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Genetics has traditionally focused on vertical gene transfer, which is the passing of the 

genetic material of an organism to its offspring. However, recent studies in genetics 

increased the awareness that horizontal gene transfer, which is the passing of the genetic 

material of an organism to another organism that is not its offspring, is also a significant 

phenomenon. Horizontal gene transfer is thought to play a major role in the natural 

evolution of bacteria, such as, when several different types of bacteria all suddenly 

develop the same drug resistance genes. Artificial horizontal gene transfer occurs in 

genetic engineering.  

This thesis provides methods to detect horizontal gene transfer among bacteria using 

BLAST and DaliLite measures of protein sequence and structural similarities. This 

research is novel and unique because no previous horizontal gene transfer study worked 

directly on protein sequences and structures. The main method is a computer algorithm to 

detect horizontal gene transfer among different COG classifications of proteins. The 

thesis also considers visual structural comparisons and sequence alignments using the 

‘Jmol’ tool.  Finally, the thesis considers the possibility that the method yields false 

positives. 
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Chapter 1 
 

Introduction 
 

1.1 Horizontal Gene Transfer 

Horizontal gene transfer (HGT), which is also called lateral gene transfer, is any process 

in which an organism incorporates genetic material from another organism without being 

the offspring of that organism. In contrast, vertical gene transfer occurs when an 

organism receives genetic material from its ancestor, e.g. its parent or a species from 

which it evolved. Genetics traditionally focused on vertical gene transfer, but there is a 

growing awareness that horizontal gene transfer is also a highly significant phenomenon, 

and among single-celled organisms perhaps the dominant form of genetic transfer. 

During HGT, genetic material can pass between organisms that need not be of the 

same species, genus, sub-kingdom or even kingdom of life. 

Detection of HGT is complicated and difficult. Horizontal gene transfer was first 

described in Japan in a 1959 publication that demonstrated the transfer of antibiotic 

resistance between different species of bacteria.[23][1] In the late 1980s while conducting 

research on some newly sequenced bacterial and archaeal gene families, scientists began 
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to notice that some genetic information was common among them, some bacteria 

possessed the archaeal type of an enzyme, and some of the archaea contained the 

bacterial versions. These discoveries were shaking the original metaphor of “the tree of 

life.”[25] 

Increasing studies of genes and genomes are indicating that considerable horizontal 

transfer has occurred between prokaryotes. The phenomenon appears to have had some 

significance for unicellular eukaryotes as well. There is some evidence that even higher 

plants and animals have been affected and this has raised concerns for safety.[22]  Due to 

the increasing amount of evidence suggesting the importance of these phenomena for 

evolution, molecular biologists have described horizontal gene transfer as a “new 

paradigm for biology”.  It should also be noted that the process may be a hidden hazard 

of genetic engineering, as it may allow dangerous transgenic DNA (which is optimized 

for transfer) to spread from species to species.  
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Chapter 2 
 

Background 
 

2.1 Basic Concepts of Biology 

2.1.1 Bacteria 

Bacteria are unicellular prokaryote microorganisms. Their size typically ranges a few 

millimeters in length and they vary in shapes from sphere to rod to spiral. The cell of a 

bacterium is surrounded by a cell membrane which encloses the contents of the cell and 

helps hold the nutrients, proteins and other essential components of the cytoplasm within 

the cell. They do not have membrane bound organelles in their cytoplasm, so do not have 

a their nucleus, mitochondria or chloroplasts.[3] 

Bacteria were first observed in 1676, which means they have been under study since a 

very long time.  Horizontal gene transfer in bacteria is thought to be a significant cause of 

increased drug resistance; when one bacterial cell acquires resistance, it can quickly 

transfer the resistance genes to many other bacterial species.[4]  Enteric bacteria appear to 

exchange genetic material with each other within the gut in which they live. 
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2.1.1.1 Classification of Bacteria based on phyla 

Based on the morphology, DNA sequencing, conditions required and biochemistry, 

scientists classify bacteria into the following phyla: 

1. Aquificae 
2. Xenobacteria 
3. Fibrobacter 
4. Bacteroids 
5. Firmicutes 
6. Planctomycetes 
7. Chrysogenetic 
8. Cyanobacteria 
9. Thermomicrobia 
10. Chlorobia 
11. Proteobacteria 
12. Spirochaetes 
13. Flavobacteria 
14. Fusobacteria 
15. Verrucomicrobia 

 

The main two phylum classifications of bacteria that we are going to be interested in are 

Firmicutes and Proteobacteria. Firmicutes belongs to Gram positive bacteria and 

Proteobacteria belongs to Gram negative bacteria. 
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Figure 2.1: Cell wall comparison of a Gram-positive and Gram-negative bacterium [20] 

 

2.1.1.2 Gram Staining 

Gram staining by a crystal violet dye is generally the first step used to identify a 

bacterium. Gram staining differentiates bacteria based on the chemical and physical 

properties of the cell walls into the following two different types: [5]  

Gram negative:  Bacteria that do not retain the crystal violet dye. 

Gram positive:   Bacteria that retain the crystal violet dye. [30] 
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2.1.2 Amino Acids 

Amino acids play a major role as building blocks of proteins.  Every protein is chemically 

defined by the order of amino acid residues and their primary structure, which in turn 

influences the secondary structure, tertiary structure or quaternary structure. Similar to 

letters of a language that can be combined in different combination to form words, amino 

acids combine in various stable combination of varying length to form a vast variety of 

proteins. There are 20 amino acids that are found within proteins. It is important to know 

the structure and chemistry of amino acids to understand the proteins, enzymes and 

nucleic acids.[9] 

2.1.3 Proteins 

Proteins are organic compounds made of amino acids arranged in a linear chain and 

folded. The amino acids in a polymer are joined together by the peptide bonds between 

the carboxyl and amino groups. The sequence of the gene decides the sequence of amino 

acids in a protein.[29] 

Discovering the structure of the protein can provide insight into the function that the 

protein performs. So understanding and comparing protein structures is crucial. 

Most proteins fold into unique 3-dimensional structures. The shape into which a protein 

naturally folds is known as its native conformation. There are four distinct aspects of a 

protein's structure: 

1. Primary structure is the amino acid sequence. 

2. Secondary structure is the regularly repeating local structures stabilized 

by hydrogen bonds. 
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3. Tertiary structure is the overall shape of a single protein molecule; the spatial 

relationship of the secondary structures to one another. 

4. Quaternary structure is the structure formed by several protein molecules 

(polypeptide chains). 

 

2.1.4 Codons 

The tri-nucleotide sequences are called codons. The genetic code defines a mapping 

between the codons and amino acids. 

Start codon: Translation starts with a chain initiation codon (start codon). The most 

common start codon is AUG. 

Stop codon: It is a nucleodtide triplet within messenger RNA that signals a termination of 

translation.[13] 

The several stop codons are as follows: 

• in RNA:  

 UAG  

 UAA  

 UGA  

• in DNA:  

 TAG  

 TAA  

 TGA  
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2.2 Basics of HGT 

2.2.1 Mechanisms of HGT 

Horizontal gene transfer could occur by several mechanisms between organisms. There 

are three basic mechanisms as described below. 

• Transformation - The uptake of naked DNA is a common mode of horizontal 

gene transfer that can mediate the exchange of any part of a chromosome; this 

process is most common in bacteria that are naturally transformable; typically 

only short DNA fragments are exchanged. 

• Conjugation - The transfer of DNA mediated by conjugal plasmids or conjugal 

transposons; requires cell to cell contact but can occur between distantly related 

bacteria or even bacteria and eukaryotic cells; can transfer long fragments of 

DNA. 

• Transduction - The transfer of DNA by phage requires that the donor and 

recipient share cell surface receptors for phage binding and thus is usually limited 

to closely related bacteria; the length of DNA transferred is limited by the size of 

the phage head. 

