
number of scans: 16

freq. of 0 ppm: 400.130005 MHz
processed size: 32768 complex points
LB: 0.300  GB: 0.0000
Hz/cm: 146.214  ppm/cm: 0.36541

SI_NMR 9
SpinWorks 2.5: 13C NMR

file: D:\CX_RVS_paper\More spectra\cx-6-23\2\fid   expt: <zgpg30>
transmitter freq.: 100.622830 MHz
time domain size: 65536 points
width: 22075.06 Hz = 219.384162 ppm = 0.336839 Hz/pt
number of scans: 43
freq. of 0 ppm: 100.612769 MHz
processed size: 65536 complex points
LB: 1.000  GB: 0.0000
Hz/cm: 747.188  ppm/cm: 7.42563

SI_NMR 12
SpinWorks 2.5:

**Chemical Structure:**

![Chemical Structure](image)

**NMR Spectrogram Details:**

- **file:** D:\Roman's\rvs-4-31\1\fid
- **expt:** <zg30>
- **transmitter freq.:** 400.132471 MHz
- **time domain size:** 32768 points
- **width:** 8278.15 Hz = 20.688513 ppm = 0.252629 Hz/pt
- **number of scans:** 16
- **freq. of 0 ppm:** 400.130006 MHz
- **processed size:** 32768 complex points
- **LB:** 0.300
- **GB:** 0.0000
- **Hz/cm:** 136.016
- **ppm/cm:** 0.33993

**SI_NMR 13**
SpinWorks 2.5: 13C NMR

[Chemical structure image]

freq. of 0 ppm: 100.612769 MHz
processed size: 65536 complex points
LB: 1.000 GB: 0.0000
Hz/cm: 562.193 ppm/cm: 5.58714

file: D:\Roman's\rsv-4-31\fid  expt: <zgpg3
transmitter freq.: 100.62830 MHz
time domain size: 65536 points
width: 22075.06 Hz = 219.384162 ppm = 0.336839 Hz/pt
number of scans: 398
SpinWorks 2.5: 1D Proton NMR

file: D:\CX_RVS_paper\More spectra\cx-6-19-sm\1\fid   expt: <zg30>
transmitter freq.: 400.132471 MHz
time domain size: 65536 points
width: 8278.15 Hz = 20.688513 ppm = 0.126314 Hz/pt
number of scans: 16

freq. of 0 ppm: 400.130010 MHz
processed size: 32768 complex points
LB: 0.300  GB: 0.0000
Hz/cm: 123.360  ppm/cm: 0.30830

SI_NMR 15
SpinWorks 2.5: 13C NMR

file: D:\CX_RVS_paper\More spectra\cx-6-19-sm\2\fid  expt: <zgpg30>
transmitter freq.: 100.622830 MHz
time domain size: 65536 points
width: 22075.06 Hz = 219.384162 ppm = 0.336839 Hz/pt
number of scans: 38

time: 180 160 140 120 100 80 60 40 20 0

freq. of 0 ppm: 100.612774 MHz
processed size: 65536 complex points
LB: 0.300  GB: 0.0000
Hz/cm: 882.914  ppm/cm: 8.77449

SI_NMR 16
SpinWorks 2.5: 1D P

file: D:\Roman's_rvs-4-30\1\fid  expt: <zg30>
transmitter freq.: 400.132471 MHz
time domain size: 32768 points
width: 8278.15 Hz = 20.688513 ppm = 0.252629 Hz/pt
number of scans: 16

freq. of 0 ppm: 400.130000 MHz
processed size: 32768 complex points
LB: 0.300  GB: 0.0000
Hz/cm: 138.813  ppm/cm: 0.34692

SI_NMR 17
SpinWorks 2.5: 13C NMR

File: D:\Roman's\rvs-4-30\2\fid
Transmitter freq.: 100.622830 MHz
Time domain size: 65536 points
Width: 22075.06 Hz = 219.384162 ppm = 0.336839 Hz/pt
Number of scans: 77

Freq. of 0 ppm: 100.612769 MHz
Processed size: 65536 complex points
LB: 1.000 GB: 0.0000
Hz/cm: 621.862 ppm/cm: 6.18013

SI_NMR 18
SpinWorks 2.5: 1D Proton NMR

file: D:\CX_RVS_paper\More spectra\cx-6-20-sm\1\fid
expt: <zg30>
transmitter freq.: 400.132471 MHz
time domain size: 65536 points
width: 8278.15 Hz = 20.688513 ppm = 0.126314 Hz/pt
number of scans: 16

freq. of 0 ppm: 400.130000 MHz
processed size: 32768 complex points
LB: 0.300  GB: 0.0000
Hz/cm: 126.996  ppm/cm: 0.31738

SI_NMR 19
SpinWorks:

```
file: D:\CX_RVS_paper\More spectra\cx-6-20-crude\2\fid
expt: <zgpg30>
transmitter freq.: 100.622830 MHz
```

```
time domain size: 65536 points
width: 22075.06 Hz = 219.384162 ppm = 0.336839 Hz/pt
number of scans: 67
freq. of 0 ppm: 100.612769 MHz
processed size: 65536 complex points
LB: 1.000  GB: 0.0000
Hz/cm: 662.012 ppm/cm: 6.57915
```

SI_NMR 20
Spin' 2.5:

file: D:\CX_RVS_paper\Lost RVS-CX Spectra\rvs-4-4-h1\fid
expt: <zg30>
transmitter freq.: 400.132471 MHz
time domain size: 32768 points
width: 8278.15 Hz = 20.688513 ppm = 0.252629 Hz/pt
number of scans: 16

dist: 4.0

freq. of 0 ppm: 400.130009 MHz
processed size: 32768 complex points
LB: 0.300  GB: 0.0000
Hz/cm: 141.280  ppm/cm: 0.35308

SI_NMR 21
SpinWorks 2.5: 13C NMR

file: D:\CX_RVS_paper\Lost RVS-CX Spectra\rvs-4-4-c13\fid
expt: <zgpg30>
transmitter freq.: 100.622830 MHz
time domain size: 65536 points
width: 22075.06 Hz = 219.384162 ppm = 0.336839 Hz/pt
number of scans: 162

freq. of 0 ppm: 100.612770 MHz
processed size: 65536 complex points
LB: 1.000  GB: 0.0000
Hz/cm: 618.133  ppm/cm: 6.14307

1-Pr
SpinWorks 2.5: 1D Proton NMR

3-Pr

file: D:\CX_RVS_paper\Lost RVS-CX Spectra\rvs-4-74\3\fid
expt: <zg30>
transmitter freq.: 400.132471 MHz
time domain size: 65536 points
width: 8278.15 Hz = 20.688513 ppm = 0.126314 Hz/pt
number of scans: 16

freq. of 0 ppm: 400.130006 MHz
processed size: 32768 complex points
LB: 0.300  GB: 0.0000
Hz/cm: 140.241  ppm/cm: 0.35049

SI_NMR 23
SpinWorks 2.5: 1D Proton NMR

file: D:\CX_RVS_paper\Lost RVS-CX Spectra\rvs-4-67\1\fid   expt: <zg30>
transmitter freq.: 400.132471 MHz
time domain size: 65536 points
width: 8278.15 Hz = 20.688513 ppm = 0.126314 Hz/pt
number of scans: 16
freq. of 0 ppm: 400.130006 MHz
processed size: 32768 complex points
LB: 0.300   GB: 0.0000
Hz/cm: 130.632  ppm/cm: 0.32647

SI_NMR 25
SpinWorks 2.5: 13C NMR

file: D:\CX_RVS_paper\Lost RVS-CX Spectra\rvs-4-67\2\fid
expt: <zgpg30>
transmitter freq.: 100.622830 MHz
time domain size: 32768 points
width: 22075.06 Hz = 219.384162 ppm = 0.673677 Hz/pt
number of scans: 645

freq. of 0 ppm: 100.612769 MHz
processed size: 16384 complex points
LB: 1.000 GB: 0.0000
Hz/cm: 611.461 ppm/cm: 6.07676

5-Pr
SpinWorks 2.5: 1D Proton NMR

[Chemical structure image]

File: D:\CX_RVS_paper\Lost RVS-CX Spectra\cx-6-20-f3\fid   Expt: <zg30>
Transmitter freq.: 400.132471 MHz
Time domain size: 65536 points
Width: 8278.15 Hz = 20.688513 ppm = 0.126314 Hz/pt
Number of scans: 16
Freq. of 0 ppm: 400.130010 MHz
Processed size: 32768 complex points
LB: 0.300 GB: 0.0000
Hz/cm: 148.032 ppm/cm: 0.36996