• Gene transfer agents, virus-like elements encoded by the host that are found in 

the alphaproteobacteria order Rhodobacterales.[21] 

Each of these methods of genetic exchange can introduce sequences of DNA that share 

little homology with the remaining DNA of the recipient cell. If there are homologous 

sequences shared between the donor DNA and the recipient chromosome, the donor 

sequences can be stably incorporated into the recipient chromosome by genetic 
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recombination. If the homologous sequences flank sequences that are absent in the 

recipient, the recipient may acquire an insertion from another strain of unrelated bacteria. 

Such insertions can be small or quite large. Large insertions that have been acquired from 

another bacterium (often inferred from differences in GC content or codon usage) and are 

absent from related strains of bacteria are called "islands". 

 

2.2.2 Examples of HGT 

In Viruses 

The virus called Mimivirus can itself be infected by a virus called Sputnik. 

“Sputnik’s genome reveals further insight into its biology. Although 13 of its genes show 

little similarity to any other known genes, three are closely related to mimivirus 

and mamavirus genes, perhaps cannibalized by the tiny virus as it packaged up particles 

sometime in its history. This suggests that the satellite virus could perform horizontal 

gene transfer between viruses — paralleling the way that bacteriophages ferry genes 

between bacteria.”[19][24] 

In Prokaryotes 

Horizontal gene transfer is common among bacteria, even very distantly-related ones. 

This process is thought to be a significant cause of increased drug resistance; when one 

bacterial cell acquires resistance, it can quickly transfer the resistance genes to many 

species. Enteric bacteria appear to exchange genetic material with each other within 

the gut in which they live.[12] 
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In Eukaryotes 

Analysis of DNA sequences suggests that horizontal gene transfer has also occurred 

within eukaryotes, from their chloroplast and mitochondrial genome to their nuclear 

genome. As stated in the endosymbiotic theory, chloroplasts and mitochondria probably 

originated as bacterial endosymbionts of a progenitor to the eukaryotic cell. 

Horizontal transfer of genes from bacteria to some fungi, especially the 

yeast Saccharomyces cerevisiae, has been documented. 

There is also recent evidence that the azuki bean beetle has somehow acquired genetic 

material from its (non-beneficial) endosymbiont Wolbachia.[18] 

Traditionally only the Vertical gene transfers i.e. flow of genes from parent to 

child was considered for all the study. Given two distantly related bacteria that have 

exchanged a gene, a phylogenetic tree including those species will show them to be 

closely related because that particular gene is the same, even though most other genes are 

dissimilar.  

The most common gene that is used for constructing phylogenetic relationships in 

prokaryotes is the ‘16s rRNA’ gene. But recent study shows 16s rRNA genes can also be 

horizontally transferred. So the validity of 16s rRNA-constructed phylogenetic trees must 

be reevaluated. 
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2.3 Related Study 

2.3.1 Biological Databases Used 

2.3.1.1 Protein Data Bank (PDB)[6] 

It is a single worldwide repository of information about 3D structures of large biological 

molecules, including proteins and nucleic acids. The data on PDB is available for free, 

these data are actually submitted by biologists and biochemists from around the world 

which is first reviewed and then published. The biologists and biochemists typically 

obtain their data by X-ray crystallography or NMR spectroscopy. The PDB is a key 

resource in areas of structural biology, such as structural genomics. Most major scientific 

journals, and some funding agencies, such as the NIH in the USA, now require scientists 

to submit their structure data to the PDB. 

Understanding the shape of the molecule is important to understand the functioning of the 

molecule. Thus, PDB helps the scientific world in determining the structure's role in 

human health and disease and also in drug development. The PDB database can be found 

here:  http://www.pdb.org/ 

2.3.1.2 Clusters of Orthologous Groups (COG) Database[33] 

COG is a classification of proteins generated by comparing the protein sequences of 

complete genomes.  Each COG consists of individual proteins or groups of paralogs from 

at least 3 lineages and thus corresponds to an ancient conserved domain. 

The National Center for Bio-technology Information (NCBI) advances science and health 

by providing access to biomedical and genomic information. The NCBI maintains and 
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updates the COG database. There are currently 66 Unicellular organisms consisting of 

138458 proteins The proteins form 4873 COGs. The COG database can be found at 

http://www.ncbi.nlm.nih.gov/COG 

2.3.1.3 Gene Ontology (GO) Database[7] 

The Gene Ontology project is a major bioinformatics initiative with the aim of 

standardizing the representation of gene and gene product attributes across species and 

databases. The project provides a controlled vocabulary of terms for describing gene 

product characteristics and gene product annotation data from GO Consortium members, 

as well as tools to access and process this data. GO is not a database of gene sequences, 

nor a catalog of gene products. Rather, GO describes how gene products behave in a 

cellular context. The GO Database can be found at http://www.geneontology.org/ 

2.3.1.4 PROFESS (PROtein Function, Evolution, Structure and Sequence) Database[35] 

PROFESS is a genome biology database system, developed at University of Nebraska-

Lincoln, to assist in the functional and evolutionary analysis of the proteins. Fourteen 

sources of data were integrated to create PROFESS using a local-as-view (LAV) modular 

approach. 

There are about 1100 molecular biology databases freely available to the public online 

and there is no proper integration between these databases. To address more complex 

question, biologist are often required to design their own databases and have to put 

together the data from these various biological databases. The PROFESS database 

integrates these diverse biological databases under a single platform. This unique 

integration of various databases makes the profess database of great use to this research. 
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One of them is the COG-PDB id relation or mapping that PROFESS has created was 

used in this research. 

The PROFESS Database can be found at http://cse.unl.edu/~profess/ 

2.3.2 Biological Tools Used 

2.3.2.1 BLAST[2] 

Basic Local Alignment Search Tool (BLAST) is an algorithm for comparing primary 

biological sequence information, such as the amino-acid sequences of different proteins 

or the nucleotides of DNA sequences. BLAST helps researches to compare a sequence 

with another sequence or a database of sequences and identify the sequences that are 

similar to the query sequence above a specified threshold. Different types of BLASTs are 

available according to the query sequences. BLAST takes the FASTA or GENBank 

format of the amino acid sequence as input. BLAST output can be delivered in a variety 

of formats. These formats include HTML, plain text, and XML formatting. 

BLAST is actually a family of programs (all included in the blastall executable). These 

include, Nucleotide-nucleotide BLAST (blastn): This program, given a DNA query, 

returns the most similar DNA sequences from the DNA database that the user specifies. 

Protein-protein BLAST (blastp): This program, given a protein query, returns the most 

similar protein sequences from the protein database that the user specifies. 

Position-Specific Iterative BLAST (PSI-BLAST): This program is used to find distant 

relatives of a protein. PSI-BLAST is much more sensitive in picking up distant 

evolutionary relationships than a standard protein-protein BLAST. 
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Nucleotide 6-frame translation-protein (blastx): This program compares the six-frame 

conceptual translation products of a nucleotide query sequence (both strands) against a 

protein sequence database. 

Nucleotide 6-frame translation-nucleotide 6-frame translation (tblastx): It translates the 

query nucleotide sequence in all six possible frames and compares it against the six-

frame translations of a nucleotide sequence database. The purpose of tblastx is to find 

very distant relationships between nucleotide sequences. 

Protein-nucleotide 6-frame translation (tblastn): This program compares a protein query 

against the all six reading frames of a nucleotide sequence database. 

Large numbers of query sequences (megablast): It concatenates many input sequences 

together to form a large sequence before searching the BLAST database, then post-

analyze the search results to extract individual alignments and statistical values. 

Of all these programs, BLASTn and BLASTp are the most commonly used because they 

use direct comparisons and do not require translations. 

 

2.3.2.2 DaliLite[10][14] 

DaliLite is a program for pair wise structural comparison and for structural database 

searching. It is the standalone version of the popular Dali server search engine. DaliLite 

can be implemented with a web interface were we can view the similarity z-scores as 

well as the structures. It can be implemented without the web interface as well. DaliLite 
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has been ported to Linux and Iris operation system and can be complied in other UNIX 

based operation system as well. 

The Dali method (Distance matrix alignment) is based on a sensitive approach that 

measures the weighted sum of similarities of intermolecular distances. The Dali server is 

often used compare newly solved structures to those in the Protein data bank to compare 

the predicted structure with the actual structure. But the Dali server is accessible only 

through the network and is too complex and large to run locally. So we use DaliLite 

which is a standalone program that researchers can run locally and thus helps to compare 

a large number of structures with ease and the flexibility of running locally is an addition. 

For the user, DaliLite seems to be taking two PDB ids and giving out the structural 

comparison results. Internally, it takes two sets of atomic coordinates in PDB format. A 

visualization script named DaliQuiz converts FSSP alignments to graphical output. The 

program outputs the FSSP file and displays the Z-score (the structural similarity score) 

which are normalized with respect to domain size. The Z-score output of DaliLite is of 

most interest to us in this research. 

The Z-score is the measure of the quality of alignment. Z-score above 20 means generally 

homologous, Z-score between 8-20 means probably homologous and Z-scores less than 2 

are not significant. 

Dali uses Branch and Bound Search to find the optimal alignment and Monte Carlo 

Optimization Algorithm to optimize the alignment. 
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The similarity score is give by the formula. 

𝑆 = � � �𝜃 −  Δ (𝑑𝑖𝑗𝐴 ,𝑑𝑖𝑗𝐵 )� 𝜔 (𝑑𝑖𝑗𝐴 ,𝑑𝑖𝑗𝐵 )
𝑗 ∈𝑐𝑜𝑟𝑒𝑖 ∈𝑐𝑜𝑟𝑒

 

In the formula: 

• core is the set of structurally equivalent residue pairs between proteins A and B. 

• Δ is the deviation of the intermolecular Cα-Cα intermolecular distance between 

(iA,jA) and (iB,jB), relative to their arithmetic mean d. 

• θ is the similarity threshold, set empirically to 0.2 

• ω is the envelope function and ω = exp(-d2/r2), where r = 20Å. 

• High score means good fit. 

And then the Z-score is statistically calculated as 

𝑍 =
𝑥 −  µ
𝜎

 

• X is the raw score to be standardized. 

• σ is the standard deviation. 

• μ is the mean. 

• Score < 2.0 are structurally dissimilar. 

 

2.3.2.3 Jmol[17] 

Jmol is an open-source java viewer for chemical structures in 3-D. Jmol tool is of great 

use for students, educators and researchers in chemistry and biochemistry. Since it’s an 
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open source it is available for free, runs on Windows, Mac OS X, Linux and Unix 

systems. There is a standalone Jmol application and it also has a development tool kit 

which helps in integration of Jmol with other Java applications. One of the notable 

features is the Jmol applet that can be embedded in a webpage. Many websites now have 

the Jmol applet embedded to their site. The Protein data bank website 

http://www.rcsb.org/ has the Jmol applet embedded for compassion of protein structures.  

Jmol supports a wide range of molecular file formats, including Protein Data 

Bank (pdb), Crystallographic Information File (cif), MDL Molfile (mol), and Chemical 

Markup Language (CML). 

 

2.3.3 Methods currently Used to Detect HGT 

During the past decade, different approaches have been proposed for the detection of 

HGT, which can be classified in two major categories: (a) the phylogeny-based methods 

and (b) the composition-based methods. Some of them are described here which helps us 

understand the uniqueness of the new approach which uses protein structures to detect 

HGT. 

 

2.3.3.1 Phylogeny-Based Detection of HGT 

Phylogeny-based detection of HGT is one of the most commonly used approaches for 

detecting HGT. It is based on the fact that HGT causes discrepancies in the gene tree as 

well as create conflict with the species phylogeny. So the methods that use this approach 

http://www.rcsb.org/�
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would compare the gene and species tress which would come up with a set of HGT 

events to explain the discrepancies among these trees.[34] 

When HGT occurs, the evolutionary history of the gene would not agree with the species 

phylogeny. The gene trees get reconstructed and their disagreements are used to estimate 

how many events of HGT could have occurred and the donors and recipients of the gene 

transfer. 

Some of the issues when using this method for HGT detection are, determining if the 

discrepancy is actually a HGT and uniquely identifying the HGT scenario.  

The Phylogenetic trees are only partially known and they are reconstructed using 

Phylogeny reconstruction techniques. The quality of this reconstruction which is usually 

done statistically has an impact on the HGT detection and sometimes could underestimate 

or overestimate the number HGT events. 

Eliminating these statistical errors is possible but this will lead to non-binary 

Phylogenetic trees. But this method works with Binary Phylogenetic trees only. So this 

method will need to be modified to accommodate non-Binary Phylogenetic trees as well. 

 

2.3.3.2 Distance-Based Detection of HGT 

The Distance-Based method incorporates distances typically used in the Phylogeny-based 

detection of HGT rather than the trees themselves.[36] This method has many of the 

strengths of Phylogenetic approaches but avoids some of their pitfalls. 
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This method uses only the pair-wise distance instead of building the whole trees as in the 

Phylogeny-based approach, which makes the distance-based approach run much more 

quickly, allowing scanning of whole genomes. As there is no ‘consensus’ tree in this 

method, it does not suffer in the cases where no tree matches all of the given data. Instead 

it just compares the pair-wise distance between species and thus called the Distance-

Based method for detecting HGT. 

 

2.3.3.3 Composition-Based Detection of HGT 

Although the Phylogeny-Based detection methods are more powerful than the 

Composition-based methods, especially when the donor is closely related to the recipient 

genome, they are very time consuming.[8] 

The four methodologies commonly employed by Composition-based methods to detect 

HGT are based on 

• The codon adaptation index, codon usage, and GC percentage.(CAI/GC) 

• The distributional profile 

• The Bayesian model 

• The first-order Markov model 

All these methods attempt to identify genes with anomalous compositions. 

The genomic DNA of different organisms has a particular mean G+C content. Genes in a 

given genome use the same coding strategy for choices among synonymous codons. That 
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is, the bias in codon usage is species specific. Statistical methods have been developed to 

use these anomalies in the GC content to detect HGT.[12] 

One notable problem with the compositional approaches is that the codon usage and GC 

content give different results, each detecting a different set of possible horizontal gene 

transfers that really didn’t match with each other. 

Study on these methods show that both the Bayesian models and the Markov models do a 

good job in detecting HGT when closely related species are studied, though the Markov 

model is more effective. The CAI/GC method appears to be a less effective approach in 

the detection of HGT but was very effective in detecting HGT when the foreign genes 

were from a phylogenetically distant species. The distribution profile method exhibited 

an average detection level of approximately 50% for foreign genes but failed to go 

beyond 80% threshold of detection. 

If a compositional method with an accurate detection level of horizontally transferred 

genes can be developed, it could avoid the application of exhaustive processes and slow 

Phylogenetic reconstructions used in the phylogeny-based approach. 
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Chapter 3 
 

Methodology 
 

Instead of using the traditional methods for identifying HGT, we devised a novel protein 

structure-based method (HGT-SBM). When a protein is acquired by HGT, the structure 

of the protein remains fairly similar to that of the donor organism as it tries to retain close 

similarities to the function of the donor protein. 

We used the COG classification of protein function to look for protein structure 

anomalies. All proteins under the same COG classification are supposed to have similar 

function, which evolutionary theory indicates they should have similar structures. 

For this research, we try to identify HGT between the bacterial phyla Firmicutes and 

Proteobacteria. Most medically important bacteria fall into these two phyla, which 

diverged hundreds of millions of years ago. During their subsequent evolutions, the 

proteins in all Firmicutes bacteria acquired random mutation but still remained more 

similar to the other Firmicutes bacterial proteins than to the Proteobacteria bacterial 

proteins and vice-versa.  Hence any anomalous proteins (i.e. proteins having 
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characteristics of the other phyla’s protein) in either of the phylum would be a very good 

candidate for a horizontal gene transfer that occurred fairly recently. 

 

3.1 The Method 

We chose E. coli from Proteobacteria and Bacillus subtilis from Firmicutes as candidates 

from the two phyla as they have the most number of studied structures from their 

respective phyla. 