SI_NMR 27
SpinWorks 2.5: 13C NMR

file: D:\CX_RVS_paper\Lost RVS-CX Spectra\cx-6-20-f3\f3f3id   ext: <zgpg30>
transmitter freq.: 100.622830 MHz

time domain size: 65536 points
width: 22075.06 Hz = 219.384162 ppm = 0.336839 Hz/pt
number of scans: 105

freq. of 0 ppm: 100.612769 MHz
processed size: 65536 complex points
LB: 1.000   GB: 0.0000
Hz/cm: 619.078   ppm/cm: 6.15247

SI_NMR 28
SpinWorks 2.5:

- Structure: O-Si-CH$_2$-hex

- 2-Pr

File: D:\CX_RVS_paper\rws-4-211\\fid  expt: <zg30>
- Transmitter freq.: 400.132471 MHz
- Time domain size: 32768 points
- Width: 8278.15 Hz = 20.688513 ppm = 0.252629 Hz/pt
- Number of scans: 16

Freq. of 0 ppm: 400.130006 MHz
- Processed size: 32768 complex points
- LB: 0.300  GB: 0.0000
- Hz/cm: 74.120  ppm/cm: 0.18524

SL_NMR 33
SpinWorks 2.5: 1H NMR

file: D:\Roman's\rvs-4-26-12\fid
transmitter freq.: 100.622830 MHz
time domain size: 65536 points
width: 22075.06 Hz = 219.384162 ppm = 0.336839 Hz/pt
number of scans: 316

freq. of 0 ppm: 100.612770 MHz
processed size: 65536 complex points
LB: 1.000  GB: 0.0000
Hz/cm: 345.548  ppm/cm: 3.43409

SI_NMR 34
file: D:\CX_RVS_paper\rvs-4-78\1\>
transmitter freq.: 500.132001 MHz
time domain size: 65536 points
width: 5000.00 Hz = 9.997361 ppm = 0.076294 Hz/pt
number of scans: 8
freq. of 0 ppm: 500.130005 MHz
processed size: 32768 complex points
LB: 0.300  GB: 0.0000
Hz/cm: 157.019  ppm/cm: 0.31396

SI_NMR 35
SpinWorks 2

file: D:\CX_RVS_paper\rvs-4-78\2\fid  expt: <zgpg30>
transmitter freq.: 125.770364 MHz
time domain size: 32768 points
width: 30030.03 Hz = 238.768729 ppm = 0.916444 Hz/pt
number of scans: 168

freq. of 0 ppm: 125.757789 MHz
processed size: 32768 complex points
LB:  1.000  GB:  0.0000
Hz/cm:  816.735  ppm/cm:  6.49386

SI_NMR 36
SpinWorks 2.5: 1D Proton NMR

iPr \_iPr
\h \_\h
6-Pr diast 1

file: D:\CX_RVS_paper\Lost RVS-CX Spectra\rvs-4-69-21\expt: <zg30>
transmitter freq.: 400.132471 MHz
time domain size: 65536 points
width: 8278.15 Hz = 20.688513 ppm = 0.126314 Hz/pt
number of scans: 16

freq. of 0 ppm: 400.130005 MHz
processed size: 32768 complex points
LB: 0.300  GB: 0.0000
Hz/cm: 128.814 ppm/cm: 0.32193

SI_NMR 37
SpinWorks 2.5: $^{13}$C NMR

I Pr i Pr

O

Si

hex

6-Pr diast 1

file: D:\CX_RVS_paper\Lost RVS-CX Spectra\rvs-4-69-2\2\fid  
file: <zgpg30>
transmitter freq.: 100.622830 MHz
processed size: 16384 complex points
freq. of 0 ppm: 100.612769 MHz
processed size: 16384 complex points
LB: 1.000  GB: 0.0000
Hz/cm: 366.323  ppm/cm: 3.64055
number of scans: 409

SI_NMR 38
SpinWorks 2.5: 1D Proton NMR

PPM

7.6 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0

file: D:\CX_RVS_paper\Lost RVS-CX Spectra\4-69-11id.expt.<g3d>
transmitter freq.: 400.132471 MHz
time domain size: 65536 points
width: 827.81 Hz = 20.688513 ppm = 0.126314 Hz/pt
number of scans: 16

freq. of 0 ppm: 400.130005 MHz
processed size: 32768 complex points
L.B.: 0.300 GB: 0.0000
Hz/cm: 141.279 ppm/cm: 0.35308