PROFESS database was used to get the list of proteins that have been studied in E. coli 

and Bacillus subtilis and also the COGs to which they belong to. The COG classification 

enables us to identify the proteins which are functionally similar. 

DaliLite program was used for the structure comparison of the proteins. We first 

determine the extent of structural similarity of all the proteins in a particular COG within 

each organism chosen from the two phyla (in this case E. coli and Bacillus subtilis). Then 

a pair-wise structural comparison of the proteins between the two organism in each COG 

is done (in this case the E. coli proteins are compared with the Bacillus subtilis proteins). 

We have approximately 3264 unique PDB IDs in E. coli and 494 unique PDB IDs in 

Bacillus subtilis. There are about 88 COGs common in both these organisms. This would 

result in n * (n-1)/2 pairs of PDB IDs for each COG, where n is the number of proteins in 

a COG. For the pair-wise comparison between the two organisms within the same COG 

the number of pairs of PDB IDs would be the cross product of number of proteins in that 

COG in each organism. For all these cases the averages of the Z-scores for all the pair 

wise comparison within a COG (for all the common COGs) are documented in a table. 
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DaliLite gives different Z-scores values for a pair of proteins corresponding to different 

alignments. We use the best alignment i.e. the highest Z-score value that DaliLite outputs 

for a given pair. A normalization process is done on the documented Z-score. This is 

done by choosing the maximum of the 3 average Z-scores values obtained for a COG 

(one average Z-score from the comparison of proteins within the Proteobacteria, one 

average Z-score from the comparison of proteins within the Firmicutes and one average 

Z-score from the comparison of proteins between Proteobacteria & Firmicutes.) All the 3 

average Z-scores for a COG are divided by this max Z-score value. 

Now we try to compare and look for Z-score anomalies as this will identify protein 

structure anomalies. Usually the average values of Z-scores for proteins within a COG for 

both the organisms in comparison are supposed to be pretty similar. So we try to identify 

those COGs which have high average Z-scores in one organism and a low average Z-

score in the other organism. A threshold of 75% was chosen for the average Z-score 

values to identify as an anomaly. For example of the documented average Z-scores looks 

like the table below. 

 

Table 3.1: Example of Documented Data 

Common 
COG E. coli Bacillus 

subtilis 
Comparison 

Z-Score 

E. coli 
normalized 

Z-Score 

Bacillus 
subtilis 

normalized 
Z-score 

Comparison 
Z-Score 

normalized 

500 11 39.5 15.4 0.27848 1 0.38987 
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In the above example, the COG 500 is identified as having an anomaly because the 

average Z-score in COG 500 in E. coli is only 11 which is 27.8% of the average Z-score 

in Bacillus subtilis which is 39.5. 

Most of the times the reason this happens is, there are one or more proteins in the COG 

that have dissimilar protein structures compared to the other proteins in the same COG. 

These proteins are candidates for HGT. Not all anomalous protein structures can be 

identified as HGT. A careful and a systematic hand curation of the Z-scores must be done 

to identify or eliminate different PDB structures for the same protein, some of them 

bound to ligands and some with different conformation. It is also necessary to examine 

enzyme names to ensure the PDBs are for different proteins with the same COG. Finally, 

it was necessary to compare super imposed structures to verify that HGT had occurred. 

 

3.2 Automation 

When we would like to study many organisms and search for proteins that are candidates 

for HGT the process should be automated to the extent possible. 

First, the data set was assembled by downloading all the protein structures in all the 

bacteria in the Firmicutes and Proteobacteria phyla along with their COG classification 

from the PROFESS database. 

The protein structural comparisons were automated such that DaliLite was run on the grid 

in Holland computing center in Schorr center at UNL. The Z-scores results from DaliLite 

for all the possible combinations of proteins with in a COG classification were stored, 
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which gave about 14 million lines of output Z-scores corresponding to all the 

combinations. All these data was converted into a small database for ease to program and 

use the data. 

The database scheme looks like below: 

 

Figure 3.1: Database schema used for automation 

 

A user interface was created in which users could chose pairs of opposite Gram bacteria, 

and the formatted data with average Z-scores for each COG would be displayed. All the 

results can be exported as comma separated format for further analysis. Flexibility for 

adding data to the tables has also been provided and option for uploading their own 

database files has been provided as well. This application can be used by future 

researches in this topic and could be of great use. 
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With the automation program we tried to compare E. coli with all the Firmicutes bacteria 

to detect possible HGTs in E. coli from Firmicutes bacteria. The automation process 

greatly reduced the data set to be analyzed by hand. 

 

 

Figure 3.2: Flow chart of the method  
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Chapter 4 
 

Analysis and Results 
 

We needed to do our analysis on proteins from two bacterial phyla. E. coli was chosen as 

the representative organism from Proteobacteria because it is among the most extensively 

studied bacteria and has the most number of crystallized proteins. 

The protein structures of E. coli were compared with all the Firmicutes (Gram positive) 

bacteria having greater than 40 of crystallized proteins in the PDB. There were 15 Gram 

positive organisms with crystallized proteins greater than 40. But E. coli could be 

compared to only 7 of them that had COG numbers matching with the ones E. coli has. 

The Gram positive organisms compared with E. coli are: 

1. Bacillus subtilis 

2. Staphylococcus aureus 

3. Bacillus stearothermophilus 

4. Streptococcus pneumonia 

5. Lactococcus lactis 

6. Bacillus anthracis 

7. Bacillus megaterium 
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The comparison of protein structure within the common COGs of E. coli and the 

other Gram positive organism is tabulated in tables 4.1-4.7. The highlighted row are 

the COGs that have the average Z-score values in that COG less than or equal to 75% 

of the average Z-score value in the other organism within the same COG (this is 

because we are looking for HGT in E. coli otherwise the criteria would have been the 

other way round). These are the COGs of our interest and a further analysis is 

continued only on these. 
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Table 4.1: Z-score structural comparison between Escherichia coli and Bacillus subtilis 

COG 
Number 

Escherichia 
coli 

Bacillus 
subtilis Comparison 

Escherichia 
coli 
Normalized 

Bacillus 
subtilis 
Normalized 

Comparison 
Normalized 

840 5.6 29.6 1.625 0.19 1 0.054 
500 12 39.5 16.55 0.30 1 0.42 

1278 5.1 13.2 7.21 0.39 1 0.55 
596 24.8 47.6 28.13 0.52 1 0.59 
604 36.76 55 41.1 0.67 1 0.75 
789 10.35 15.2 8.33 0.68 1 0.55 

1609 28.95 41.6 28.87 0.7 1 0.69 
526 13.38 19.2 10.2 0.7 1 0.53 
503 20.66 27.63 11.8 0.75 1 0.43 
511 12.9 16.27 7.93 0.79 1 0.49 

2141 53.3 63.7 32.5 0.84 1 0.51 
563 31.67 37.1 29.25 0.85 1 0.79 
171 40.23 42.83 36.31 0.94 1 0.85 

2202 22.58 23.5 10.37 0.96 1 0.44 
34 60.31 62.2 44.92 0.97 1 0.72 

1985 51.97 53.1 38.17 0.98 1 0.72 
363 45.07 45.7 37.39 0.99 1 0.82 
207 43.21 42.13 33.62 1 0.98 0.78 
236 17.35 8.9 11.75 1 0.51 0.68 
454 35.7 12.09 9.71 1 0.34 0.27 
653 53.1 44.3 40.01 1 0.83 0.75 
745 12.55 0 9.43 1 0 0.75 
784 23.7 21.48 16.567 1 0.91 0.7 
834 25.7333 23.2 22.283 1 0.94 0.87 

1057 33.1 23.7 22.05 1 0.72 0.67 
1309 22.88 14.27 10.65 1 0.62 0.47 
1925 20.85 13.05 12.9 1 0.63 0.62 
2050 22.59 21.3 15.12 1 0.94 0.67 
2113 49.3 41 9.13 1 0.83 0.19 
2132 71.01 67.53 44.35 1 0.95 0.62 
2217 14.3 12.01 10.38 1 0.84 0.73 
2351 24.6 23.93 17.32 1 0.97 0.7 
4948 52.3 44.77 37.68 1 0.85 0.72 
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Table 4.2: Z-score structural comparison between Escherichia coli and Staphylococcus 

aureus 

COG 
Number 

Escherichia 
coli 

Staphyl
ococcus 
aureus Comparison 

Escherichia 
coli 
Normalized 

Staphylococ
cus aureus 
Normalized 

Comparison 
Normalized 

441 27.20 59.1 41.28 0.46 1 0.7 
526 13.38 23.63 13.67 0.567 1 0.579 
614 27.8 43.6 21.6 0.64 1 0.5 

5640 31.94 44.3 31.88 0.72 1 0.72 
242 32.18 33.78 21.0 0.95 1 0.62 

1057 33.1 33.7 23.25 0.98 1 0.69 
2367 43.41 43.97 34.87 0.99 1 0.79 

24 47.82 47.97 35.82 1 1 0.75 
125 38.6 34.2 24.65 1 0.89 0.64 
162 50.98 47.7 42.45 1 0.94 0.83 
454 35.7 9.7 8.1 1 0.27 0.23 
584 55.9 47.8 29.45 1 0.86 0.53 

4948 52.3 49.8 26.48 1 0.95 0.51 
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Table 4.3: Z-score structural comparison between Escherichia coli and Bacillus 

stearothermophilus 

COG 
Number 

Escherichia 
coli 

Bacillus 
stearoth
ermophi
lus Comparison 

Escherichia 
coli 
Normalized 

Bacillus 
stearotherm
ophilus 
Normalized 

Comparison 
Normalized 

532 0 0 2.38 0 0 1 
508 3.91 7.5 4.01 0.52 1 0.54 

80 6.99 13.2 5.12 0.53 1 0.39 
266 27.27 39.17 22.68 0.7 1 0.58 
522 20.06 27.5 15.65 0.73 1 0.57 

1194 37.84 48 31.37 0.79 1 0.65 
149 42.6 47.6 37.2 0.89 1 0.78 
205 46.9 48.7 44.88 0.96 1 0.92 

57 54.92 56.45 50.98 0.97 1 0.9 
112 72.6 70.1 62.23 1 0.97 0.86 
162 50.98 31.15 36.82 1 0.61 0.72 
210 48.32 28.22 31.56 1 0.58 0.65 
358 14.79 0 1.33 1 0 0.09 
359 13.62 8.37 2.93 1 0.61 0.21 
749 55.68 54.57 37.96 1 0.98 0.68 
776 11.05 9.8 9.37 1 0.89 0.85 
784 23.7 18.1 16.5 1 0.76 0.7 

1438 16.13 15.4 10.63 1 0.95 0.66 
1925 20.86 12.1 12.74 1 0.58 0.61 
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Table 4.4: Z-score structural comparison between Escherichia coli and Streptococcus 

pneumonia 

COG 
Number 

Escherichia 
coli 

Streptoc
occus 
pneumo
niae Comparison 

Escherichia 
coli 
Normalized 

Streptococc
us 
pneumoniae 
Normalized 

Comparison 
Normalized 

745 12.55 25.22 16.17 0.5 1 0.64 
242 32.18 36.28 20.39 0.89 1 0.56 
136 54.43 59.92 38.82 0.91 1 0.65 
128 57.92 61.5 41.81 0.94 1 0.68 
304 72.17 76.23 62.81 0.95 1 0.82 

1207 49.18 50.85 42.02 0.97 1 0.83 
494 13.64 13.5 11.14 1 0.99 0.82 

 

 

Table 4.5: Z-score structural comparison between Escherichia coli and Lactococcus 

lactis 

COG 
Number 

Escherichia 
coli 

Lactococ
cus lactis Comparison 

Escherichia 
coli 
Normalized 

Lactococcus 
lactis 
Normalized 

Comparison 
Normalized 

266 27.27 42.3 22.74 0.64 1 0.54 
2376 38.67 51.8 34.81 0.75 1 0.67 

40 37.4 48.8 22.43 0.77 1 0.46 
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Table 4.6: Z-score structural comparison between Escherichia coli and Bacillus 

anthracis 

COG 
Number 

Escherichia 
coli 

Bacillus 
anthracis Comparison 

Escherichia 
coli 
Normalized 

Bacillus 
anthracis 
Normalized 

Comparison 
Normalized 

5126 13.53 41.06 11.79 0.33 1 0.29 
329 46.76 53.1 41.95 0.88 1 0.79 
605 33.58 34 31.66 0.99 1 0.93 
171 40.23 36.13 33.73 1 0.9 0.84 
783 29.67 26.6 19.11 1 0.9 0.64 

 

 

Table 4.7: Z-score structural comparison between Escherichia coli and Bacillus 

megaterium 

COG 
Number 

Escherichia 
coli 

Bacillus 
megateri
um Comparison 

Escherichia 
coli 
Normalized 

Bacillus 
megaterium 
Normalized 

Comparison 
Normalized 

1925 20.86 42.98 15.16 0.49 1 0.35 
1609 28.96 41.32 27.94 0.7 1 0.68 
1028 34.77 46.4 33.47 0.75 1 0.72 
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Table 4.8: Summary of candidates for HGT among the compared protein structures 

COG Bacterial Pairs Findings 

 
No. of 

structures in 
E. coli 

No. of 
structures in 

Bacillus 
subtilis 

 

500 2 2 Statistically promising example of HGT, 
provided there were more structures. 

503 6 4 Most likely a good example of HGT. 
526 38 13 Substrate diversity. 
596 2 2 Most likely a good example of HGT. 
604 3 2 Most likely a good example of HGT. 

789 6 2 
Most likely a good example of HGT. But a 

closer examination revealed it was the result of 
protein fragments in E. coli. 

840 2 2 
The two Gram-positive protein structures are 

not different and not similar to any of the 
Gram-negative protein structures. 

1278 2 4 Most likely a good example of HGT. 
1609 42 2 Substrate diversity. 

 
No. of 

structures in 
E. coli 

No. of 
structures in 

Staphylo- 
coccus aureus 

 

441 9 2 Protein fragments in E. coli and the two Gram-
positive proteins are not different 

526 38 4 Substrate diversity 

614 8 2 
The two Gram-positive protein structures are 
not different and have similar Z-scores to all 

the protein structures in Gram-negative. 

5640 15 3 
The three Gram-positive protein structures are 
not different and have similar Z-scores to all 

the protein structures in Gram-negative. 

 
No. of 

structures in 
E. coli 

No. of 
structures in 

Bacillus 
stearother- 
mophilus 

 

80 30 2 NULL values of Z-scores, Substrate diversity, 
Protein fragments*. 

266 6 12 Substrate diversity, confirmation changes. 
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508 6 8 NULL values of Z-scores, Protein domains & 
fragments*. 

522 33 2 Substrate diversity, NULL values of Z-scores, 
Protein domains/ fragments*. 

 

No. of 
structures in 

E. coli 

No. of 
structures in 

Streptococcus 
pneumoniae 

 

745 16 4 
NULL values of Z-scores, Protein domains & 
fragments*, same protein crystallized more 

than once. 

 
No. of 

structures in 
E. coli 

No. of 
structures in 
Lactococcus 

lactis 

 

266 6 7 Conformation changes. 

2376 5 2 Different subunit of a multi subunit enzyme, so 
the structures are unrelated but is not a HGT. 

 
No. of 

structures in 
E. coli 

No. of 
structures in 

Bacillus 
anthracis 

 

5126 3 10 
Same proteins with and without ligand, 

Substrate diversity, HGT not from any Gram-
positive bacteria. 

 
No. of 

structures in 
E. coli 

No. of 
structures in 

Bacillus 
megaterium 

 

1028 7 4 Substrate diversity. 
1609 42 9 Substrate diversity. 
1925 8 4 Protein domains & fragments*. 