6-Pr diast 2
SpinWorks 2.5: $^{13}$C NMR

6-Pr diast 2

freq. of 0 ppm: 100.612769 MHz
processed size: 16384 complex points
LB: 1.000  GB: 0.0000
Hz/cm: 596.919  ppm/cm: 5.93224

file: D:\CX_RVS_paper\Lost RVS-CX Spectra\rvs-4-69-12\fid  expl: <gpg30>
transmitter freq.: 100.622830 MHz
time domain size: 32768 points
width: 22075.06 Hz = 219.384162 ppm = 0.673677 Hz/pt
number of scans: 263

SI_NMR 40
file: D:\CX_RVS_paper\rvs-4-76-1\1\fid  ext: <zg30>
transmitter freq.: 500.133089 MHz
processed size: 32768 complex points
freq. of 0 ppm: 500.130008 MHz
Hz/cm: 80.537 ppm/cm: 0.16103

number of scans: 16

width: 10330.58 Hz = 20.655659 ppm = 0.157632 Hz/pt
LB: 0.300  GB: 0.0000
Hz/cm: 80.537 ppm/cm: 0.16103

SI_NMR 41
SpinWorks 2.5:

![Chemical Structure](image)

file: D:\CX_RVS_paper\rvs-4-76-1\fid
expt: zgpg30
transmitter freq.: 125.770364 MHz
time domain size: 16384 points
width: 30030.03 Hz = 238.768729 ppm = 1.832888 Hz/pt
number of scans: 256

freq. of 0 ppm: 125.757762 MHz
processed size: 32768 complex points
LB: 1.000 GB: 0.0000
Hz/cm: 436.295 ppm/cm: 3.46898

SI_NMR 42
10-Et (5:1 mixture)
10-Ph diast 1 (minor)
10-Ph diast 2 (major)
10-Ph diast 2 (major)
12-Ph
14-Et (major)
SpinWorks 2.5: 13C NMR

14-Et mixture

file: D:\CX_RVS_paper\cx-6-31-f2\2\fid   expt: <zgpg30>
transmitter freq.: 100.622830 MHz
time domain size: 65536 points
width: 22075.06 Hz = 219.384162 ppm = 0.336839 Hz/pt
number of scans: 214
freq. of 0 ppm: 100.612771 MHz
processed size: 65536 complex points
LB: 0.000  GB: 0.0000
Hz/cm: 365.630  ppm/cm: 3.63367

SI_NMR 55
SpinWorks 2.5: 1D Proton NMR

![NMR Spectrum](image)

file: D:\CX_RVS_paper\cx-6-42\1\fid  
expt: <zg30>
transmitter freq.: 400.132471 MHz

width: 8278.15 Hz = 20.688513 ppm = 0.126314 Hz/pt
number of scans: 16

freq. of 0 ppm: 400.130010 MHz
processed size: 32768 complex points
LB: 0.300  GB: 0.0000
Hz/cm: 135.826  ppm/cm: 0.33945

SI_NMR 58
SpinWorks 2.5: 13C NMR

file: D:\CX_RVS_paper\cx-6-42\2\fid  
exp: <zgpg30>
transmitter freq.: 100.622830 MHz
time domain size: 65536 points
width: 22075.06 Hz = 219.384162 ppm = 0.336839 Hz/pt
number of scans: 67
freq. of 0 ppm: 100.612775 MHz
processed size: 65536 complex points
LB: 1.000  GB: 0.0000
Hz/cm: 385.712  ppm/cm: 3.83325

SI_NMR 59
hexyl

SI_NMR 60
20 diastereomer 2
20 diastereomer 2

hexyl

SI NMR 63

SI NMR 63
file: D:\CX_RVS_paper\More spectra\cx-6-25\2\fid  exp: <zgpg30>
transmitter freq.: 100.622830 MHz

freq. of 0 ppm: 100.612774 MHz
processed size: 65536 complex points
LB: 0.300  GB: 0.0000
Hz/cm: 608.691  ppm/cm: 6.04924

number of scans: 75

Hz/cm: 608.691  ppm/cm: 6.04924