 

* In cases where protein fragments are involved, other methods can be used instead of the 
Z-score comparison. For example, we could use Revesz’s sequence tilting method.[32] 
Revesz’s tiling method approximately reconstructs the entire sequence of a protein using 
fragments of another protein. The measure of the goodness of the tiling between two 
strings a and b, called the tiling similarity, is defined as: 

TS(a, b) =
sum of the similarities in the alignments

number of tiles in the tiling
 

If there are several possible tilings, we need to choose the tiling that yields the highest 
tiling similarity score.[32]  
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4.1 Summary of Suspected HGT 

A further detailed analysis of all the proteins in these candidate HGTs resulted in 

identification of the proteins 2DY0 in COG-503, 1M33 in COG-596, 1O98 & 1O8C in 

COG-604 and 3MEF in COG-1278 as possible HGT to E. coli from Bacillus subtilis. 

 

Table 4.9: Summary of Proteins suspected as HGT 

PDB-ID COG ΔZ-score* Receiving Bacteria Donor Bacteria 

2DY0 503 11.85 Escherichia coli Bacillus subtilis 

1M33 596 4.95 Escherichia coli Bacillus subtilis 

(1O98, 1O8C) 604 15.45 Escherichia coli Bacillus subtilis 

3MEF 1278 5.28 Escherichia coli Bacillus subtilis 
 

* The ΔZ-score is the difference of the average comparison Z-scores of the HGT 

suspected protein with all the proteins in the opposite Gram organism and the average Z-

scores of all the other proteins in the same COG as the suspected protein with all the 

proteins in the opposite Gram organism. 
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4.2 Detailed Analysis of COG-503 

COG-503 from E. coli includes five structures of Xanthine Transferase (1A95, 1A96, 

1A97, 1A98, 1NUL) and one structure of Adenine Transferase (2DY0). Among these the 

Adenine Transferase had the most divergent structure according to the Z-score 

comparison; an average of 10 compared to an average of 25 for all the others. 

COG-503 from Bacillus subtilis includes four structures, one Repressor (1O57) and 3 

Xanthine Transferase (1P96, 1Y0B, 2FXV). All of the four proteins were closely related 

according to their Z-scores. 

E. coli protein 2DY0 was more similar to the four Bacillus subtilis proteins than it was to 

the E. coli proteins. Therefore, it is an excellent candidate to be a horizontally transferred 

gene product. This example has not been reported in the literature. 
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Table 4.10: COG- 503 in Comparison between Escherichia coli and Bacillus subtilis 

E. coli proteins versus each other 
  1A95 1A96 1A97 1A98 1NUL 2DY0 
1A95   29.7 28.3 22.7 26 11.3 
1A96     28.3 22.7 26 11.3 
1A97       23.2 26.2 11 
1A98         23.5 9.6 
1NUL           10.2 
2DY0             

 

Bacillus subtilis proteins versus each other 
  1O57 1P4A 1Y0B 2FXV 
1O57   39.9 23 23.6 
1P4A     22.9 23.6 
1Y0B       32.8 
2FXV         

 

E. coli versus Bacillus subtilis proteins 
  1O57 1P4A 1Y0B 2FXV 
1A95 9.9 10.8 10.3 10.1 
1A96 9.9 10.9 10.3 10.1 
1A97 9.7 10.6 10 9.8 
1A98 8.5 9.3 9.6 8.9 
1NUL 9.1 9.9 9.4 9.3 
2DY0 20.5 20.3 23.7 22.2 

 

 

To further confirm this is a genuine case of HGT, we compared visually the 3-D structure 

of the protein 2DY0 and a sequence alignment with the proteins in Bacillus subtilis and 

other proteins in E. coli in the COG-503. 
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Figure 4.1: Pre-calculated jFATCAT-rigid structure alignment results 2DY0 (E. coli) vs. 

1A98 (E. coli) 

 

Figure 4.2: Pre-calculated jFATCAT-rigid structure alignment results 2DY0 (E. coli) vs. 

1O57 (Bacillus subtilis) 

Extra loop in 2DY0 
that is not aligning 
with 1A98 



40 
 

 

 

Figure 4.3: Sequence alignment results 2DY0 (E. coli) vs. 1A98 (E. coli) 

 

Figure 4.4: Sequence alignment results 2DY0 (E. coli) vs. 1O57 (Bacillus subtilis) 

 

Long part of the 
sequence is not aligning 
here. This corresponds 
to the extra grey loop in 
the 3-D structural 
comparison above. 
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4.3 Detailed Analysis of COG-596 

COG-596 from E. coli includes two structures one of a BioH protein (1M33) and one of a 

C-C bond hydrolase (1U2E). 

COG-596 from Bacillus subtilis includes two structures of the same Sigma factor SigB 

regulation protein. 

E. coli protein 1M33 was more similar to the protein in Bacillus subtilis than it had been 

to the E. coli protein. Therefore, it is an excellent candidate to be a horizontally 

transferred gene product. 

 

Table 4.11: COG- 596 in Comparison between Escherichia coli and Bacillus subtilis 

E. coli proteins versus each 
other 

 1M33 1U2E 
1M33  24.8 
1U2E   

 

Bacillus subtilis proteins 
versus each other 

 1WOM 1WPR 
1WOM  47.6 
1WPR   

 

E. coli versus Bacillus subtilis 
proteins 
  1WOM 1WPR 
1M33 30.5 30.7 
1U2E 25.7 25.6 
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To further confirm this is a genuine case of HGT, we compared visually, the 3-D 

structure of the protein 1M33 and a sequence alignment with the proteins in Bacillus 

subtilis and other proteins in E. coli in the COG-596. 

 

Figure 4.5: Pre-calculated jFATCAT-rigid structure alignment results 1M33 (E. coli) vs. 

1U2E (E. coli) 

 

Figure 4.6: Pre-calculated jFATCAT-rigid structure alignment results 1M33 (E. coli) vs. 

1WOM (Bacillus subtilis) 

More grey regions in this 
alignment of 1M33 & 1U2E 
compared to the alignment of 
1M33 & 1WOM 
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Figure 4.7: Sequence alignment results 1M33 (E. coli) vs. 1U2E (E. coli) 

  

Figure 4.8: Sequence alignment results 1M33 (E. coli) vs. 1WOM (Bacillus subtilis)  

Sequence alignment 
clearing showing more 
gaps in the alignment of 
1M33 vs. 1U2E when 
compared to the 
alignment of 1M33 vs. 
1WOM 
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4.4 Detailed Analysis of COG-604 

COG-604 from E. coli includes three structures, two of which (1O89, 1O8C) are of the 

same protein which is an YhdH putative quinone oxidoreductase and one of a quinone 

oxidoreductase (1QOR). 

COG-604 from Bacillus subtilis includes two structures of the same YhfP hypothetical 

protein without and with NAD bound (1TT7, 1Y9E). 

E. coli protein 1O89 & 1O8C are more similar to all the structures of the protein in 

Bacillus subtilis than it had been to the E. coli protein 1QOR. Therefore, they are an 

excellent candidate to be a horizontally transferred gene product. 

In this case we cannot really distinguish between the proteins 1O89, 1O8C and pin point 

one of them as the candidate for HGT as they are of the same protein. 

Table 4.12: COG-604 in Comparison between Escherichia coli and Bacillus subtilis 

E. coli proteins versus each other 

 
1O89 1O8C 1QOR 

1O89  49.4 29.1 
1O8C  

 
31.8 

1QOR  
 

 
 

 

E. coli versus Bacillus subtilis 
proteins 

 
1TT7 1Y9E 

1O89 44.8 44.9 
1O8C 47.7 47.6 
1QOR 30.9 30.7 

  

Bacillus subtilis proteins 
versus each other 

 
1TT7 1Y9E 

1TT7  55 
1Y9E  
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To further confirm this is a genuine case of HGT, we compared the 3-D structure of the 

protein 1O89 (chose one of the two similar proteins) and a sequence alignment with the 

proteins in Bacillus subtilis and other protein in E. coli in the COG-604. 

 

Figure 4.9: Pre-calculated jFATCAT-rigid structure alignment results 1O89 (E. coli) vs. 

1QOR (E. coli) 

 

Figure 4.10: Pre-calculated jFATCAT-rigid structure alignment results 1O89 (E. coli) 

vs. 1TT7 (Bacillus subtilis) 

Numerous small grey loops 
spread throughout the 
alignment of 1O89 & 1QOR.  

Very few loops in the 
alignment of 1O89 & 1TT7 



46 
 

 

 

Figure 4.11: Sequence alignment results 1O89 (E. coli) vs. 1QOR (E. coli) 

The sequence alignment 
of 1O89 & 1QOR clearly 
shows a lot of small 
mismatch which 
correspond to the 
numerous small grey 
regions in the 3-D 
structure alignment.  
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Figure 4.12: Sequence alignment results 1O89 (E. coli) vs. 1TT7 (Bacillus subtilis) 

  

The sequence 
alignment of 1O89 
& 1TT7 have very 
few mismatches. 
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4.5 Detailed Analysis of COG-1278 

COG-1278 from E. coli includes two structures of two different cold shock proteins 

(2BH8, 3MEF). 

COG-1278 from Bacillus subtilis includes four protein structures of the same protein, two 

of which are with different ligands (2ES2, 2F52) and two of which are site mutants of the 

same protein (2I5L, 2I5M). 

E. coli protein 3MEF is more similar to all the different structures of the proteins in 

Bacillus subtilis than it had been to the E. coli protein 2BH8. Therefore, it is an excellent 

candidate to be a horizontally transferred gene product. This example has not been 

reported in the literature. 

Table 4.13: COG-1278 in Comparison between Escherichia coli and Bacillus subtilis 

E. coli proteins versus each 
other 

 
2BH8 3MEF 

2BH8  5.1 
3MEF  

  

 

E. coli versus Bacillus subtilis proteins 
  2ES2 2F52 2I5L 2I5M 
2BH8 4.7 4 4.8 4.8 
3MEF 10.4 9 10.2 9.8 

 

 

Bacillus subtilis proteins versus each other 
  2ES2 2F52 2I5L 2I5M 
2ES2   12.1 15 14.6 
2F52     11.7 10.8 
2I5L       15 
2I5M         



49 
 

 

To further confirm this is a genuine case of HGT, we compared visually the 3-D structure 

of the protein 3MEF and a sequence alignment with the proteins in Bacillus subtilis and 

other proteins in E. coli in the COG-1278. 

 

Figure 4.13: Pre-calculated jFATCAT-rigid structure alignment results 3MEF (E. coli) 

vs. 2BH8 (E. coli) 

 

Figure 4.14: Pre-calculated jFATCAT-rigid structure alignment results 3MEF (E. coli) 

vs. 2ES2 (Bacillus subtilis) 

Structure of 3MEF 
better matches with 
2ES2 than 2BH8. 

A detailed examination of the 
2BH8 protein revealed possible 
errors in the backbone 
assignment but these don’t alter 
the location of the small grey 
loops. 
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Figure 4.15: Sequence alignment results 3MEF (E. coli) vs. 2BH8 (E. coli) 

 

Figure 4.16: Sequence alignment results 3MEF (E. coli) vs. 2ES2 (Bacillus subtilis) 

  

Sequence of 3MEF 
better matches with 
2ES2 than 2BH8. 
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4.6 False Positives 

Initially the analysis on these COGs with suspicious HGTs seemed to have found a very a 

large number of HGTs. However, an intensive analysis proved that many of these were 

false positives. There were the following reasons for false positives: 

1. Protein Fragments: Many of the PDB-ids in the Protein Data Bank correspond to 

Protein domains and Protein fragments. The structural comparison of these 

Domains and Protein fragments with the whole protein sometimes leads to falsely 

suspecting a protein for HGT. 

Good examples of this case are COG-1925 and COG-2376. 

2. Substrate Diversity: The COG’s enzyme specificity is fixed within the COG but 

the substrate specificity is diverse. 

Good examples for this case are COG-526 and COG-1609. 

3. Conformation changes: There are two or more conformations of the same 

protein. Example: COG-266 

4. NULL values: Comparison of structures with no significant similarity should be 

considered a ‘NULL’. This disturbs the statistical analysis greatly. 

5. HGT from other sources: There are some cases in which a protein is identified 

as possible HGT but not exactly from the organism with which we are comparing.  

Example: Protein 1BJF in COG-5126. 

6. Different Subunits: Different subunits of a multi subunit enzyme have very 

dissimilar structures and with the structure-based method these could look like a 

possible candidate of HGT but they are not. 
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Chapter 5 
 

Relative COG Functional Similarity 
Based on GO Terms 
 

5.1 Introduction 

This chapter describes the work done for the paper "Bacterial Protein Structures Reveal 

Phylum Dependent Divergence" by Matthew D. Shortridge, Thomas Triplet, Peter 

Revesz, Mark A. Griep, and Robert Powers, Computational Biology and Chemistry, 

accepted, January 2011.[32] 

PDB is generally used when working with protein structures. There are various types of 

functional classifications of the proteins. The mains ones used are the COG classification 

and the GO annotation. The mapping of PDB IDs and COG classification has been done 

at UNL and available on PROFESS database. The GO Annotation project has mapped 

PDB IDs and corresponding chain IDs to the GO terms. 

In most of the cases the proteins in the same COG classification have structures similar to 

each other. But many a times in research we would like to know which COGs have 
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proteins more related to each other than the other based on the functions of the proteins. 

That is where the GO term classification comes into picture where each protein has a few 

GO terms related to it corresponding to the various functions of the protein. 

So the data that one would be working on would look like this: 

COG1 = {PDBid1, PDBid2, ....... PDBidn} 

PDBid1 = {GO1, GO2, ........ GOi}, PDBid2 = {GO1, GO4, ........ GOj}, ........ PDBidk = 

{GO1, GO9, ........ GOk} 

 

5.1.1 Hamiltonian Distance 

We use the Hamiltonian distances between sets as the basis for determining the 

functional similarity in a COG. 

Hamiltonian distance between two sets can be defined as the sum of the number of values 

in one set that do not appear in the other and vice versa. 

Example: Set A = {11, 278, 999, 1122}, Set B={11,131,278,777} 
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The Hamiltonian distance between Set A and Set B is 4. 999 and 1122 are not present in 

Set B. That makes the count 2. Then 131 and 777 are not present in Set A and adds 2 

more to our count making the total count 4 which is the distance. 

 

5.2 Method 

By definition, a strong consensus requires each protein to share the same GO term. 

Instead, we define weak consensus as a set of GO terms that appear in a majority of 

proteins. We can have different thresholds according to our requirement. We chose a 

threshold of 50% in our experiments. So the weak consensus set for COG1 in the 

example above 

Weak consensus of COG1 ={GO1, GO4, GO7, ..... GOk} 

Where each GOi appears in more than 50% of the total number of proteins in COG1. 

To measure the similarity of the proteins based on GO terms with in a COG we can adopt 

two different methods. One using the weak consensus set and one without considering the 

weak consensus set. 

5.2.1 Method-1 

In this, we first get the weak consensus set of GO terms for the COG of interest, WC. 

Then, we find the distance between the WC set and GO term set for each Protein in the 

COG, normalize them by dividing the distance by the number of unique GO terms in the 

two sets. We then sum all the normalized distances for each of the proteins and average it 
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by dividing the sum with the number of proteins in that COG. The reason we normalize is 

to keep our distance result between 0 and 1. This makes it possible to compare with the 

results of other COGs. 

The set function formula would look like: 

𝐶𝑂𝐺𝑑𝑖𝑠𝑡 1 =
∑ |𝑊𝐶 ∪  𝐺𝑂𝑖| − |𝑊𝐶 ∩ 𝐺𝑂𝑖|

|𝑊𝐶 ∪  𝐺𝑂𝑖|
𝑁
�  

WC is the weak consensus set and GO is the GO term sets. 

5.2.2 Method-2 

In the second method we do not use the weak consensus set at all. Instead we do 

comparison between all the Proteins’ GO term sets. That is, we find the distance between 

each and every GO term set for the proteins in a COG. Normalize each of the distances 

by dividing the distance by the number of unique proteins in the two comparing GO term 

sets considered together and then average this normalized distance by the total number of 

comparisons. 

The set function formula would look like 

𝐶𝑂𝐺𝑑𝑖𝑠𝑡 2 = 2 .
∑ ∑

|𝐺𝑂𝑖  ∪  𝐺𝑂𝑗| − |𝐺𝑂𝑖  ∩  𝐺𝑂𝑗|
|𝐺𝑂𝑖  ∪  𝐺𝑂𝑗|𝑗=𝑖+1𝑖

𝑁(𝑁 − 1)
�  
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Both the methods measure how functionally similar the COGs are. There is no criterion 

for selecting one method over the other. Actually, there are some programs like 

FunSimMat - Functional Similarity Matrix available that does similar comparisons. 

 

5.3 Results 

The results using this program using Method 1 and Method 2 for various COGs are as 

below. For both methods we calculate 1- COGdist to get 1 for perfect similarly and 0 for 

absolute dissimilarity. 

Table 5.1: Results of COG functional similarity with Method 1 and Method 2 

COG COG Function Annotation 
 

Relative COG 
Function 

Similarity Based 
on GO  

(Method 1) 

Relative COG 
Function 

Similarity Based 
on GO  

(Method 2) 

28 
Thiamine pyrophosphate 

requiring enzymes 
 

0.59 0.40 

39 Malate/lactate dehydrogenases  
 

0.8 0.68 
394 Protein-tyrosine-phosphatase  

 

0.61 0.52 

604 
NADPH:quinone reductase 
and related Zn-dependent 

oxidoreductases  
 

0.88 0.77 

605 Superoxide dismutase 
 

0.76 0.60 

742 
 

N6-adenine-specific methylase  
 

0.73 0.59 

813 
Purine-nucleoside 

phosphorylase  
 

0.87 0.75 

1012 
NAD-dependent aldehyde 

dehydrogenases  
 

0.58 0.38 
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1075 
Predicted acetyltransferases 

and hydrolases with the 
alpha/beta hydrolase fold  

 

0.7 0.5 

1607 Acyl-CoA hydrolase 0.8 0.75 

1940 
Transcriptional regulator/sugar 

kinase  
 

0.31 0.1 

2124 Cytochrome P450 0.8 0.65 
2188 Transcriptional regulators 0.89 0.8 

446 
Uncharacterized NAD (FAD) -

dependent dehydrogenases 
0.85 0.71 

1057 
Nicotinic acid mononucleotide 

adenylyltransferase 
0.95 0.91 

242 
N-formylmethionyl-tRNA 

deformylase 
0.87 0.75 

1052 
Lactate dehydrogenase and 

related dehydrogenases 
0.89 0.84 

2141 

Coenzyme F420-dependent 
N5,N10-methylene 

tetrahydromethanopterin 
reductase and related flavin-
dependent oxidoreductases 

0.76 0.65 

3832 
Uncharacterized conserved 

protein 
1 1 

110 
Acetyltransferase (isoleucine 

patch superfamily) 
0.56 0.34 

171 NAD synthase 0.85 0.73 

251 
Putative translation initiation 

inhibitor, yjgF family 
0 0 

346 
Lactoylglutathione lyase and 

related lyases 
0.11 0.2 

366 Glycosidases 0.51 0.46 

454 
Histone acetyltransferase HPA2 

and related acetyltransferases 
0.83 0.74 

491 
Zn-dependent hydrolases, 

including glyoxylases 
0.5 0.48 

500 SAM-dependent 0.59 0.37 
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methyltransferases 

526 
Thiol-disulfide isomerase and 

thioredoxins 
0.96 0.93 

590 Cytosine/adenosine deaminases 0.7 0.54 

637 
Predicted 

phosphatase/phosphohexomutase 
0.52 0.33 

664 cAMP-binding proteins 0.5 0.34 

745 

Response regulators consisting 
of a CheY-like receiver domain 

and a winged-helix DNA-
binding domain 

0.73 0.55 

753 Catalase 0.93 0.89 
778 Nitroreductase 0.64 0.53 
784 FOG: CheY-like receiver 0.48 0.4 
796 Glutamate racemase 0.92 0.84 

1028 
Dehydrogenases with different 
specificities (related to short-

chain alcohol dehydrogenases) 
0.84 0.71 

1151 
6Fe-6S prismane cluster-

containing protein 
0.71 0.6 

1309 Transcriptional regulator 0.8 0.7 

1396 
Predicted transcriptional 

regulators 
0.54 0.4 

1404 Subtilisin-like serine proteases 0.6 0.5 

1733 
Predicted transcriptional 

regulators 
1 1 

1846 Transcriptional regulators 0.85 0.73 

2159 
Predicted metal-dependent 

hydrolase of the TIM-barrel fold 
0.83 0.78 

2367 Beta-lactamase class A 0.93 0.87 
2730 Endoglucanase 0.88 0.78 
3693 Beta-1,4-xylanase 0.89 0.8 

4948 
L-alanine-DL-glutamate 

epimerase and related enzymes 
of enolase superfamily 

0.71 0.57 
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Method 1 gives higher similarity scores compared to Method 2 because Method 1 uses 

the weak consensus set. By the definition of the weak consensus set, the average 

distances of the proteins with their weak consensus sets is always less than the distance 

between themselves.  
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Chapter 6 
 

Conclusion and Future Work 
 

6.1 Conclusion 

Identifying HGTs is a difficult process. No process or method proposed so far is capable 

to identify perfectly all cases of HGTs.[12]  Each process has its own advantages and 

disadvantages. This research devised a novel protein structure-based method for 

identifying HGTs and has proved that working directly with the proteins and their 

structures is a good option and an innovative approach for identifying HGTs. The various 

possibilities of false positives also have been studied and documented. 

A paper based on this thesis work has been submitted to the Fourth International C* 

Conference on Computer Science & Software Engineering (C3S2E, Montreal, QC, 

CANADA).[31] 
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6.2 Future Work 

The process of identifying HGTs using whole organism protein structures is the first of 

its kind and has a vast scope for improvements and advancements. In particular, ways to 

eliminate each one of the cases for false positives discussed in Chapter 4 would be the 

highest priority for improving our method. 

PDB is the best database available for the various crystallized proteins, their structures 

etc.  However, some of the problems encountered when using PDB are: 

1. There is some redundancy in the PDB i.e. some proteins that have been 

crystallized more than once and each appear with a unique PDB-id. 

2. Some proteins have been crystallized with and without ligands and substrates, 

each appear with a unique PDB-id. 

3. Protein Domains and Protein fragments appear with unique PDB-id. 

4. Some proteins have been mutated at only one or a few residues, but each structure 

has a unique PDB-id. 

These issues cause considerable deviation in the analysis as well as the results. Some of 

the false positive cases can be eliminated when the PDB gets cleaned. 

There are millions of proteins in various organisms. Not all the proteins have been 

crystallized and their structures are not available. This is one of the main limitations of 

using the protein structure based approach for identifying HGT. As more and more 

protein structures are crystallized and as the PDB expands, the efficiency of this protein 

structure-based method for detecting HGT will surely get better. 
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Instead of the Dali method of protein comparison used in this research, we could try 

using the Comparison of Protein Active Site Structures[26] and see if it gives different 

type of results. 

COG classification is more of a generalized classification of proteins and there are 

various other protein classifications that can be used instead of the COG.  Some of the 

fairly recent classification like GO classification, eggNOG classification [16] etc. would be 

a good choice to experiment this process on. The results of the same process with a 

different classification could give better and more interesting results. 

This research has a great potential for scalability. As more analysis is done with the other 

organisms and as we find more cases of HGT it would be very interesting to look into the 

statistics. This could include, which organism has higher percentage of HGT proteins? 

Which type of protein has higher cases of a HGT, etc? For all these cases we could look 

into the reason and this might drive us into very interesting causes and reasons. The 

statistics of this method could be compared to the statistics of the other methods for 

detecting HGT, but these statistics might not match each other because each method 

works in a different way. 
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